Electronic Supplementary Information for

Air Oxidative Radical Oxysulfurization of Alkynes Leading to

α-Thioaldehydes

Shao-Fang Zhou, ${ }^{a}$ Xiang-Qiang Pan, ${ }^{*}{ }^{a}$ Zhi-Hao Zhou, ${ }^{a}$ Adedamola Shoberu, ${ }^{a}$ Pei-Zhi Zhang, ${ }^{a}$ Jian-Ping Zou**a,b
${ }^{a}$ Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, China.jpzou@suda.edu.cn; panxq@suda.edu.cn
${ }^{b}$ Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.

Table of contents

1. SI-1. Optimization of the reaction conditions in detail

S2
2. The discussion of the reactions of 3-hydroxypropyne, α-methoxypropyne and α-tert-butoxypropyne with thiophenol
3. NMR spectra S4

SI-1. Optimization of the reaction conditions in detail

	$\mathrm{PhSH}+$	$\mathrm{COO}^{\text {tBu }}$	Condition			
Entry	Solvent	$\begin{aligned} & \text { Ratio } \\ & (\mathbf{1 a : 2 a}) \end{aligned}$	Temp (${ }^{\circ} \mathrm{C}$)	Time (h)	$\begin{gathered} \text { Yield(\%) } \\ (\mathbf{3 a}) /(\boldsymbol{Z} \text { and } \boldsymbol{E})^{\mathrm{a}} \end{gathered}$	$\begin{gathered} \text { Yield(\%) } \\ (\mathbf{4 a})^{\text {a }} \end{gathered}$
1	DMF	2:1	25	24	37	0
2	Toluene	2:1	25	24	2.2	0
3	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	2:1	25	24	29	0
4	$\mathrm{CH}_{3} \mathrm{CN}$	2:1	25	24	0	0
5	${ }^{t} \mathrm{BuOH}$	2:1	25	24	11	25
6	1,4-Dioxane	2:1	25	24	17	28
7	THF	2:1	25	24	15	29
8	1,2-dimethox yethane	2:1	25	24	14	21
9^{b}	DMF	2:1	25	24	30	0
10^{b}	THF	2:1	25	24	20	38
$11^{\text {c }}$	THF	2:1	25	24	0	0
$12^{\text {b }}$	THF	0.5:1	25	24	14	0
13^{b}	THF	1:1	25	24	34	5
14^{b}	THF	1.5:1	25	24	16	31
15^{b}	THF	2.5:1	25	24	20	40
$16^{\text {b }}$	THF	3:1	25	24	32	31
$17^{\text {b,d }}$	THF	2:1	25	1	0	0
$18^{\text {b,d }}$	THF	2:1	25	4	29	0
$19^{b, d}$	THF	2:1	25	8	42	0
$20^{\text {b,d }}$	THF	2:1	25	12	35	22
$21^{\text {b,d }}$	THF	2:1	25	24	20	45
22^{e}	DMF	2:1	25	24	68	0
$23^{b, d, e}$	THF	2:1	25	24	25	75
$24^{\text {b,d,e }}$	THF	2:1	25	48	2	98
$25^{\text {b,d,e }}$	THF	2:1	25	72	9	90
$26^{\text {b,e }}$	THF	2:1	0	48	0	0
$27^{\text {b,e }}$	THF	2:1	13	48	27	0
$28^{\text {b,e }}$	THF	2:1	25	48	0	77
$29^{\text {b,e }}$	THF	2:1	40	48	70	25
$30^{\text {b,e }}$	THF	2:1	60	48	86	1.4
$31^{d, e, f}$	THF	2:1	25	48	12	70
$32^{\text {b, d,g }}$	THF	2:1	25	48	34	0

${ }^{a}$ Isolated yield. ${ }^{b}$ Addition of $5 \% \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}(1 \mu \mathrm{~L}) .{ }^{c}$ Anhydrous THF. ${ }^{d}$ Gas chromatography yield. ${ }^{\mathrm{e}}$ Addition of $0.5 \% \mathrm{~mol}$ TBHP ($1 \mu \mathrm{~L}$). ${ }^{f}$ Addition of $4 \mu \mathrm{~L} \mathrm{H} \mathrm{H}_{2} \mathrm{O} .{ }^{g}$ Addition of $5 \% \mathrm{~mol}$ TBHP ($10 \mu \mathrm{~L}$).

The discussion of the reactions of 3-hydroxypropyne, α-methoxypropyne and α-tert-butoxypropyne with thiophenol

The reaction of 3-hydroxypropyne with thiophenol was complicated. It may be attributed to the α-hydroxyl group can activate the $\mathrm{C} \equiv \mathrm{C}$ triple bond thus leading to complicated mixtures. To support this, reactions of substrates such as α-methoxypropyne and α-tert-butoxypropyne were carried out and unsurprisingly, similar results were obtained. In the case of 5-hydroxypentyne (20), the hydroxy group is farther and could not activate the $\mathrm{C} \equiv \mathrm{C}$ triple bond, instead directing the reaction to form selectively alkenylsulfide.

Compound 4a

Compound 4b

Compound 4c

Compound 4d

Compound 4e

Compound 4f

Compound 4g

Compounds 4h

Compound 4i

Compound 4k

Compound 41

Compound 3m

Compound 3n

Compound 3o

Compound 3p

Compound 3ba

Compound 4ba

Compound 3ca

Compounds 4ca

Compound 3da

Compound 4ga

Compound 4ha

Compound 4ia

Compound 3ja

Compound 4ja

Compound 2b'

Compound 4b,

Compound 6

