Design and Synthesis of Amphiphilic and Luminescent Tris-Cyclometalated Iridium(III) Complexes Containing Cationic Peptides as Inducers and Detectors of Cell Death via a Calcium-Dependent Pathway

Yosuke Hisamatsu,^a Ai Shibuya,^a Nozomi Suzuki,^a Toshihiro Suzuki,^b Ryo Abe,^b and Shin Aoki,^{*,a,c}

^a Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan

^b Research Institute for Biomedical Sciences, Tokyo University of Science,

2641 Yamazaki, Noda, Chiba 278-8510, Japan

^c Division of Medical Science-Engineering Corporation, Research Institute of Science and Technology,

Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan

*Corresponding authors: E-mail, <u>shinaoki@rs.noda.tus.ac.jp</u>

Contents

Chart S1 S	Synthesis o	f mono-Boc-pi	rotected di	iamine 3 9)						S4
Chart 11	S2	Syr	nthesis	C	of	1 S5	Da,	10	b,	а	ınd
Chart 37	S3.	Synt	hesis	of	S8	peptio	des	25-3	34,	а	ind
Figure DMSO	S1 . A	Absorption	spectra	of S10	5,	6a ,	7a ,	8	and	9	in
Figure complexes	S2 .	Parti	cle	diame	eter S11	d	istributio	n	of		Ir
Table S1.complexes	Luminesce	e quantum yiel	ds, lifetim	ies, radiat	tive (k_r)	and not	nradiativ	$e(k_{nr})$ rat	e const	ants for	r Ir 11
Figure cells	S3 .	Normaliz	zed E .S12	Emission	spe	ectrum	of	6a-tr	eated	Jur	kat
Figure S4 RPMI1640	. MTT ass	ay of Jurkat o	cells with	Ir comp	lexes 6	a in 10	% FCS	RPMI16	40 and	5% F S	CS 12
Figure derivatives	S5.	MTT assa S13	y of	Jurkat	cells	with	n benz	zene-1,3,	5-tricar	boxami	ide
Figure 11	S6.	PI	stain	ing	of S13		Jurkat	C	ells	W	rith
Figure S	57. The	retention	times of	f Ir c	complex	tes de	etermine	d by	revers	e pha	ase 14
Figure 6g	S8 . N	1TT assay	of S14	Jurkat	cell	ls v	vith	Ir co	mplexe	es (ób-
Figure S 7b	89 . MTT	assay ofS15	Jurkat	cells	with	Ir c	omplexe	s 6h ,	6i ,	6j , a	nd
Figure S1 6a S15	0. Lumin	escence micro	oscopy im	ages of	Molt-4,	HeLa	-S3, and	A549 c	ells tre	ated w	rith
Figure S11 presence of	1. Zeta pote f Ir comple	ential of Jurka	t cells, He	ELa-S3, A	.549 cel	ls, and	normal r	nouse ly	mphocy	ytes in t	the
Figure S1 6a	2 . Lumine	scence micros	copy ima	ges of Ju	urkat ce	ells stai	ned with	n PI afte	r treatr	nent w	ith 17
Figure S1. treatment v	3. Lumine: with 6a	scence micros	copy ima	ges of no	ormal n	nouse 1	ymphocy	vtes stain	ed witl	h PI af S	ter 18
Figure ctDNA	S14 . Cl	nange in	emission 19	spect	tra o	f 6a	upor	the	addi	tion	of

Figure inhibitors	S15.	Structures	320	of
Figure S16. Effect of z-VAD-f induced 6a	mk, necrostatin-1,	IM-54, and NAC for	the cell death of Jurk	at cell by 321
FigureS17.MTTassaycells	of wild type	Molt-4 and Bcl-	2 overexpressing 1	Molt-4
Figure S18. Typical luminescen inhibitors	ce microscopy imag	es of Jurkat cells treat	ed with 6a in the prese	nce ofS22
Figure S19. Typical luminescentCCCPathr	ce microscopy imag 37	es of Molt-4 cells treat °C	ed with 6a in the prese for S23	nce of 1
Figure S20. Effect of CCCP, ve	rapamil, and quinid	ne on the cell death of	induced by 6a	S24
Figure S21. The membra:	ne potential of .	Jurkat cells stained	by TMRM	
FigureS22.cells	Cell cyc	ele synchroniza 25	tion of	Jurkat
Figure S23. Typical luminescent stained with 6a	ce microscopy imag	es of synchronized Jur	kat cells (G ₁ /S or G ₂ /M) S25
Figure S24-S43. ESI ma compoundsS26	ss spectra of	amphiphilic Ir c	omplexes and ref	erence
FigureS44-S63.HIcompounds	PLC of amp S36	hiphilic Ir con	plexes and ref	erence
Figure S64-S82 . ¹ H NM compoundsS46	R spectra of	amphiphilic Ir c	omplexes and ref	erence

$$\begin{array}{c} H_2N \underbrace{}_{V_16}NH_2 \\ 38 \end{array} \xrightarrow{(Boc)_2O, Et_3N, CHCl_3, MeOH} \\ BocHN \underbrace{}_{V_16}NH_2 \\ 39(80\%) \end{array}$$

Chart S1. Synthesis of 39

Mono-Boc-protected diamine **39**: Boc₂O (36 mg, 0.16 mmol) was dissolved in CHCl₃ (25 mL) and added dropwise to 1,16-diaminohexadecane **38**^[S1] (0.12 g, 0.48 mmol) in CHCl₃ (40 mL) and MeOH (4 mL) at 0 °C for 3 hr. The reaction mixture was allowed to stir overnight at room temperature. The reaction insoluble compounds were filtered off and the filtrate was concentrated under reduced pressure. The residue was purified by NH silica gel column chromatography (hexanes/CHCl₃ = 3/1) to give **39** (46 mg, 80%) as a white solid. M.p. 76 °C. IR (ATR): v = 3370, 2918, 2851, 1686, 1519, 1471, 1247, 1170, 871, 719 cm⁻¹. ¹H NMR (300 MHz, CDCl₃/TMS): $\delta = 4.51$ (s, 4H), 3.10 (q, J = 6.6 Hz, 2H), 2.68 (t, J = 6.9 Hz, 2H), 1.39 (s, 4H), 1.25 (s, 33H). FAB-MS (*m/z*) Calcd for C₂₁H₄₅N₂O₂ [M+H]⁺:

357.3481. Found: 357.3481. Anal. Calcd for C₂₁H₄₄N₂O₂•1/2MeOH: C, 69.30; H, 12.44; N, 7.52%. Found: C, 69.61; H, 12.71; N, 7.30%.

Chart S2. Synthesis of 10a, 10b, and 11

Compound 10a: DIEA (0.49 g, 3.8 mmol), PyBop (1.5 g, 2.9 mmol) and mono-Boc-protected hexamethylenediamine (0.62 g, 2.9 mmol) dissolved in dist. DMF (1 mL) were added to a solution of **40** (0.10 g, 0.48 mmol) in dist. DMF (1 mL). The reaction mixture was stirred at room temperature for 12.5 hr. Then it was concentrated under reduced pressure. Remaining residue was purified by silica gel column chromatography (CHCl₃/MeOH = 100/1 to 0/1) and NH silica gel column chromatography (Hexanes/AcOEt = 1/1 to 0/1) to afford the protected compound. TFA (5 mL) was added to the protected compound in CH₂Cl₂ (5 mL). The reaction mixture was stirred at room temperature for 14.5 hr. After evaporation, cold Et₂O was added to the solution. The insoluble compound was centrifuged and washed with Et₂O. The resulting residue was purified by preparative HPLC (H₂O (0.1%TFA)/CH₃CN (0.1%TFA) = 90/10 to 55/45, $t_r = 21$ min) to give TFA salt of **41** (61 mg) as a colorless amorphous. IR (ATR): $\nu = 3333$, 3079, 2940, 2865, 2525, 1671, 1638, 1544, 1549, 1432, 1297, 1191, 1181, 1111, 838, 801, 722 cm⁻¹. ¹H NMR (400 MHz, D₂O/TSP): $\delta = 8.24$ (s, 3H), 3.45 (t, *J*)

= 6.9 Hz, 6H), 3.01 (t, J = 7.5 Hz, 6H), 1.76-1.62 (m, 12H), 1.50-1.40 (m, 12H) ppm. ¹³C NMR (100 MHz, D₂O/1,4-dioxane): δ = 168.5, 134.9, 128.5, 40.0, 39.4, 28.2, 26.6, 25.6, 25.3 ppm. FAB-MS (*m/z*) Calcd for C₂₇H₄₉N₆O₃ [M+H]⁺: 505.3866. Found: 505.3867.

DIEA (25 mg, 0.19 mmol), PyBOP (0.11 g, 0.21 mmol) and **25** (27 mg, 39 µmol) were added to a solution of **41** (8.2 mg, 9.7 µmol) in dist. DMF (1 mL). The reaction mixture was stirred at room temperature for 18 hr. After evaporation, cold Et₂O was added to the solution. The insoluble compound was centrifuged and washed with Et₂O. TFA cocktail (TFA/H₂O/TIPS = 95/2.5/2.5, 10 mL) was added to the protected compound. The reaction mixture was stirred at room temperature for 6 hr. After evaporation, cold Et₂O was added to the solution. Pale brown solid was centrifuged and washed with Et₂O. The resulting residue was purified by preparative HPLC (H₂O (0.1%TFA)/CH₃CN (0.1%TFA) = 90/10 to 60/40, t_r = 16 min, 6.0mL/min) to give **10a** (11 mg, 7% as 9TFA salt from **40**) as a white powder. ¹H NMR (400 MHz, D₂O/TSP): δ = 8.24 (s, 3H), 4.39 (t, *J* = 7.2 Hz, 3H), 4.06 (t, *J* = 6.4 Hz, 3H), 4.01 (s, 6H), 3.92-3.91 (m, 6H), 3.43 (t, *J* = 7.0 Hz, 6H), 3.26-3.19 (m, 6H), 3.04-2.99 (m, 12H), 1.97-1.62 (m, 30H), 1.58-1.34 (m, 30H) ppm. ESI-MS (*m*/*z*) Calcd for: C₇₅H₁₃₉N₂₄O₁₅ [M+H]⁺ : 1616.0846. Found: 1616.0847.

Compound 10b: Et₃N (58 mg, 0.57 mmol) and **42** (15.5 mg, 0.058 mmol) were added to a solution of mono-Boc-protected octanediamine (58.8 mg, 0.24 mmol) in dist. DMF (1 mL). The reaction mixture was stirred at room temperature for 24 hr. Then it was concentrated under reduced pressure. Remaining residue was purified by silica gel column chromatography (hexanes/CHCl₃ = 2/1 to 0/1 to CHCl₃/MeOH = 100/1) to afford the protected compound (45 mg). TFA (1 mL) was added to the protected compound (20 mg, 23 µmol) in CH₂Cl₂ (1 mL). The reaction mixture was stirred at room temperature for 5 hr. After evaporation, cold Et₂O was added to the solution. The insoluble compound was centrifuged and washed with Et₂O to give TFA salt of **43** (15 mg) as a colorless amorphous. ¹H NMR (300 MHz, CD₃OD/TMS): δ = 8.68 (s, 1H), 8.38 (s, 3H), 3.48-3.33 (m, 6H), 2.91 (t, *J* = 7.5 Hz, 6H), 1.65 (s, 12H), 1.40 (s, 24H) ppm. FAB-MS (*m*/*z*) Calcd for: C₃₃H₆₁N₆O₃ [M+H]⁺: 589.4805. Found: 589.4808.

DIEA (59 mg, 0.46 mmol), PyBOP (0.24 g, 0.46 mmol) and **25** (71 mg, 0.10 mmol) were added to a solution of **43** (18 mg, 23 µmol) in dist. DMF (1 mL). The reaction mixture was stirred at room temperature for 17 hr. After evaporation, remaining residue was purified by silica gel column chromatography (Hexanes/AcOEt = 1/2 to CHCl₃/MeOH = 100/1 to 0/100) and silica gel column chromatography (CHCl₃/MeOH = 50/1 to 10/1) to afford the protected compound. TFA cocktail (TFA/H₂O/TIPS = 95/2.5/2.5, 4 mL) was added to the protected compound. The reaction mixture was stirred at room temperature for 6 hr. After evaporation, cold Et₂O was added to the solution. White solid was centrifuged and washed with Et₂O. The resulting residue was purified by preparative HPLC (H₂O (0.1%TFA)/CH₃CN (0.1%TFA) = 85/15 to 65/35, $t_r = 15$ min, 6.0mL/min) to give **10b** (40 mg, 42% as 9TFA salt from **42**) as a colorless amorphous. ¹H NMR (400 MHz, D₂O/TSP): $\delta = 8.24$ (s, 3H), 4.36 (t, J = 7.2 Hz, 3H), 4.05 (t, J = 7.2 Hz, 3H), 3.99-3.98 (m, 6H), 3.88 (brs, 6H), 3.37 (t, J = 6.8 Hz, 6H), 3.19-3.13 (m, 6H), 3.02-2.97 (m, 12H), 1.93-1.75 (m, 12H), 1.75-1.57 (m, 18H), 1.48-1.43 (m, 18H), 1.32-1.27 (m, 24H) ppm. ESI-MS (*m/z*) Calcd for C₈₁H₁₅₁N₂₄O₁₅ [M+H]⁺: 1700.1787. Found: 1700.1785.

Compound 11: DIEA (15 mg, 0.12 mmol), PyBOP (62 mg, 0.12 mmol) and **25** (31 mg, 45 µmol) were added to a solution of **44**^[S2] (11 mg, 30 µmol) in dist. DMF (1 mL). The reaction mixture was stirred at room temperature for 13 hr, then it was concentrated under reduced pressure. Remaining residue was purified by silica gel column chromatography (CHCl₃/MeOH, 20/1 to 10/1) to afford protected compound. TFA cocktail (TFA/H₂O/TIPS = 95/2.5/2.5, 5 mL) was added to the protected compound and the reaction mixture was stirred at room temperature for 5 hr. After evaporation, cold Et₂O was added to the solution. Pale-yellow powder was centrifuged and washed with Et₂O. The resulting residue was purified by preparative HPLC (H₂O (0.1%TFA)/CH₃CN (0.1%TFA) = 85/15 to 65/35, t_r = 16 min, 6.0mL/min) to give **11** (16 mg, 44% as 3TFA salt from **44**) as slightly brown gum. ¹H NMR (400 MHz, D₂O/TSP): δ = 8.82 (d, *J* = 8.8 Hz, 1H), 8.46 (d, *J* = 8.8 Hz, 1H), 8.40 (d, *J* = 7.6 Hz, 1H), 8.12 (d, *J* = 7.6 Hz, 1H), 7.93 (t, *J* = 8.2 Hz, 2H), 4.38 (t, *J* = 7.0 Hz, 1H), 4.05 (t, *J* = 6.4 Hz, 1H), 4.00 (s, 2H), 3.90 (s, 2H), 3.54 (s, 6H), 3.17-3.10 (m, 2H), 3.10-2.94 (m, 6H), 1.93-1.69 (m, 8H), 1.50-1.35

(m, 6H), 1.24-1.20 (m, 2H), 1.10-1.05 (m, 2H), 0.97-0.91 (m, 6H) ppm. ESI-MS (m/z) Calcd for C₃₆H₆₂N₉O₆S [M+H]⁺ : 748.4538. Found: 748.4537.

Protected peptides 25: BocHN-Lys(Boc)-Lys(Boc)-Gly-Gly-CO₂H 26: BocHN-D-Lys(Boc)-D-Lys(Boc)-Gly-CO₂H 27: BocHN-Lys(Boc)-Lys(Boc)-Gly-CO₂H 28: BocHN-Gly-Lys(Boc)-Lys(Boc)-Gly-CO₂H 29: BocHN-Lys(Boc)-Gly-Gly-CO₂H 30: BocHN-Lys(Boc)-Gly-Gly-CO₂H 31: BocHN-Lys(Boc)-Lys(Boc)-Lys(Boc)-Gly-Gly-CO₂H 32: BocHN-Lys(Boc)-Lys(Boc)-Lys(Boc)-Lys(Boc)-Gly-Gly-CO₂H 33: BocHN-Lys(Boc)-Lys(Boc)-Asp(O^tBu)-Lys(Boc)-Gly-Gly-CO₂H 34: BocHN-Lys(Boc)-Lys(Boc)-Lys(Boc)-Asp(O^tBu)-Lys(Boc)-Gly-Gly-CO₂H 37: H₂N-Lys-Gly-Gly-CO₂H

Chart S3. Synthesis of peptides 25-34, and 37

Protected Peptide synthesis.

BocHN-Lys(Boc)-Lys(Boc)-Gly-Gly-CO₂H (protected KKGG peptide) 25:

Fmoc-Gly-2-Cl-Trt-Resin (0.50 g, 0.26 mmol) was deprotected by treatment with 20% piperidine/DMF. Each Fmoc-Xaa-OH (1.1 mmol) was coupled at r.t. for 1 hr to the Fmoc-deprotected resin in the presence of DIC (0.14 g, 1.1 mmol), HOBt (0.14 g, 1.1 mmol), DIEA (0.14 g, 1.1 mmol) in dry DMF (2.5 mL). After repetition of the deprotection and coupling steps, N-terminal Boc-Lys(Boc)-OH was condensed under same coupling conditions. The Boc-protected peptide was cleaved from the resin in a mixture of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP)/CH₂Cl₂ (60/40). After 6 hr shaking, the resin was filtered and washed several times with CH₂Cl₂. Evaporation of the solvent gave the only C-terminal free peptide, which was purified by silica gel column chromatography (CHCl₃/MeOH = 30/1 to 10/1) to give **25** (0.11 g, 64%) as a colorless amorphous. IR (ATR): ν = 3313, 2978, 2935, 1650, 1514, 1454, 1393, 1366, 1248, 1162, 1019, 862, 752 cm⁻¹. ESI-MS (*m/z*) Calcd for C₃₁H₅₆N₆O₁₁Na [M+Na]⁺: 711.3899. Found: 711.3913.

Other protected peptides 26-34 were synthesized and purified similarly.

BocHN-D-Lys(Boc)-D-Lys(Boc)-Gly-Gly-CO₂H (protected D-K-D-KGG peptide) **26**: a colorless amorphous (95% from resin). IR (ATR): v = 3313, 3072, 2978, 2934, 1659, 1651, 1514, 1453, 1392, 1366, 1248, 1164, 1018, 864, 756 cm⁻¹. ESI-MS (*m/z*) Calcd for C₃₁H₅₇N₆O₁₁ [M+H]⁺: 689.4080. Found: 689.4085.

BocHN-Lys(Boc)-Lys(Boc)-Gly-CO₂H (protected KKG peptide) **27**: a colorless amorphous (70% from resin). IR (ATR): $\nu = 3318$, 2978, 2935, 2870, 1656, 1514, 1453, 1392, 1366, 1249, 1164, 1044, 1016, 862, 754 cm⁻¹. FAB-MS (*m/z*) Calcd for C₂₉H₅₃N₅O₁₀ [M-H]⁻: 630.3714. Found: 630.3713.

BocHN-Gly-Lys(Boc)-Lys(Boc)-Gly-CO₂H (protected GKKG peptide) **28**: a colorless powder (92% from resin). IR (ATR): v = 3278, 3085, 2978, 2935, 1688, 1635, 1521, 1454, 1393, 1367, 1249, 1164, 1049, 864, 753 cm⁻¹. FAB-MS (*m/z*) Calcd for C₃₁H₅₅N₆O₁₁ [M–H]⁻: 687.3932. Found: 687.3930.

BocHN-Lys(Boc)-Gly-Lys(Boc)-Gly-CO₂H (protected KGKG peptide) **29**: a colorless amorphous (85% from resin). IR (ATR): v = 3304, 3072, 2978, 2934, 1660, 1652, 1516, 1454, 1393, 1366, 1248, 1163, 1017, 864, 751 cm⁻¹. FAB-MS (*m/z*) Calcd for C₃₁H₅₇N₆O₁₁ [M+H]⁺: 689.4082. Found: 689.4084.

BocHN-Lys(Boc)-Gly-Gly-CO₂H (protected KGG peptide) **30**: a colorless amorphous (96% from resin). IR (ATR): ν = 3318, 3075, 2979, 2935, 1659, 1516, 1453, 1393, 1367, 1248, 1162, 1020, 861, 752 cm⁻¹. FAB-MS (*m/z*) Calcd for C₂₀H₃₅N₄O₈ [M-H]⁻: 459.2455. Found: 459.2454.

BocHN-Lys(Boc)-Lys(Boc)-Lys(Boc)-Gly-Gly-CO₂H (protected KKKGG peptide) **31**: a colorless amorphous (93% from resin). IR (ATR): v = 3291, 3077, 2979, 2934, 1682, 1635, 1516, 1452, 1393, 1367, 1249, 1165, 1016, 863 cm⁻¹. ESI-MS (*m*/*z*) Calcd for C₄₂H₇₆N₈O₁₄Na [M+Na]⁺: 939.5373. Found: 939.5368.

BocHN-Lys(Boc)-Asp(O'Bu)-Lys(Boc)-Lys(Boc)-Gly-Gly-CO₂H (protected KDKKGG peptide) **32**: A yellow amorphous (quant. from resin). IR (ATR): v = 3282, 3074, 2981, 2934, 2891, 1690, 1628, 1516, 1454, 1392, 1366, 1249, 1160, 865, 753 cm⁻¹. FAB-MS (*m/z*) Calcd for C₅₀H₈₉N₉O₁₇Na [M+Na]⁺: 1110.6274. Found: 1110.6279.

BocHN-Lys(Boc)-Lys(Boc)-Asp(O'Bu)-Lys(Boc)-Gly-Gly-CO₂H (protected KKDKGG peptide) **33**: A white amorphous (99% from resin). IR (ATR): v = 3285, 3075, 2978, 2936, 1684, 1632, 1515, 1454,

S9

1393, 1366, 1249, 1162, 1016, 864, 778 cm⁻¹. FAB-MS (m/z) Calcd for C₅₀H₈₉N₉O₁₇Na [M+Na]⁺: 1110.6274. Found: 1110.6272.

BocHN-Lys(Boc)-Lys(Boc)-Lys(Boc)-Asp(O'Bu)-Gly-Gly-CO₂H (protected KKKDGG peptide) **34**: A colorless amorphous (quant. from resin) . IR (ATR): v = 3284, 3075, 2978, 2934, 1686, 1629, 1517, 1454, 1393, 1366, 1248, 1160, 1017, 865, 752 cm⁻¹. FAB-MS (*m/z*) Calcd for C₅₀H₈₉N₉O₁₇Na [M+Na]⁺: 1110.6274. Found: 1110.6275.

H₂N-Lys-Lys-Gly-Gly-CO₂H (deproteected KKGG peptide **37**): TFA cocktail (TFA/H₂O/TIPS = 95/2.5/2.5, 5 mL) was added to **25** (12 mg, 18 µmol) and the reaction mixture was stirred at room temperature for 6 hr. After evaporation, cold Et₂O was added to the solution. White powder was centrifuged and washed with Et₂O. The resulting residue was purified by preparative HPLC (H₂O (0.1%TFA), $t_r = 15$ min, 6.0mL/min) to give **37** (6.0 mg, 47% as 3TFA salt from **25**) as a colorless amorphous. ESI-MS (*m/z*) Calcd for C₁₆H₃₃N₆O₅ [M+H]⁺ : 389.2510. Found: 389.2507.

Figure S1. (a) Absorption spectra of 5 (solid curve), 6a (dashed curve), 7a (bold curve), 8 (solid curve) and 9 (bold dashed curve) in DMSO at 25 °C. [Ir complex] = $10 \mu M$

Figure S2. Particle diameter distribution of (a) **8** and (b) **9** in 10 mM PBS (pH 7.4) at 37 °C (measured on Zetasizer Nano ZS, Malvern Instruments). [Ir complex] = 50 μ M

Table S1. Luminesce quantum yields, lifetimes, radiative (k_r) and nonradiative (k_{nr}) rate constants for Ir complexes in degassed 100 mM HEPES (pH7.4) at 25 °C.

Compound	Φ	τ	$k_{\rm r} (10^5 {\rm s}^{-1})$	$k_{\rm nr}(10^5 {\rm s}^{-1})$
5	0.57	1.7 μs	3.4	2.5
6a	0.55	1.7 μs	3.2	2.6
7a	0.54	1.3µs	4.2	3.5
8	0.19	1.2µs	1.6	6.8
9	0.03	0.46 µs	0.7	21

The values of the radiative and nonradiative rate constants, k_r and k_{nr} , are calculated by eqs. 1 and 2 on the assumption that Φ_{isc} is 1.0 due to the strong spin-orbital interaction caused by heavy atom effects of iridium.^[3] Phosphorescence yield: Φ_p , Intersystem-crossing yield: Φ_{isc} , Phosphorescence lifetime: τ

$$\boldsymbol{\Phi}_{\mathrm{p}} = \boldsymbol{\Phi}_{\mathrm{isc}} \{ k_{\mathrm{r}} / (k_{\mathrm{r}+} k_{n\mathrm{r}}) \}$$
(1)

 $\tau = (k_{\rm r+} \, k_{\rm nr})^{-1} \tag{2}$

Figure S3. Normalized emission spectra of **6a**-treated Jurkat cells (bold curve), intact Jurkat cells (bold dashed curve) in comparison with emission from **6a** (dashed curve). Jurkat cells (1×10^5 cells/mL) were incubated in 10% FCS RPMI medium with **6a** (50 µM) at 37 °C for 1 hr. After incubation, the cells were carefully washed three times with ice-cold PBS with 0.1% NaN₃ and 0.5% FCS, and then diluted to (*ca.* 7 x 10⁴ cells/mL) in PBS. Emission spectra of cellular suspension were recorded on spectrofluorometer (excitation at 366 nm in PBS at 25 °C).

Figure S4. The results of MTT assay of Jurkat cells with Ir complexes **6a** in 5% FCS RPMI1640 (open squares) and in 10% FCS RPMI1640 medium (filled circles) after incubation at 37 °C for 16 hr.

Figure S5. The results of MTT assay with Ir complexes 6a (filled circles) and benzene-1,3,5-tricarboxamide derivatives 10a (filled diamonds) and 10b (filled triangles) against Jurkat cells after incubation at 37 °C for 16 hr.

Figure S6. Jurkat cells $(1 \times 10^5 \text{ cells/mL})$ were incubated with **11** $(150 \mu \text{M})$ at 37 °C for 16 hr, then stained by PI (30 μ M), and observed on Biorevo, BZ-9000 (Keyence) with TRITC filter (Ex.540/25 nm, Em.605/55 nm). (a) Bright field image, (b) emission image of PI.

Figure S7. The retention times (R.T.) of 4, 5, 6a, 6i, 7a, 7b, 8, 9, 10a, and 10b are determined by reverse phase HPLC (SenshuPak PEGASIL ODS, H₂O (0.1% TFA)/CH₃CN (0.1% TFA) = 90/10 to 45/55 (45 min), flow rate: 1.0 mL/min).

Figure S8. The results of MTT assay of Jurkat cells with Ir complexes **6a** (filled circles), **6b** (open squares), **6c** (filled triangles), **6d** (open diamonds), **6e** (open circles), **6f** (open triangles), **6g** (filled diamonds) after incubation for 16 hr at 37 °C.

Figure S9. The results of MTT assay of Jurkat cells with Ir complexes 6a (filled circles), 6h (open triangles), 6i (open circles), 6j (open squares), and 7b (filled squares) after incubation at 37 °C for 16 hr.

Figure S10. Luminescence microscopy images (Biorevo, BZ-9000, Keyence) of (a)-(c) Molt-4 cells, (d)-(f) HeLa-S3 cells and (g)-(i) A549 cells treated with Ir complexes **6a** (50 μ M) for 1 hr at 37 °C. Excitation at 377 nm. Scale bar (white) = 10 μ m.

Figure S11. Zeta potential of Jurkat cells, HeLa-S3, A549 cells, and normal mouse lymphocytes in the presence of Ir complexes **5**, **6a**, **6i**. Jurkat cells, HeLa-S3, and A549 cells (3×10^5 cells/mL) with or without Ir complexes in PBS (10 mM, pH 7.4) were equilibrated at 37 °C for 10 min and the potential was then measured. ([Ir complex] = 25 μ M)

Figure S12. Luminescence microscopy images (Biorevo, BZ-9000, Keyence) of Jurkat cells stained with PI after treatment with **6a** (75 μ M) for 1 hr at 37 °C. (a) Bright field image, (b) emission image of **6a**, (c) emission image of PI (d) overlay image of (a) and (b), (e) overlay image of (a) and (c), (f) overlay image of (b) and (c). Excitation at 377 nm for **6a**, excitation at 540 nm for PI. Scale bar (white) = 10 μ m.

Figure S13. Luminescence microscopy images (Biorevo, BZ-9000, Keyence) of normal mouse lymphocytes stained with PI after treatment with **6a** (50 μ M) for 1 hr at 37 °C. (a) Bright field image, (b) emission image of **6a**, (c) emission image of PI (d) overlay image of (a) and (b), (e) overlay image of (a) and (c), (f) overlay image of (b) and (c). Excitation at 377 nm for **6a**, and excitation at 540 nm for PI. Scale bar = 10 μ m.

Figure S14. (a) Change in emission spectra of the Ir complex **6a** (0.5 μ M) upon the addition of ctDNA (5 μ M in phosphate) in 10 mM HEPES (pH 7.4) with I = 0.1 (NaNO₃) at 25 °C. Excitation at 366 nm. A.u. is in arbitrary units. (b) Bar represent relative intensity of **6a** and **7a** in the presence of ctDNA. I_0 : emission intensity of Ir complex in the absence of ctDNA, *I*: emission intensity in the presence of ctDNA.

Figure S15. Structures of inhibitors

Figure S16. Effect of Z-VAD-fmk (15 μ M), necrostatin-1 (30 μ M), IM-54 (10 μ M), and *N*-acetyl-L-cysteine (NAC) (1 mM) on the cell death of Jurkat cell induced by TRAIL (450 ng/mL) or **6a** (75 μ M). Jurkat cells were pre-treated with inhibitors, then TRAIL or Ir complex **6a** was added and incubated at 37 °C for 16 hr. The cell viability was evaluated by MTT assay. White bar: cell viability in the absence inhibitors; gray bar: cell viability in the presence of inhibitors.

Figure S17. MTT assay of wild type Molt-4 (filled circles) and Bcl-2 overexpressing Molt-4 cells (filled squares) at the different concentration of **6a** (incubation at 37 °C for 16 hr).

6a + Sucrose (0.4 M)	(a) (b)	
6a + Bafilomycin A1 (250 n	(d) (e) (e)	
6a + Amiloride (100 mM)	(g) (h)	
6a + 3-Methyladenine (5 m)	(j) M)	
6a + Methyl-β-CD (1 mM)		
6a + Hoechst 33342 (10 mM	(p) (q)	(r)
6a + Spermidine (2 mM)		
6a in Ca ²⁺ free buffer	(v) Compared (w)	

Figure S18. Typical luminescence microscopy images (Biorevo, BZ-9000, Keyence) of Jurkat cells treated with Ir complexes **6a** (50 μ M) in the presence of sucrose (a-c), bafilomycin A1 (d-f), amiloride (g-i), 3-methyladenine (j-l), methyl- β -cyclodextrin (methyl- β -CD) (m-o), hoechst 33342 (p-r), spermidine (s-u), Ca²⁺ free buffer (v-x), NAC (y-aa), 4-aminopyridine (ab-ad) and (-)-epinephrine (ae-ag) at 37 °C for 1 hr. Scale bar (white) = 10 μ m.

Figure S19. Typical luminescence microscopy images (Biorevo, BZ-9000, Keyence) of Molt-4 cells treated with Ir complexes **6a** (50 μ M) in the presence of CCCP (40 μ M) at 37 °C for 1 hr. Scale bar (white) = 10 μ m.

Figure S20. Effect of CCCP (40 μ M), verapamil (20 μ M), and quinidine (100 μ M) on the cell death of Jurkat cells induced by **6a** (50 μ M). Jurkat cells were pre-treated with inhibitors for 1 hr at 37 °C, then **6a** was added and incubated for 1 hr at 37 °C. After washing by PBS, the cell viability was evaluated by the number of cells, which is not stained by PI. White bar: cell viability in the absence of inhibitors; gray bar: cell viability in the presence of inhibitors.

Figure S21. The membrane potential of Jurkat cells stained by TMRM (50 nM) was measured by flow cytometry after treatment of Ir complex **6a**.

Figure S22. Cell cycle synchronization of Jurkat cells by (a) no treatment, (b) 1 mM thymidine, and $0.15 \,\mu$ g/mL nocodazole. DNA stained by PI were analyzed by a flow cytometer.

Figure S23. Typical luminescence microscopy images (Biorevo, BZ-9000, Keyence) of synchronized Jurkat cells (G_1/S or G_2/M) treated with Ir complexes **6a** (50 μ M) at 37 °C for 1 hr. Scale bar (white) = 10 μ m.

References:

- [S1] Muranaka, K.; Sano, A.; Ichikawa, S.; Matsuda, A. Bioorg. Med. Chem. 2008, 16, 5862-5870.
- [S2] Smith, A. B., III; Rucker, P. V.; Brouard, I.; Freeze, B. S.; Xia, S.; Horwitz, S. B. Org. Lett. 2005, 7, 5199-5202.
- [S3] Tsuboyama, A.; Iwawaki, H.; Furugori, M.; Mukaide, T.; Kamatani, J.; Igawa, S.; Moriyama, T.; Miura, S.; Takiguchi, T.; Okada, S.; Hoshino, M.; Ueno, K. J. Am. Chem. Soc. 2003, 125, 12971– 12979.

Figure S24. ESI-mass spectrum of 4

Figure S25. ESI-mass spectrum of 5

Figure S26. ESI-mass spectrum of 6a

Figure S27. ESI-mass spectrum of 6b

Figure S28. ESI-mass spectrum of 6c

Figure S29. ESI-mass spectrum of 6d

Figure S30. ESI-mass spectrum of 6e

Figure S31. ESI-mass spectrum of 6f

Figure S32. ESI-mass spectrum of 6g

Figure S33. ESI-mass spectrum of 6h

Figure S34. ESI-mass spectrum of 6i

Figure S35. ESI-mass spectrum of 6j

Figure S36. ESI-mass spectrum of 7a

Figure S37. ESI-mass spectrum of 7b

Figure S38. ESI-mass spectrum of 8

Figure S39. ESI-mass spectrum of 9

Figure S40. ESI-mass spectrum of 10a

Figure S41. ESI-mass spectrum of 10b

Figure S42. ESI-mass spectrum of 11

Figure S43. ESI-mass spectrum of 37

Figure S44. HPLC analysis of 4

Figure S45. HPLC analysis of 5

Figure S46. HPLC analysis of 6a

Figure S48. HPLC analysis of 6c

Figure S49. HPLC analysis of 6d

Figure S50. HPLC analysis of 6e

Figure S51. HPLC analysis of 6f

Figure S52. HPLC analysis of 6g

Figure S53. HPLC analysis of 6h

3.4 6.8 10.2 13.6 17.0 20.4 23.8 27.2 minutes

STOP

Figure S55. HPLC analysis of 6j

Figure S56. HPLC analysis of 7a

Figure S57. HPLC analysis of 7b

Figure S58. HPLC analysis of 8

Figure S59. HPLC analysis of 9

0

3.4 6.8 10.2 13.6 17.0 20.4 23.8 minutes

Figure S60. HPLC analysis of 10a

Figure S61. HPLC analysis of 10b

Figure S62. HPLC analysis of 11

Figure S63. HPLC analysis of 37

C:¥Users¥aokilab¥Desktop¥IrKKGG NMR¥4 EXP408IRC2GGKKedit.als

Figure S64. ¹H NMR spectrum (D₂O) of 4

C:¥Users¥aokilab¥Desktop¥IrKKGG NMR¥5 IrC4KKGG.als

Figure S65. ¹H NMR spectrum (D₂O) of 5

 $C: \ensuremath{\texttt{¥Users}}\xspace{\texttt{kostop}} \\ \ensuremath{\texttt{IrKKGG}}\xspace{\texttt{NMR}} \\ \ensuremath{\texttt{4}}\xspace{\texttt{6}}\xspace{\texttt{6}}\xspace{\texttt{KGGedit.als}} \\ \ensuremath{\texttt{1}}\xspace{\texttt{1}}$

Figure S66. ¹H NMR spectrum (D₂O) of 6a

Figure S67. ¹H NMR spectrum (D₂O/TSP) of 6b

Figure S68. ¹H NMR spectrum (D_2O/TSP) of 6c

Figure S69. ¹H NMR spectrum (D₂O/TSP) of 6d

64 4.0960 sec 2.9040 sec 8.50 usec

23.5 c

0.00 ppm 0.12 Hz 28

Figure S70. ¹H NMR spectrum (D₂O/TSP) of 6e

Figure S71. ¹H NMR spectrum (D₂O/TSP) of 6f

Figure S72. ¹H NMR spectrum (D_2O/TSP) of 6g

C:¥Users¥aokilab¥Desktop¥IrKKGG NMR¥6h 130531_IrC6KDKKGG.als

Figure S73. ¹H NMR spectrum (D₂O/TSP) of 6h

Figure S74. ¹H NMR spectrum (D₂O/TSP) of 6i

C:¥Users¥aokilab¥Desktop¥IrKKGG NMR¥6j 140530_IrC6KKKDGG-2.als

Figure S75. ¹H NMR spectrum (D₂O/TSP) of 6j

Figure S76. ¹H NMR spectrum (D₂O/TSP) of 7a

Figure S77. ¹H NMR spectrum (D_2O/TSP) of 7b

Figure S78. ¹H NMR spectrum (CD₃OD/TMS) of 8

Figure S79. ¹H NMR spectrum (CD₃OD/TMS) of 9

Figure S80. ¹H NMR spectrum (D₂O/TSP) of 10a

Figure S81. ¹H NMR spectrum (D₂O/TSP) of 10b

C:¥Users¥aokilab¥Desktop¥IrKKGG NMR¥11 yh11-929-1DansylC8KKGG.als bcm

Figure S82. ¹H NMR spectrum (D₂O/TSP) of 11