Supporting Information ## Significant Promotion Effect of Mo Additive on Novel Ce-Zr Mixed Oxide Catalyst for the Selective Catalytic Reduction of NO_x with NH₃ Shipeng Ding, Fudong Liu*†, Xiaoyan Shi, Kuo Liu, Zhihua Lian, Lijuan Xie, Hong He* State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, P.R. China. Fax: +86 10 62849123; Tel: +86 10 62849123 * Corresponding authors: fudongliu@lbl.gov, lfd1982@gmail.com (F. Liu); honghe@rcees.ac.cn (H. He) †Present address: Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 **Figure S1.** pH values variation during the process of the homogeneous precipitation over optimized $CeMo_{0.5}Zr_2O_x$ catalyst. **Figure S2.** The distribution of Zr, Ce and Mo on CeMo_{0.5}Zr₂O_x catalyst derived from SEM-EDX. **Table S1** the designed and actual bulk molar ratios on $CeMo_aZr_2O_x$ series catalysts prepared by a homogeneous precipitation method | samples | designed molar ratio
(Ce : Mo : Zr) | actual molar ratio
(Ce : Mo : Zr) | |---------------------|--|--------------------------------------| | $CeZr_2O_x$ | 1:0.0:2 | 1:0.00:1.69 | | $CeMo_{0.1}Zr_2O_x$ | 1:0.1:2 | 1:0.02:1.40 | | $CeMo_{0.5}Zr_2O_x$ | 1:0.5:2 | 1:0.42:1.72 | | $CeMo_{1.0}Zr_2O_x$ | 1:1.0:2 | 1:0.75:1.52 | | $CeMo_{1.5}Zr_2O_x$ | 1:1.5:2 | 1:1.03:1.41 | **Figure S3.** NO_x conversion in NH₃-SCR reaction as a function of temperature over CeZrO_x series catalysts. Reaction conditions: [NO] = [NH₃] = 500 ppm, [O₂] = 5 vol.%, GHSV = $50,000 \text{ h}^{-1}$. **Figure S4.** NO_x conversion in NH₃-SCR reaction as a function of temperature over $CeMo_{0.5}Zr_bO_x$ (b = 0.5, 1.0, 2.0, 4.0) catalysts. Reaction conditions: [NO] = [NH₃] = 500 ppm, $[O_2] = 5 \text{ vol.\%}$, GHSV = 50,000 h⁻¹. Figure S5. NO_x conversion in NH₃-SCR reaction as a function of temperature over V_2O_5 -WO₃/TiO₂ catalysts with various V_2O_5 contents. Reaction conditions: [NO] = 500 ppm (or [NO] = 250 ppm, [NO₂] = 250 ppm), [NH₃] = 500 ppm, [O₂] = 5 vol.%, GHSV = 50,000 h^{-1} . **Figure S6**. NO_x conversion and N₂ selectivity (inserted) in NH₃-SCR reaction as a function of temperature over V₂O₅(1)-WO₃(10)/TiO₂ catalyst. Reaction conditions: [NO] = [NH₃] = 500 ppm, [O₂] = 5 vol.%, GHSV = $50,000 \text{ h}^{-1}$. **Figure S7.** The effect of SO₂ (A), H₂O (B) and SO₂ + H₂O (C) on the SCR activity over CeMo_{0.5}Zr₂O_x catalyst at 400 °C. Reaction conditions: [NO] = [NH₃] = 500 ppm, [O₂] = 5 vol.%, [SO₂] = 100 ppm, [H₂O] = 5 vol.%, GHSV = 50,000 h⁻¹. **Figure S8.** The effect of 500 ppm SO_2 on the SCR activity over $CeMo_{0.5}Zr_2O_x$ catalyst at 250 °C. Reaction conditions: $[NO] = [NH_3] = 500$ ppm, $[O_2] = 5$ vol.%, $[SO_2] = 500$ ppm, $[H_2O] = 5$ vol.%, $[SO_2] = 500$ ppm, $[H_2O] = 5$ vol.%, $[SO_2] = 500$ ppm, $[H_2O] = 5$ vol.%, $[SO_2] = 500$ ppm, 5$ **Figure S9.** NO_x conversion in NH₃-SCR reaction as a function of temperature over $CeMo_{0.5}Zr_2O_x$ catalysts hydrothermal aged at 700 or 760 °C for 48 h. Reaction conditions: $$[NO] = [NH_3] = 500 \text{ ppm}, [O_2] = 5 \text{ vol.\%}, GHSV = 50,000 \text{ h}^{-1}.$$ **Figure S10.** NH₃-TPD (A) and NO-TPD (B) results over $CeZr_2O_x$ and $CeMo_{0.5}Zr_2O_x$ catalysts.