Supplementary Information for

Anti-Parasitic Guanidine and Pyrimidine Alkaloids from the Marine Sponge

Monanchora arbuscula

Mario F. C. Santos, Philip M. Harper, David E. Williams, Juliana T. Mesquita, Érika G. Pinto, Thais A. da Costa-Silva, Eduardo Hajdu, Antonio G. Ferreira, Raquel A. Santos, Patrick J. Murphy, Raymond J. Andersen, André G. Tempone, Roberto G. S. Berlinck

Page S3. Table S1. NMR Data (¹H 600 MHz, ¹³C 150 MHz, ¹⁵N, pyridine- d_5) for Batzellamide A (8). Page S4. Table S2. NMR Data (¹H 600 MHz, ¹³C 150 MHz, ¹⁵N, DMSO- d_6) for Batzellamide A (8). Page S5. Table S3. NMR Data (¹H 600 MHz, ¹³C 150 MHz, ¹⁵N, DMSO- d_6) for Hemibatzelladines Δ^{19} (10) and Δ^{20} (11).

Page S6. Figure S1. ¹H NMR spectrum (600 MHz, DMSO-*d*₆) of monalidine A (1).

Page S7. Figure S2. ¹³C NMR spectrum (150 MHz, DMSO-*d*₆) of monalidine A (1).

Page S8. Figure S3. gHSQC spectrum (DMSO- d_6) of monalidine A (1).

Page S9. Figure S4. COSY spectrum (DMSO- d_6) of monalidine A (1).

Page S10. Figure S5. gHMBC spectrum (DMSO-*d*₆) of monalidine A (1).

Page S11. Figure S6. tROESY spectrum (DMSO- d_6) of monalidine A (1).

Page S12. Figure S7. ¹⁵NLRHMQC spectrum (DMSO-*d*₆) of monalidine A (1).

Page S13. Figure S8. ¹H NMR spectrum (400 MHz, DMSO- d_6) of 1-hydroxypentadecane-4,6-dione (4).

Page S14. Figure S9. ¹³C NMR spectrum (100 MHz, DMSO- d_6) of 1-hydroxypentadecane-4,6-dione (4).

Page S15. Figure S10. ¹H NMR spectrum (400 MHz, CDCl₃) of 3-(2-imino-6-nonyl-2,3-dihydropyrimidin-4-yl)propan-1-ol (**6**).

Page S16. Figure S11. ¹³C NMR spectrum (100 MHz, CDCl₃) of 3-(2-imino-6-nonyl-2,3-dihydropyrimidin-4-yl)propan-1-ol (**6**).

Page S17. Figure S12. ¹H NMR spectrum (400 MHz, DMSO- d_6) of synthetic monalidine A (1).

- Page S18. Figure S13. ¹³C NMR spectrum (100 MHz, DMSO- d_6) of synthetic monalidine A (1).
- Page S19. Figure S14. ¹H NMR spectrum (600 MHz, DMSO-*d*₆) of arbusculidine A (7).
- Page S20. Figure S15. ¹³C NMR spectrum (150 MHz, DMSO- d_6) of arbusculidine (7).
- Page S21. Figure S16. gHSQC spectrum (DMSO-*d*₆) of arbusculidine A (7).
- Page S22. Figure S17. COSY spectrum (DMSO- d_6) of arbusculidine A (7).
- Page S23. Figure S18. gHMBC spectrum (DMSO- d_6) of arbusculidine A (7).
- Page S24. Figure S19. tROESY spectrum (DMSO- d_6) of arbusculidine A (7).
- Page S25. Figure S20. ¹⁵NLRHMQC spectrum (DMSO-*d*₆) of arbusculidine A (7).

Page S26. Figure S21. ¹H NMR spectrum (600 MHz, MeOH-*d*₄) of batzellamide A (8).

Page S27. Figure S22. ¹³C NMR spectrum (150 MHz, MeOH-d₄) of batzellamide A (8).

Page S28. Figure S23. ¹H NMR spectrum (600 MHz, DMSO-*d*₆) of batzellamide A (8).

Page S29. Figure S24. ¹³C NMR spectrum (150 MHz, DMSO- d_6) of batzellamide A (8).

Page S30. Figure S25. gHSQC spectrum (DMSO-*d*₆) of batzellamide A (8).

Page S31. Figure S26. COSY spectrum (DMSO- d_6) of batzellamide A (8).

Page S32. Figure S27. gHMBC spectrum (DMSO-*d*₆) of batzellamide A (8).

Page S33. Figure S28. tROESY spectrum (DMSO-*d*₆) of batzellamide A (8).

Page S34. Figure S29. ¹⁵NHSQC spectrum (DMSO-*d*₆) of batzellamide A (8).

Page S35. Figure S30. ¹⁵NLRHMQC spectrum (DMSO-*d*₆) of batzellamide A (8).

Page S36. Figure S31. ¹H NMR spectrum (600 MHz, pyridine- d_5) of batzellamide A (8).

Page S37. Figure S32. ¹³C NMR spectrum (150 MHz, pyridine- d_5) of batzellamide A (8).

Page S38. Figure S33. ¹H NMR spectrum (600 MHz, DMSO-*d*₆) of hemibatzelladine J (9).

Page S39. Figure S34. ¹H NMR spectrum (150 MHz, DMSO- d_6) of hemibatzelladine J (9).

Page S40. Figure S35. gHSQC spectrum (DMSO-*d*₆) of hemibatzelladine J (9).

Page S41. Figure S36. COSY spectrum (DMSO- d_6) of hemibatzelladine J (9).

Page S42. Figure S37. gHMBC spectrum (DMSO-*d*₆) of hemibatzelladine J (9).

Page S43. Figure S38. tROESY spectrum (DMSO- d_6) of hemibatzelladine J (9).

Page S44. Figure S39. ¹⁵NHSQC spectrum (DMSO-*d*₆) of hemibatzelladine J (9).

Page S45. Figure S40. ¹⁵NLRHMQC spectrum (DMSO-*d*₆) of hemibatzelladine J (9).

Page S46. Figure S41. ¹H NMR spectrum (600 MHz, MeOH- d_4) of Δ^{19} -hemibatzelladine J (10) and Δ^{20} -hemibatzelladine J (11).

Page S47. Figure S42. ¹³C NMR spectrum (150 MHz, MeOH- d_4) of Δ^{19} -hemibatzelladine J (**10**) and Δ^{20} -hemibatzelladine J (**11**).

Page S48. Figure S43. gHSQC spectrum (MeOH- d_4) of Δ^{19} -hemibatzelladine J (10) and Δ^{20} -hemibatzelladine J (11).

Page S49. Figure S44. COSY spectrum (MeOH- d_4) of Δ^{19} -hemibatzelladine J (**10**) and Δ^{20} -hemibatzelladine J (**11**).

Page S50. Figure S45. gHMBC spectrum (MeOH- d_4) of Δ^{19} -hemibatzelladine J (10) and Δ^{20} -hemibatzelladine J (11).

Page S51. Figure S46. tROESY spectrum (MeOH- d_4) of Δ^{19} -hemibatzelladine J (10) and Δ^{20} -hemibatzelladine J (11).

Page S52. Figure S47. ¹H NMR spectrum (600 MHz, DMSO-*d*₄) of Δ^{19} -hemibatzelladine J (**10**) and Δ^{20} -hemibatzelladine J (**11**).

Page S53. Figure S48. ¹³C NMR spectrum (150 MHz, DMSO- d_4) of Δ^{19} -hemibatzelladine J (10) and Δ^{20} -hemibatzelladine J (11).

Position	8 ^{<i>a</i>}	8 ^b
1	20.4	1.17, d (6.2)
2	46.2	3.30, m
3	36.0	1.41, m; 1.39, m
4	56.3	3.34, m
5	30.5	1.90, m
6	30.5	1.90, m
7	56.3	3.34, m
8	35.0	1.79, m; 1.45, m
9	50.8	3.21, m
10	150.5	
11	34.0	1.94, m; 1.00, ddd (1.5, 11.4, 22.8)
12	30.0	1.24, m
13	29.6	1.24, m
14	29.8	1.24, m
15	29.7	1.24, m
16	25.9/25.8	1.24, m
17	36.2/36.1	1.58, m; 1.42, m
18	73.0	5.00, m
19	20.3	1.22, d (6.4)
20	169.2	
21	43.8/43.6	3.23, m
22	57.3/57.0	4.03, m
23	28.8	2.28, m
24	30.8	2.14, m; 1.61, m
25	56.2/56.1	3.90, m
26	38.1	2.93, bd (16.3); 2.58, bdd (14.8, 14.5)
27	169.1	
28	151.0	
29	50.1/50.0	4.00, m
30	17.5	1.49, d (6.7)
N-H		10.08, s
N-H		9.79, s

Table S1. NMR Data (¹H 600 MHz, ¹³C 150 MHz, ¹⁵N, pyridine-*d*₅) for Batzellamide A (8).

^{*a*}150 MHz; ^{*b*}600 MHz

Position	8 ^{<i>a</i>}	8 ^b
1	19.8*	1.17, d (6.2)*
2	45.3	3.45, m
3	34.0	1.45, m; 1.32, m
4	55.6	3.65, m
5	29.5	2.10, m; 1.57, m
б	29.5	2.10, m; 1.57, m
7	55.5	3.65, m
8	32.9	2.16, m; 1.15, m
9	49.5	3.32, m
N-9a	-296	
10	149.2	
N-10a	-293	
11	28.7	1.24, m
12	24.5	1.24, m
13	28.6	1.24, m
14	29.5	1.24, m
15	29.6	1.24, m
16	24.7	1.24, m
17	34.9	2.15, m; 1.17, m
18	71.6	4.86, tq (6.3, 7.0)
19	19.8*	1.17, d (6.3)*
20	168.5#	
21	43.0/42.6	3.20, dd (8.0, 3.6)
22	55.9	4.06, m
23	27.5	2.27, ddd (12.3, 6.1, 6.0); 1.45 (m)
24	29.6	2.18, m; 1.67, m
25	54.8/54.7	3.75, m
26	36.8	2.81, dd (16.4, 3.8); 2.74, bdd (16.3, 13.5)
27	168.4#	
N-27a	-243	11.88, bs
28	148.5	
N-28a	-282	11.99, bs
29	48.5/48.4	3.93, m
30	16.8	1.22, d (6.4)
N-H		10.08, s
N-H		9.79, s

Table S2. NMR Data (¹H 600 MHz, ¹³C 150 MHz, ¹⁵N, DMSO- d_6) for Batzellamide A (8).

^{*a*}150 MHz; ^{*b*}600 MHz; ^{**,#*} assignments may be interchanged.

Position	10 ^{<i>a</i>}	10^{b}	11 ^{<i>a</i>}	11^{b}
1	156.6	-	156.6	-
2	40.2	3.11, dd (13.1; 6.7)	40.2	3.11, dd (13.1; 6.7)
3	25.4	1.61, m	25.4	1.61, m
4	25.2	1.51, m	25.2	1.51, m
5	63.5	4.10, m	63.5	4.10, m
6	164.3	-	164.3	-
7	100.4	-	100.4	-
8	148.3	-	148.3	-
9	30.0	2.76, m; 3.16, ddd (18.1, 8.7, 8.2)	30.0	2.76, m; 3.16, ddd (18.1, 8.7, 8.2)
10	28.7	2.23, m; 16.2, m	28.7	2.23, m; 16.2, m
11	56.6	3.83, m	56.6	3.83, m
12	31.0	3.16, dbr (14.4); 1.44, m	31.0	3.16, dbr (14.4); 1.44, m
13	51.1	3.53, m	51.1	3.53, m
14	147.2	-	147.2	-
15	46.5	4.42, q (6.0)	46.5	4.42, q (6.0)
16	24.0	1.26, d (6.0)	24.0	1.27, d (6.0)
17	25.9	1.50, m	25.9	1.50, m
18	35.4	1.76, m	23.7	2.20, m
19	131.8	5.47, m	35.8	1.66, m
20	127.8	5.45, m	131.7	5.47, m
21	24.6	2.18, m	129.3	5.41, m
22	33.4	1.58, m	31.7	2.27, bq (7.2)
23	62.5	3.55, t (6.1)	62.5	3.54, t (6.1)
NH-1a	-295	7.53, t (5.2)	-295	7.53, t (5.2)
NH-13a	-285	8.78, bs	-285	8.72, bs
NH-14a	-290	8.43, bs	-290	8.32, bs

Table S3. NMR Data (¹H 600 MHz, ¹³C 150 MHz, ¹⁵N, DMSO-*d*₆) for Hemibatzelladines Δ^{19} (**10**) and Δ^{20} (**11**).

^{*a*}150 MHz; ^{*b*}600 MHz. ¹⁵N assignments were not calibrated with an external standard. The δ value has an accuracy of about 1 ppm in reference to CH₃NO₂ (0 ppm) and are assigned based on ¹⁵NHSQC and ¹⁵NlrHMQC correlations.

Figure S1. ¹H NMR spectrum (600 MHz, DMSO- d_6) of monalidine A (1).

Figure S2. ¹³C NMR spectrum (150 MHz, DMSO- d_6) of monalidine A (1).

Figure S3. gHSQC spectrum (DMSO- d_6) of monalidine A (1).

Figure S4. COSY spectrum (DMSO- d_6) of monalidine A (1).

Figure S5. gHMBC spectrum (DMSO- d_6) of monalidine A (1).

Figure S6. tROESY spectrum (DMSO- d_6) of monalidine A (1).

Figure S7. ¹⁵NLRHMQC spectrum (DMSO-*d*₆) of monalidine A (**1**).

Figure S8. ¹H NMR spectrum (400 MHz, DMSO-*d*₆) of 1-hydroxypentadecane-4,6-dione (**4**).

Figure S9. ¹³C NMR spectrum (100 MHz, DMSO-*d*₆) of 1-hydroxypentadecane-4,6-dione (**4**).

Figure S10. ¹H NMR spectrum (400 MHz, CDCl₃) of 3-(2-imino-6-nonyl-2,3-dihydropyrimidin-4-yl)propan-1-ol (6).

Figure S11. ¹³C NMR spectrum (100 MHz, CDCl₃) of 3-(2-imino-6-nonyl-2,3-dihydropyrimidin-4-yl)propan-1-ol (6).

Figure S12. ¹H NMR spectrum (400 MHz, DMSO-*d*₆) of synthetic monalidine A (1).

Figure S13. ¹³C NMR spectrum (100 MHz, DMSO- d_6) of synthetic monalidine A (1).

Figure S14. ¹H NMR spectrum (600 MHz, DMSO-*d*₆) of arbusculidine A (7).

Figure S15. ¹³C NMR spectrum (150 MHz, DMSO- d_6) of arbusculidine A (7).

Figure S16. gHSQC spectrum (DMSO- d_6) of arbusculidine A (7).

Figure S17. COSY spectrum (DMSO- d_6) of arbusculidine A (7).

Figure S18. gHMBC spectrum (DMSO-*d*₆) of arbusculidine A (7).

Figure S19. tROESY spectrum (DMSO- d_6) of arbusculidine A (7).

Figure S20. ¹⁵NLRHMQC spectrum (DMSO-*d*₆) of arbusculidine A (7).

Figure S21. ¹H NMR spectrum (600 MHz, MeOH- d_4) of batzellamide A (8).

Figure S22. ¹³C NMR spectrum (150 MHz, MeOH- d_4) of batzellamide A (8).

Figure S23. ¹H NMR spectrum (600 MHz, DMSO-*d*₆) of batzellamide A (8).

Figure S24. ¹³C NMR spectrum (150 MHz, DMSO-*d*₆) of batzellamide A (8).

Figure S25. gHSQC spectrum (DMSO- d_6) of batzellamide A (8).

Figure S27. gHMBC spectrum (DMSO-*d*₆) of batzellamide A (8).

S33

Figure S31. ¹H NMR spectrum (600 MHz, pyridine- d_5) of batzellamide A (8).

Figure S32. ¹³C NMR spectrum (150 MHz, pyridine- d_5) of batzellamide A (8).

Figure S33. ¹H NMR spectrum (600 MHz, DMSO-*d*₆) of hemibatzelladine J (9).

RobertoMaMelMelA121_ 2 1 D:\ berlinck

Figure S34. ¹H NMR spectrum (150 MHz, DMSO-*d*₆) of hemibatzelladine J (9).

Figure S35. gHSQC spectrum (DMSO-*d*₆) of hemibatzelladine J (9).

Figure S36. COSY spectrum (DMSO-*d*₆) of hemibatzelladine J (9).

Figure S37. gHMBC spectrum (DMSO- d_6) of hemibatzelladine J (9).

Figure S38. tROESY spectrum (DMSO-*d*₆) of hemibatzelladine J (9).

Figure S39. ¹⁵NHSQC spectrum (DMSO-*d*₆) of hemibatzelladine J (9).

Figure S40. ¹⁵NLRHMQC spectrum (DMSO- d_6) of hemibatzelladine J (9).

Figure S41. ¹H NMR spectrum (600 MHz, MeOH- d_4) of Δ^{19-20} -hemibatzelladine J (10) and Δ^{20-21} -hemibatzelladine J (11).

Figure S42. ¹³C NMR spectrum (150 MHz, MeOH- d_4) of Δ^{19-20} -hemibatzelladine J (10) and Δ^{20-21} -hemibatzelladine J (11).

Figure S43. gHSQC spectrum (MeOH- d_4) of Δ^{19-20} -hemibatzelladine J (10) and Δ^{20-21} -hemibatzelladine J (11).

Figure S44. COSY spectrum (MeOH- d_4) of Δ^{19-20} -hemibatzelladine J (10) and Δ^{20-21} -hemibatzelladine J (11).

Figure S45. gHMBC spectrum (MeOH- d_4) of Δ^{19-20} -hemibatzelladine J (10) and Δ^{20-21} -hemibatzelladine J (11).

Figure S46. tROESY spectrum (MeOH- d_4) of Δ^{19-20} -hemibatzelladine J (10) and Δ^{20-21} -hemibatzelladine J (11).

Figure S47. ¹H NMR spectrum (600 MHz, DMSO- d_4) of Δ^{19-20} -hemibatzelladine J (10) and Δ^{20-21} -hemibatzelladine J (11).

Figure S48. ¹³C NMR spectrum (150 MHz, DMSO- d_4) of Δ^{19-20} -hemibatzelladine J (**10**) and Δ^{20-21} -hemibatzelladine J (**11**).