Supporting Information

Ultra-trace Detection of Nitroaromatics: Picric Acid Responsive
Aggregation - Disaggregation of Self-assembled p-Terphenyl-benzimidazolium based Molecular BasketsSana Sandhu ${ }^{\text {a }}$, Rahul Kumar ${ }^{\text {a }}$, Prabhpreet Singh*a, Aman Mahajan ${ }^{\text {b }}$, Manmeet Kaur ${ }^{\text {c }}$, and SubodhKumar**Corresponding author. Address: Department of Chemistry, UGC Centre for AdvancedStudies, Guru Nanak Dev University, Amritsar 143 005, India.E-mail address: subodh_gndu@yahoo.com, Mobile: +91 9872361528E-mail address: prabhpreet1979@gmail.com
Content Page

1. Experimental Details: S2-3
1.1 General Remarks
1.2 Synthesis of compound $\mathbf{1}$
2. Absorption and emission spectra of TRIPOD-TP with increasing water ratio S4
3. Spectra of compound 1 S5-6
4. Spectra of TRIPOD-TP S7-8
5. SAED and XRD analysis of TRIPOD-TP (rods) S9
6. Energy minimized structure of TRIPOD-TP S10
7. SAED and XRD analysis of TRIPOD-TP + PA (spherical aggregates) S11
8. ${ }^{1} H$ NMR spectra of TRIPOD-TP on addition of PA S12
9. Comparison of HOMO and LUMO of TRIPOD-TP and NACs S13

1. Experimental Details

1.1 General Remarks: All chemicals were obtained from common suppliers (Aldrich, Across, SDFCL, Spectrochem etc.) and were used without further purification. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker-500 and JEOL-300 NMR instruments using the resonance of solvents having TMS as internal standard. Chemical shifts are given in ppm; coupling constants in Hz . UV-Vis studies of compounds were performed on Shimadzu-2450 and fluorescence studies were carried out on BH-CHRONOS spectrophotometers.

TRIPOD-TP coated paper strips. Whatman filter paper strips ($1 \mathrm{~cm} \times 1 \mathrm{~cm}$) were dipped into aqueous DMSO solution of TRIPOD-TP (1 mM) and were dried under vacuum at room temperature. These paper strips were used for naked eye (under 365 nm light) visualisation of 10^{-17} to $10^{-9} \mathrm{M}$ PA solution. The $10^{-17}, 10^{-15}, 10^{-13}$ and $10^{-9} \mathrm{M}$ solutions of PA were prepared in water and $10 \mu \mathrm{l}$ aliquot of each of these solutions was added on separate paper strip. For control experiment, drop of water alone was added on the TRIPOD-TP coated paper strip. The fluorescence spectrum of these paper strips was also recorded using front surface steady-state fluorescence on Chronos BH spectrophotometer.

TRIPOD-TP thin films on glass plate. $20 \mu \mathrm{l}$ of TRIPOD-TP solution $\left(10 \mu \mathrm{M}, \mathrm{H}_{2} \mathrm{O}-2 \%\right.$ DMSO) was placed on glass plate and was allowed to evaporate at $25^{\circ} \mathrm{C}$ in the incubator.

SEM and TEM sample preparation. Solutions of TRIPOD-TP ($5 \mu \mathrm{M}, \mathrm{H}_{2} \mathrm{O}-2 \%$ DMSO) and its mixtures with varying concentrations of PA were prepared. These solutions were filtered through 0.2 micron filter membrane to remove interfering impurities. $10 \mu \mathrm{l}$ of each of these solutions was added on .the pre-cleaned surface of the separate glass slides and was allowed to dry in the incubator at $25^{\circ} \mathrm{C}$. SEM images were taken on SEM-Zeiss-SUPRA ${ }^{\text {TM }} 55$ after coating with silver particles. For preparation of samples for recording TEM images, the filtered solutions were added on copper grid which was allowed to dry in the incubator at $25^{\circ} \mathrm{C}$.

1.2 Synthesis of compound 1

Scheme 1: Synthesis of 1
p-Bromoterphenyl ($4.3 \mathrm{~g}, 14 \mathrm{mmol}$), CuI ($267 \mathrm{mg}, 1.4 \mathrm{mmol}$) and benzotriazole ($333 \mathrm{mg}, 2.8$ mmol) were dissolved in DMSO (10 ml). To this stirred mixture benzimidazole ($4.2 \mathrm{~g}, 35$ mmol) and $\mathrm{K}-\mathrm{O}^{\prime} \mathrm{Bu}(4.3 \mathrm{~g}, 38.5 \mathrm{mmol})$ were added under N_{2} and resulting solution was heated at $120^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was cooled to room temperature and aqueous solution of EDTA (2.8 mmol) was added. The compound was extracted with ethyl acetate (3 $\times 30 \mathrm{ml}$). The solvent was distilled off, and residue on column chromatography with hexanechloroform (9:1) mixture as eluent gave pure compound 1, white solid (2.9 g). Yield 60%; M. pt. $192^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 7.35-7.41(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.49(\mathrm{t}, 2 \mathrm{H}, J=7.35$ $\mathrm{Hz}, \mathrm{ArH}$), $7.61-7.69(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 7.74(\mathrm{~s}, 4 \mathrm{H}, \mathrm{ArH}), 7.85(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.90-$ $7.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 8.18(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Bim} \mathrm{C} 2-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 110.6,120.7$, $123.0,123.8,124.4,127.1,127.4,127.5,127.6,127.6,127.8,128.6,128.6,128.9,132.0$, $133.8,135.5,138.6,140.5,140.6,140.8,142.3,144.2$. HRMS-ESI : calcd for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~N}_{2}, \mathrm{~m} / \mathrm{z}$ $=347.1504[\mathrm{M}]$; found, $347.1518[\mathrm{M}]$.
2. Absorption and emission spectra of TRIPOD-TP with increasing water ratio

Figure S1: The effect of increasing ratio of water on (a) absorbance and (b) emission spectra of TRIPOD-TP ($5 \mu \mathrm{M}$)

3. Spectral data of Compound 1

4. Spectral data of TRIPOD-TP

5. SAED and XRD analysis of TRIPOD-TP (rods)

Figure S2: SAED pattern of TRIPOD-TP rods section

Figure S3: X-ray diffraction analysis of TRIPOD-TP powder
6. Energy Minimized structure of TRIPOD-TP

Figure S4: Energy minimized structure of TRIPOD-TP. Carbon (black spheres); nitrogen (blue spheres); hydrogen (white spheres). The structure has been optimized by DFT/B3LYP calculations and 6-31G basis set on TmoleX platform
7. SAED and XRD analysis of TRIPOD-TP + PA (spherical aggregates)

Figure S5: SAED pattern of spherical aggregates of TRIPOD-TP + PA

Figure S6: X-ray diffraction analysis of TRIPOD-TP + PA

8. ${ }^{1} H$ NMR spectra of TRIPOD-TP and Picric acid

Figure S7: Effect of addition of PA on ${ }^{1} \mathrm{H}$ NMR spectrum of TRIPOD-TP $\left(5 \mathrm{mM}\right.$, DMSO $+\mathrm{H}_{2} \mathrm{O}$; 7:3)

9. Comparison of HOMO and LUMO of TRIPOD-TP and NACs

Figure S8: Pictorial representation of the electron transfer phenomenon which occurs from the HOMO of picrate anion to the LUMO of TRIPOD-TP. All theoretical calculations are performed using density functional theory at B3LYP/ 6-31 G basis set

