Supporting Information for:

Nelson W. Green;'? E. Michael Perdue.? Fast Graphically Inspired Algorithm for Assignment of
Molecular Formulae in Ultrahigh Resolution Mass Spectrometry. Anal. Chem. 2015, 87,
10.1021/ac504166t.

'Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
30332, United States

2Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
Email: emperdue@bsu.edu. Phone: +001765858096

Example of CHOFIT program S-2

In the following example, the CHOFIT [n] and CHOFIT [n-3] algorithms, as shown in
Figure 1 and Figure 2, are iterated with an arbitrary mass (formula) and select iterative steps are
shown. Real values are given to the user-defined inputs in the above figures, and real masses
(sums) for the iterative steps are calculated. The error term,(EM — EM_,;.)? < tolerance, is

V(EM—EMq;c)?
EM

redefined in terms of ppm error, 10° < tolerance. lterative steps were counted

for each pass through Figure 1, including ENSP combinations that cause EMcqe to be odd, and
for each pass through Figure 2. The maximum number of iterative steps in Figure 2d is
dependent on the core mass from Figure 1 by the in.x equation. Note that the iterative steps in
different algorithms do not necessarily take the same time to execute, and because of that a ratio
of iterative steps is only an approximation of the ratio of rates. Using this approximation, the
rate of CHOFIT [n-3] is expected to be much faster than CHOFIT [n] because CHOFIT [#] took
many more iterative steps.

CHOFIT [n-3] program source code S-3 to S-17

CHOFIT [n-3] program source code in text form is provided below. After saving the text
in a Pascal file (CHOFIT3 MIN.pas), it can be compiled with the FreePascal compiler
(http://www.freepascal.com/download/). This program can read in limited user inputs from the
command line, read a mass list from a text file, and output the results to a text file. The
command line format is CHOFIT3 MIN InputFileName OutputFileName Low MW High MW
N S P 13C (where the element values are the upper limits). An example command line is
“CHOFIT_MIN <inputfilename> outputfilename 150 1500 10 6 4 17, where <inputfilename> is
replaced by the input (mass list) file name. The default mass lists are text files (.dat) with a list
of ion exact masses (IEM). IEM for the four mass lists tested are in Supporting Information.
The default output is a text file (.fit).

mailto:emperdue@bsu.edu
http://www.freepascal.com/download/

Example of CHOFIT programs (Figure 1 and Figure 2)

Molecular BCC,0Hs5010N,2S3P (613.200750 Da)
Formulae (Mass)
User Inputs EM = Tolerance = Crax = 83 Hy.x = 144 Opmax = 36
613.200750 Da | 0.4 ppm
Emax =1 Nmax =10 Smax =6 Pmax =4
Initial values nc=1 ng=20 no=20
HE:O l’lN:O Ils:O 1’lp:0
CHOFIT [n] algorithm
Iteration ENSP > niEM; CHO > niEM; > niEM; Error
Formula | i=E,N,S,P | Formula i=C,H,O i=E,C,H,O,N,P.S | (ppm)
1 0.000000 | C 12.000000 12.000000 980430.55
10584 0.000000 | CogHs,014 | 612.335706 | 612.335706 1410.70
1352136 | EN, 31.025153 | Cy3H34017 | 582.179600 | 613.204753 6.53
80033331 | EN,S;P | 158.922953 | C 12.000000 | 170.922953 721261.00
80038171 | EN,S;P | 158.922953 | Cy0HyOq9 | 442.277798 | 613.200750 0.00

The total iterative steps are 770 x 224,183 = 172,620,910. Fewer iterative steps are taken when
Crnaxs Hmax, and Opx are constrained by mass.

CHOFIT [n-3] algorithm

Iteration | ENSP > niEM; CHO > niEM; > niEM; Error
Formula i=E,N,S,P | Formula 1=C,H,O 1=E,C,H,O,N,P,S | (ppm)
1| E 1.003355 | CsoHy» 612.093900 | 613.097255 168.78
4| E 1.003355 | C5gH 209 | 612.048132 | 613.051487 243.42
1851 | EN,S;P 158.941984 | Cs7H; 454.078250 | 613. 294.38
1857 | EN,S;P 158.941984 | C51H4 01 | 454.258766 | 613.200750 0.00

The total iterative steps are 3,572.

CHOFIT|n-3] program source code

PROGRAM CHOFIT3 MIN;

{
AUTHORS: Nelson W. Green (Georgia Institute of Technology)
E. Michael Perdue (Ball State University)

DATE : March 15, 2015

CHOFIT3 MIN.PAS is a simplified version of CHOFIT3.PAS, in which it is
assumed that all ions have a charge of -1 due to loss of H(+) ion. As
presented, CHOFIT3 MIN.PAS does not use Na to fit a molecular formula to
an exact mass. The program is provided as Supporting Information for
the following paper:

Nelson W. Green and E. Michael Perdue (2015) "Fast graphically-inspired
algorithm for assignment of molecular formulae in ultrahigh resolution
mass spectrometry", Anal. Chem., submitted for publication.

The source code can be compiled using the Free Pascal compiler, which

is available online at www.freepascal.org. If the required command-line
parameters are provided under the "Run|Parameters..." menu, then the
program may be executed from within the Free Pascal IDE, . Alternatively,
the standalone executable program that is generated by the compiler may be
executed from a command prompt. The user must copy the executable program
(CHOFIT3 MIN.EXE) and any data files to a folder and then open a command
window and navigate to that folder. The program is launched from a
command prompt using the following syntax:

CHOFIT3 MIN InputFileName OutputFileName Low MW High MW N S P 13C

where InputFileName and OutputFileName may be entered with/without
extensions. If a file extension is omitted, then a default extension
of ".dat" will be appended to InputFileName and a default extension of
".fit" will be appended to OutputFileName.

Low MW and High MW are the limits of nominal mass that will be evaluated.

N, S, P, and 13C are the upper limits for the number of these atoms that
can be used in a molecular formula. The maximum values are N=24, S5=8,
P=4, and 13C=1. Lower limits for these elements/isotopes are all zero.

}

{
Global type declarations, constants, and variables for CHOFIT3 MIN.PAS

}

CONST

Version = 'CHOFIT3 MIN 20150315 Test Version'; {Current version }
TYPE

PathStr = STRING;

Component = (C,H,O,N,S,P,M,E,Z);

IonType = (Negative,Positive);

FitType = (mDa, ppm) ;

IFormula ARRAY [Component] OF WORD;
RFormula = ARRAY [Component] OF REAL;

Data = RECORD

ID : LONGINT; {ID of mass peak
CNM : WORD; {Calculated nominal mass
Moles : IFormula; {Molecular formula
IEM : REAL; {Exact mass of Al ion
XEM : REAL; {Exact mass of molecule
CEM : REAL; {Calculated exact mass
Intensity: REAL; {Peak intensity - not used
XEMerr : REAL; {Mass fitting error, mDa/ppm
Fit : BOOLEAN; {TRUE if found}
END;
FitPtr = “FitRec; {Pointer type for fit records
FitRec = RECORD {Record type for linked data

Prev: FitPtr;
Peak: Data;
Next: FitPtr;

END;

CONST
Proton = 1.00727645216; {Exact mass of H+
MinMW : WORD = 0; {Program minimum MW
MaxMW : WORD = 2000; {Program maximum MW
LowMW : WORD = 150; {User minimum MW
HighMWw : WORD = 1000; {User maximum MW
Digits : BYTE = 6; {Number of decimal places
MinFit : REAL = 0; {Program minimum error
MaxFit : REAL = 2; {Program maximum error
MaxErr : REAL = 0.40; {Maximum fitting error
FitMode : FitType = ppm; {Error units - ppm, mDa
IonMode : IonType = Negative; {Negative/Positive ions
TotalPeaks: LONGWORD = 0O; {Total no. of mass peaks
TotalFormulae: LONGWORD =0; {Total molecular formulae

}
}
}
}
}
}
}
}
}
}
}

}
}

{

Nominal masses of components, using zero for charge

NM: IFormula =

(12, 1, 1o, {C H 0}
15, 32, 32, {HN S HP}
22, 1, 0); {Na-H 13C-12C Z}
{

Exact masses of components, using the mass of an electron for charge
}
EM: RFormula = {IUPAC 2003 Masses}
(12.0000000000, 1.0078250319, 15.9949146223, {C H 0}
15.0108990393, 31.9720707300, 31.9815865219, {HN S HP}
21.9819446281, 1.0033548380, 0.0005485799); {Na-H 13C-12C Z}

{

The program limits on minimum and maximum moles are:

S-4

{ C H o) N S P M E Z}
(1 2, 0o 0, 0, 0, 0O, 0, 1);
(166,284, 72, 24, 8, 4, 2, 1, 5);

Min : IFormula
Max : IFormula

{

User-specified limits on minimum and maximum moles are:

Il
—
—
~
N
~
o
~
o
~
o
~
o
~
o
~
o
~
~

Low : IFormula
High: IFormula = (1, 2, 0, 0, 0, 0, O, 0, 1); {Fxx*}

{

Valences of the Components:

{¢, 4, o, N, 5, P, M, E, Z}
2, 2 2, 0

Valence: IFormula = (4, 1, , , 2, , , 0, 0);
VAR

InFile, {Name of input data file }
InPath, {File path for data file }
OutFile, {Name of output file }
OutPath : PathStr; {File path for output file }
DevlI, {Input file device }
DevO : TEXT; {Output file device }
Peak : Data; {The master variable for mass}
Finished : BOOLEAN; {TRUE if program is closed }
BaseRec, {Pointer to first fit record }
LastRec, {Pointer to last fit record }
PeakRec . FitPtr; {Pointer to any fit record }

{

The RoundTo function rounds the real number X to the specified number
of decimal places.

FUNCTION RoundTo (X: REAL; Places: BYTE): REAL;
BEGIN

RoundTo : =ROUND (X*EXP (Places*LN (10)))/ (EXP (Places*LN (10)));
END;

{

The Exists function checks if the file path is valid

FUNCTION Exists (FileSpec: PathStr): BOOLEAN;
VAR Dev: FILE;
BEGIN
{SI-}
ASSIGN (Dev,FileSpec);
RESET (Dev);
CLOSE (Dev) ;
{SI+})

S-5

Exists:=(IORESULT=0) AND (FileSpec<>'");
END;

{
BuildFitRec creates a doubly linked list to store each mass and the
molecular formulae that are assigned to that mass. BaseRec is the
first record in the list of peaks and solutions for those peaks.
PeakRec 1is the first solution for the current Peak. BuildFitRec is
called once for each new molecular formula, so TotalFormulae is
incremented here.

PROCEDURE BuildFitRec (Peak: Data; Prev,Next: FitPtr; VAR M: FitPtr);
BEGIN
NEW (M) ;
M” .Peak:=Peak;
M”.Prev:=Prev;
M” .Next :=Next;
IF Prev=Next THEN
BEGIN
BaseRec:=M;
PeakRec:=M;
END;
IF Prev<>NIL THEN
BEGIN
Prev” .Next :=M;
IF Prev”.Peak.ID <> M".Peak.ID THEN PeakRec:=M;
END;
IF Next<>NIL THEN Next”.Prev:=M;
TotalFormulae:=SUCC (TotalFormulae) ;
END;

{

DeleteFitRecs deletes a doubly linked list of molecular formulae.

PROCEDURE DeleteFitRecs (VAR Target: FitPtr);
VAR P,N: FitPtr;

BEGIN
WHILE Target <> NIL DO
BEGIN
P:=Target;
N:=Target”.Next;
DISPOSE (P) ;
P:=NIL;
Target:=N;
END;
END;

{
The function Valid evaluates a molecular formula to ensure that its
composition obeys the Senior Rules and meets other compositional
constraints that X >= Low[X] for X=CHONSPME and O <= (C+2+3*N+4*S+4*Pp) .

}

FUNCTION Valid (Moles: IFormula): BOOLEAN;

S-6

VAR
OK : BOOLEAN;
Sum: INTEGER;
I : Component;

OK:=TRUE;

FOR I:=C TO E DO OK:=OK AND (Moles[I]>=Low[I])

{

The Senior Rules rely heavily on valence, which is an elemental property.
CHOFIT uses components rather than elements, so the valences used in CHOFIT
are those of components (e.g., NH has a valence of 2), and they work for
most tests. Components that are exchange operators (M and E) are not
included in these tests because they do not alter the number of bonds in a
molecule.

The sum of atoms having odd valences must be an even number. The use of
components results in only H having an odd valence.

}

Sum:=0;

FOR I:=C TO P DO IF ODD(Valence[I]) THEN Sum:=Sum+Moles[I];

OK:=0K AND (NOT ODD(Sum)) ;

The sum of the valences must equal or exceed two times the maximum
valence. Components don't work here. For example, H-C=N: passes this
test when elemental valences of 4, 1, and 3 are used for C, H, and N. It
fails the test when component valences of 4 and 2 are used for C and NH.
NaC=N: passes the test when elemental valences of 4, 1, and 3 are used
for C, Na, and N. It fails the test when component valences of 4, 2, and
0 are used for C, NH, and Na H.

The problem is overcome if the hidden two valences inside multiatomic
components NH and PH are counted explicitly.

}

Sum:=0;
FOR I:=C TO P DO
CASE I OF

N, P: Sum:=Sum+Moles[I]*Valence[I]+Moles[I]*2;
ELSE Sum:=Sum+Moles[I]*Valence[I];

END;

OK:=0K AND (Sum >= 2*Valence[C]);

The difference between the maximum and minimum number of bonds that
can exist in a molecular formula is known as unsaturation (U) or double
bond equivalents (DBE), and U (or DBE) must be >= 0.

Bmax = SUM(Moles[i]*Valence[i])/2
Bmin = SUM (Moles[i]) - 1
U = Bmax - Bmin = [SUM(Moles[i]*Valence[i]) - SUM(Moles[i]*2) + 2]/2
U = [SUM(Moles[i]* (Valence[i] - 2)) + 21/2
2U0 = [SUM(Moles[i]* (Valence[i] - 2)) + 2] >= 0
;um:=2;

FOR I:=C TO P DO Sum:=Sum+Moles[I]* (Valencel[I]-2);
OK:=0K AND (Sum >=0) ;

Moles[0O] should be allowed to be as large as Moles[C]+2 in CHO molecules.
Organic molecules containing N, S, and P could possibly be organic
nitrates,
organic sulfates, and organic phosphates, so the upper limit for Moles[O]
should be (Moles[C]+2 + 3*Moles[N]+4*Moles[P]+4*Moles[S]).
}
OK:=0K AND (Moles[O]<=2+Moles[C]+3*Moles[N]+4*Moles[P]+4*Moles([S]);
Valid:=0K;
END;

{
The GetCoreFormula procedure is the heart of CHOFIT3 MIN.PAS. Here the

algorithm based on low-mass moieties CH40(-1) and C40(-3) is applied
to the exact mass that remains after accounting for the contributions
of all non-CHO elements/isotopes. This procedure generates all
possible combinations of C, H, and O for a given MW and subject to the
additional constraints that are contained in the Valid function.

}

PROCEDURE GetCoreFormula (XEM, CoreXEM: REAL; CoreRNM: WORD;
VAR Loop: IFormula; VAR Found: BOOLEAN) ;

VAR
CoreCEM,
XEMerror : REAL;
Moieties : SHORTINT;
Step : Component;
Test : REAL;
Attempts : WORD;
GoodFit : BOOLEAN;
CONST
MoietyMass = 0.0363855087200022; {The exact mass of the CH40-1 moiety}
MaxAttempts: BYTE = 20; {The maximum number of mixing lines }

S-8

BEGIN
{
Look for a CHO core formula, which must have an even NM. Don't even
try 1f CoreRNM is odd, because there cannot be a CHO core formula that
gives an odd NM.
}
Found:=FALSE;
IF NOT ODD(CoreRNM) THEN
BEGIN
{
Find the hydrocarbon having this NM and the maximum number of moles
of C.
}
Loop[C] :=CoreRNM DIV NM[C];
Loop[H] :=CoreRNM -Loop[C]*NM[C];
Loop[0] :=0;
CoreCEM:=0;
{
Calculate the EM of the CHO core formula.
}
FOR Step:=C TO O DO
CoreCEM:=CoreCEM+Loop[Step] *EM[Step] ;
{
Now calculate the error in matching CoreCEM and CoreXEM. Because the
mass of CoreXEM 6 Peak.XEM, this error will be somewhat larger than the
error based on Peak.XEM. Note that XEMerror may be positive or negative.
}
CASE FitMode OF
ppm: XEMerror:=ROUNDTO (1E6* (CoreCEM-CoreXEM) /XEM, Digits) ;
mDa: XEMerror:=ROUNDTO (1E3* (CoreCEM-CoreXEM) ,Digits);
END;
Attempts:=0;
MaxAttempts:=ROUND (0.8+CoreRNM/60) ;
{
Look for a solution on the current line connecting the CH(4)0(-1) moiety
and the current CHO core formula. TIf there is no solution, move along
line connecting the C(4)0(-3) moiety and the current CHO core formula to
the next line connecting the CH(4)0(-1) moiety and the new guess for
the CHO core formula. XEMError is compared with MaxErr because 13C has
already been removed in FindMolecularFormulae.
}
WHILE (ABS (XEMerror)>MaxErr) AND (Attempts<MaxAttempts) DO
BEGIN
{
Calculate the number of CH(4)0O(-1) moieties that are needed to give the
current molecular formula (the max. C hydrocarbon) the same mass as the
CHO core formula. Test is a real number, rounded to Digits decimal
places.
}
Test :=ROUNDTO ((CoreXEM-CoreCEM) /MoietyMass,Digits) ;
CASE FitMode OF
ppm: GoodFit:=(ROUNDTO (1E6*ABS ((CoreCEM+ROUND (Test) *MoietyMass
-CoreXEM) /XEM) ,Digits) <= MaxErr);
mDa: GoodFit:=(ROUNDTO (1E3*ABS (CoreCEM+ROUND (Test) *MoietyMass
-CoreXEM) ,Digits) <= MaxErr);

S-9

END;
IF GoodFit THEN
BEGIN
{
Advance along the line connecting the CH(4)0(-1) moiety and the
current CHO core formula to the final CHO core formula. Because
Test is a real number, it is possible to move toward or away from
the CH(4)0(-1) moiety. We need to be sure that no negative numbers
will be generated by adding or subtracting CH(4)O0(-1).
}
Moieties:=ROUND (Test) ;
IF (Loop[C]+Moieties >= Low[C]) AND (Loop[H]+4*Moieties >= Low[H])
AND (Loop[O]-Moieties >= Low[O]) THEN
BEGIN
Loop[C] :=Loop[C]+Moieties;
Loop[H] :=Loop[H]+4*Moieties;
Loop[O] :=Loop[0O]-Moieties;
END
ELSE Attempts:=MaxAttempts;
END
ELSE
BEGIN
{
Move along line connecting the C(4)0(-3) moiety and the current CHO
core formula to the next line connecting the CH(4)0O(-1) moiety and
the new guess for the CHO core formula. For molecular formulae
with EM 6 1000 Da, there are no more than 20 lines to explore, so
the WHILE loop has been limited to 20 attempts.

Here we must also be careful not to subtract too much C, and we use
this C(4)0(-3) moiety in single steps.
}
IF Loop[C]>4 THEN
BEGIN
Loop[C] :=Loop[C]-4;
Loop[O] :=Loop[0]+3;

END

ELSE Attempts:=MaxAttempts;
END;
CoreCEM:=0;

FOR Step:=C TO O DO
CoreCEM:=CoreCEM+Loop[Step] *EM[Step] ;

Test :=ROUNDTO ((CoreXEM-CoreCEM) /MoietyMass,Digits) ;

CASE FitMode OF
ppm: XEMerror:=ROUNDTO (1E6* (CoreCEM-CoreXEM) /XEM,Digits) ;
mDa: XEMerror:=ROUNDTO (1E3* (CoreCEM-CoreXEM) ,Digits);

END;
Attempts:=Attempts+1;
END;
Found:=Valid(Loop) AND (ABS (XEMerror)<=MaxErr);
END;
END;

{
FindMolecularFormulae assigns all possible molecular formulae to each
mass in the input file, subject to user constraints on the moles of

S-10

¢, H, O, N, S, P, M, E, and Z. This particular version uses
conventional loops for N, S, P, M, E, and Z. C, H, and O are found
simultaneously in GetCoreFormula by use of the new algorithm we have
developed based on low-mass moieties (LMM's) .

PROCEDURE FindMolecularFormulae;

VAR
Loop : IFormula;
Step : Component;
CoreXEM : REAL;
CoreRNM : WORD;

Formula OK: BOOLEAN;

BEGIN
{
Initialize some variables that apply to the whole mass list.
}
BaseRec:=NIL;
LastRec:=NIL;
TotalFormulae:=0;
Peak.ID:=0;
{
Start processing the input file.
}
ASSIGN (DevI,InPath+InFile);
RESET (DevlI);
WHILE NOT EOF (DevI) DO
BEGIN
WITH Peak DO
BEGIN
{
Initialize some variables that apply to this peak.
}
Fit:=FALSE;
Formula OK:=FALSE;
CoreXEM:=0;
CoreRNM:=0;
FOR Step:=C TO Z DO
BEGIN
Moles[Step] :=0;
Loop[Step] :=0;
END;
PeakRec:=NIL;
ID:=SUCC (ID);
{
Now read some data...
}
READLN (DevI, IEM);
IF ID>1 THEN
BEGIN
WRITE (#8#8#8#8#8#8);
WRITE (ID:6);
END
ELSE WRITE ('Processing ID ',ID:6);

S-11

{

Convert the (presumably) singly-charged ion to a molecule.

}
IF IonMode=Negative THEN XEM:=IEM+Proton ELSE XEM:=IEM-Proton;

{

XEM is now the mass of the neutral molecule.

Do the calculations only for LowMW <= XEM <= HighMW, rounding to the

nearest integer masses. Because LowMW and HighMW are integers and
exact mass can round to nominal mass plus one, the upper limit is
HighMW+1.

}
IF (ROUND(XEM) >= LowMW) AND (ROUND (XEM) <= (HighMWw+1l)) THEN

BEGIN

{
Start looping through the Components.

}

Loop[C] :=Low|[C];
Loop[H] :=Low[H];
Loop[O] :=Low[O];
Loopl[Z] :=Lowl[Z];
REPEAT

IF Loop[Z]>1 THEN XEM:=XEM*Loop[Z]/ (Loop[Z]-1);
Loop[M] :=Low [M] ;
REPEAT
Loop[P] :=Low[P];
REPEAT
Loop[S]:=Low([S];
REPEAT
Loop[N] :=Low[N];
REPEAT
Loop[E] :=Low[E];
REPEAT
{
Strip off the exact mass of all loop constituents to
yield the CHO core of this molecular formula.
}
CoreXEM:=Peak.XEM;
FOR Step:=N TO E DO CoreXEM:=CoreXEM-Loop[Step] *EM[Step];

{
CoreXEM is required to be as large as the EM of CH(4).

}
IF CoreXEM>=EM[C]+4*EM[H] THEN
BEGIN
CoreRNM:=ROUND (CoreXEM) ;
Formula OK:=FALSE;
{
For EM 6 1000 Da, only H can cause a "rounding up"
error, which occurs first at C(31)H(64), for which
the EM is 436.500802 Da. If EM >= 436.500802 Da, an
even CoreRNM could actually be odd and vice versa.
}
IF NOT ODD(CoreRNM) THEN
GetCoreFormula (XEM, CoreXEM, CoreRNM, Loop,
Formula OK)
ELSE

S-12

Formula OK) ;

IF ODD(CoreRNM) AND (CoreXEM>=31*EM[C]+64*EM[H]) THEN
GetCoreFormula (XEM, CoreXEM, CoreRNM-1, Loop,

{
If this is a good formula, the residual mass should
be zero (or nearly so). The error of the fit is
calculated either in mDa or ppm.
}
IF Formula OK THEN
BEGIN
{
Re-calculate the CEM and CNM using updated Loop][]
values.
}
CEM:=0;
CNM:=0;
FOR Step:=C TO E DO
BEGIN
CEM:=CEM+Loop [Step] *EM[Step];
CNM:=CNM+Loop [Step] *NM[Step] ;
END;
CASE FitMode OF
ppm: XEMerr:=ROUNDTO (1E6* (CEM-XEM) /XEM, Digits) ;
mDa: XEMerr:=ROUNDTO (1E3* (CEM-XEM) ,Digits) ;

END;

Formula OK:=(ABS (XEMerr) <= MaxErr);
END
ELSE Formula_OK:=FALSE;

END

ELSE Formula OK:=FALSE;

{

All of the following calculations are only done if the

formula is wvalid.

}

IF Formula OK THEN

BEGIN
{
CNM:=0;
FOR Step:=C TO E DO CNM:=CNM+Loop[Step] *NM[Step];
}
{
Transfer the molecular formula from Loop to Moles.
}
FOR Step:=C TO Z DO Moles|[Step]:=Loop[Step];
Fit:=TRUE;
{
Store the valid solution in a linked list.
}
BuildFitRec (Peak,LastRec,NIL,LastRec);

END;

{

The E loop is terminated when E>1.

}

Loop[E] :=SUCC (Loop[E]) ;

UNTIL (Loop[E]l>High[E])
{

S-13

The N loop is terminated when N>HighN.
}
Loop [N] :=3UCC (Loop [N]) ;
UNTIL (Loop[N]>High[N]);
{
The S loop is terminated when S>HighS.
}
Loop[S] :=3UCC (Loop[S]);
UNTIL (Loop[S]>High[S]);
{
The P loop is terminated when P>HighP.
}
Loop[P] :=3UCC (Loop[P]) ;
UNTIL (Loop[P]>High[P]);
{
The M loop is terminated when M>HighM.
}
Loop [M] :=SUCC (Loop [M]) ;
UNTIL (Loop[M]>High[M]);
{
The Z loop is used when no solution can be found for Z=1. The Z
loop is terminated when Z>HighZ.
}
IF Fit THEN Loop[Z]:=High[Z];
Loop[Z] :=SUCC (Loop[Z]);
UNTIL (Loop[Z]>High[Z]);
{
Insert an "empty" record if no molecular formula could be fit to the
peak.
}
END;
IF (NOT Fit) THEN
BEGIN
{
Reset XEM to the mass of a molecule that was detected as a singly
charged ion.
}
XEM:=XEM/High[Z];
CEM:=0;
CNM:=0;
XEMerr:=0;
BuildFitRec (Peak,LastRec,NIL,LastRec);
END;
END;
END;
CLOSE (DevlI);
END;

{
WriteOutputFile writes the output of CHOFIT3 MIN.PAS to a text file.

PROCEDURE WriteOutputFile (VAR BaseRec: FitPtr);

VAR

S-14

ThisRec: FitPtr;

I : Component;
HCount : BYTE;
Q : SHORTINT;
Count : LONGWORD;
Txt : STRINGI[40];
BEGIN
WRITELN;
WRITE ('Writing the output file...'");

ASSIGN (DevO, OutPath+OutFile);

REWRITE (DevO) ;

ThisRec:=BaseRec;

{

Write the column headings to the output file.
}

WRITELN (DevO, 'Program Name: ':15,Version);

WRITELN (DevO, "Input File : ':15,InPath+InFile);

WRITELN (DevO, 'Output File : ':15,0utPath+OutFile);

WRITELN (DevO) ;

WRITE (DevO, 'ID':6, '"IEM':12, 'XEM':12, 'CEM':12, '"CNM':06) ;
WRITE (DevO, '13C':6,'12C':6,"1H':6) ;

WRITE (DevO, '160':6,"'"14N"':6,'32S5':6,'31P':6,'23Na':6,'2"':6);
WRITE (DevO, 'XEMerr':10) ;

WRITELN (DevO);
WHILE ThisRec<>NIL DO
BEGIN
WITH ThisRec”.Peak DO
BEGIN
WRITE (DevO,ID:6,IEM:12:6,XEM:12:6,CEM:12:6,CNM:6) ;
WRITE (DevO,Moles[E]:6, (Moles[C]-Moles[E]) :6);
WRITE (DevO, (Moles[H]+Moles[N]+Moles[P]-Moles[M]) :6);
FOR I:=0 TO M DO WRITE (DevO, Moles[I]:06);
IF IonMode=Negative THEN
WRITE (DevO,-Moles[Z]:6) ELSE WRITELN (DevO,Moles[Z]:06);
WRITE (DevO,XEMerr:10:6);
WRITELN (DevO) ;
END;
ThisRec:=ThisRec”.Next;
END;
CLOSE (DevO) ;
WRITELN;
WRITE ('Press ENTER to close the program...');
READLN;
END;

{

Main program in CHOFIT3 MIN.PAS

BEGIN
IF ParamCount = 8 THEN
BEGIN
GetDir (0,InPath);
InPath:=InPath+'\"';
InFile:=Paramstr (1) ;

S-15

IF POS('.',InFile)=0 THEN InFile:=InFile+'.dat';
IF Exists (InPath+InFile) THEN
BEGIN
OutPath:=InPath;
OutFile:=Paramstr (2);
IF POS('.',OutFile)=0 THEN OutFile:=OutFile+'.fit"';
Val (Paramstr (3), LowMW) ;

IF (LowMW < MinMW) OR (LowMW > MaxMW) THEN LowMW:=MinMW;

Val (Paramstr (4) , HighMWw) ;

IF (HighMW < LowMW) OR (HighMW > MaxMW) THEN HighMW:=MaxMW;

Val (Paramstr (5) ,High[N]) ;

IF (High[N] < Min[N]) OR (High[N] > Max[N]) THEN High[N] :=Max[N];
Val (Paramstr (6) ,High[S]);

IF (High[S] < Min[S]) OR (High[S] > Max[S]) THEN High[S]:=Max[S];
Val (Paramstr (7) ,High[P]);

IF (High[P] < Min[P]) OR (High[P] > Max[P]) THEN High[P]:=Max[P];
Val (Paramstr (8) ,High[E]) ;

IF (High[E] < Min[E]) OR (High[E] > Max[E]) THEN High[E]:=Max[E];
WRITELN;

WRITELN;

WRITELN ('Program: ',Version);

WRITELN ('InFile : ',InPath+InFile);

WRITELN ('OutFile: ',OutPath+OutFile);

WRITELN ('Low MW : ',LowMW:6, ' ':2,'High MW : ',HighMW:6);
WRITELN ('Low C ',Low[C]:6," '":2,'High C ',High[C]:6) ;
WRITELN ('Low H ',Low[H]:6,"' ':2,'High H ',High[H] :6) ;
WRITELN ('Low O ', Low[O]:6," ':2,'High O ',High[0]:6);
WRITELN ('Low N ',Low[N]:6," ':2,'High N ',High[N]:6);
WRITELN ('Low S ',Low[S]:6," ':2,'High S ',High[S]:6);
WRITELN ('Low P ',Low[P]:6," '":2,'High P ',High[P]:6) ;
WRITELN ('Low Na ',Low[M]:6," '":2,'"High Na : ',High[M]:6);
WRITELN ('Low 13C: ',Low[E]:6,' ':2,'High 13C: ',High[E]:6);

FindMolecularFormulae;
WriteOutputFile (BaseRec);
DeleteFitRecs (BaseRec);
WRITELN;
WRITELN;
END
ELSE
BEGIN
WRITE ('Input file does not exist. Press ENTER to exit and try
again.');
READLN;
EXIT;
END;
END
ELSE
BEGIN
WRITELN;
WRITELN;
WRITELN ('Please launch this program from a command prompt using the
syntax:"');
WRITELN;
WRITELN ('ProgramName.exe InputFileName OutputFileName Low MW High MW N S
P 13C");
WRITELN;

S-16

WRITELN ('where InputFileName and OutputFileName may be entered
with/without ') ;

WRITELN ('extensions. If a file extension is omitted, then a default
extension');

WRITELN ('of ".dat" will be appended to InputFileName and a default
extension of');

WRITELN ('".fit" will be appended to OutputFileName.');

WRITELN;

WRITELN ('Low MW and High MW are the limits of nominal mass that will be
evaluated."');

WRITELN;

WRITELN ('N, S, P, and 13C are the upper limits for the number of these
atoms that');

WRITELN ('can be used in a molecular formula. The maximum values are
N=10, S=6,");

WRITELN ('P=4, and 13C=1. Lower limits for these elements/isotopes are
all zero.');

WRITELN;

WRITELN;

WRITE ('Press ENTER to exit and try again...');

READLN;

WRITELN;

WRITELN;

END;

END.

S-17

