Supporting Information

An Isolable Anionic Gallabenzene: Synthesis and Characterization

Taichi Nakamura,[†] Katsunori Suzuki,^{*,†} and Makoto Yamashita^{*,†,‡}

[†]Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, 112-8551, Japan [‡]CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

E-mail: katsuno_suzu@oec.chem.chuo-u.ac.jp; makoto@oec.chem.chuo-u.ac.jp

(submitted to *Organometallics*)

Contents

1.	Experimental procedures	S2
2.	X-ray crystallographic analysis	S4
3.	Theoretical calculations	S9
4.	References	S14

1. Experimental Procedures

General methods

All manipulations of air- and/or moisture-sensitive compounds were performed in a KOREA KIYON glove box under inert atmosphere of argon. Anhydrous hexane, toluene, and diethylether (Et₂O) were dried by passage through a GrassContour solvent purification system. Anhydrous 1,2-dimethoxyethane (DME) was purchased from Kanto Chemical Co., Ltd. Deuterated benzene (C₆D₆) were distilled from sodium/benzophenone prior to use. Mesityllithium was prepared according to the literature procedure.^{S1} Aluminacyclohexadiene **2** was prepared according to the literature procedure.^{S2} Other chemicals were used as received. The nuclear magnetic resonance (NMR) measurements were carried out by a JEOL ECA-500 spectrometer (500 MHz for ¹H, 126 MHz for ¹³C, and 194 MHz for ⁷Li) or a Varian Mercury 400 spectrometer (400 MHz for ¹H and 100 MHz for ¹³C). Chemical shifts (δ) are given by definition as dimensionless numbers and relative to ¹H and ¹³C NMR chemical shifts of the residual C₆D₅H for ¹H (δ = 7.16) and C₆D₆ itself for ¹³C (δ = 128.0). The ⁷Li NMR spectra were referenced using an external standard of 1 M LiCl aqueous solution. The absolute values of the coupling constants are given in Hertz (Hz). Multiplicities are abbreviated as singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), and broad (br). Elemental analyses were performed on a Perkin Elmer 2400 series II CHN analyzer. Melting points were measured on a MPA100 Optimelt Automated Melting Point System and are uncorrected.

Synthesis of gallacyclohexadiene 3

To a toluene solution (60 mL) of aluminacyclohexadiene **2** (1.00 g, 1.92 mmol), GaCl₃ (338 mg, 1.92 mmol) was added. After stirring at room temperature for 3 h, pyridine (292 μ L, 3.62 nnol) was added dropwised to a mixture. After stirring for 30 min, a resulting mixture was filtered, and concentrated under reduced pressure. The repetitious recrystallization from toluene to give gallacyclohexiadiene **3** as colorless crystals (833 mg, 1.48 mmol, 77%): mp (in a sealed tube) 186–188 °C (dec.); ¹H NMR (C₆D₆, 400 MHz) & 0.69-1.65 (m, 32H), 1.39-1.52(m, 6H), 2.87-3.66 (d, 2H), 6.41 (m, 2H), 6.69 (m, 1H), 7.41 (t, *J* = 4 Hz, 2H), 8.63 (m, 2H); ¹³C NMR (C₆D₆, 100.4 MHz) & 12.0 (CH), 19.4 (CH₃), 39.7 (CH₂), 125.1 (CH), 140.0 (CH), 144.5 (4°), 147.4 (CH), 156.7 (CH); Anal. calcd. for C₂₈H₅₁ClGaNSi₂: C, 59.73; H, 9.13; N,2.49. Found C, 59.67; H, 9.00; N. 2.38.

Synthesis of gallabenzene 1Ga-Li(solv) (solv: Et₂O, DME, and DME₃)

Mesityllithium (296.6 mg, 2.352 mmol) was added to a Et₂O suspension (7.1 mL) of gallacyclohexadiene **3** (400 mg, 0.711 mmol) at –35 °C. A mixture was stirred for 3 h at –35 °C, then warmed to room temperature and stirred for 4 h. A resulting mixture was filtered, and concentrated under reduced pressure. The resulting brown oil was recrystallized from Et₂O to give gallabenzene **1Ga**-Li(Et₂O) as pale yellow crystals (296 mg, 0.457 mmol, 64%): mp (in a sealed tube) 198–200 °C (dec.); ¹H NMR (C₆D₆, 400 MHz) & 0.79 (t, J = 7 Hz, 6H), 1.14 (d, J = 7 Hz, 18H), 1.22 (d, J = 7 Hz, 18H), 1.27-1.40 (m, 6H), 2.17 (s, 3H), 2.51 (s, 3H), 2.62 (s, 3H), 2.96 (q, J = 7 Hz, 4H), 6.10 (t, J = 8 Hz, 1H), 6.83 (s, 1H), 6.91 (s, 1H), 8.21 (d, J = 8 Hz, 2H); ¹³C NMR (C₆D₆, 100 MHz) & 14.7 (CH), 16.3 (CH₃), 21.5 (CH₃), 21.8 (CH₃), 23.1 (CH₃), 29.2 (CH₃), 30.4 (CH₃), 67.2 (CH₂), 104.0 (CH), 126.7 (CH), 127.3 (CH), 130.3 (4°), 136.9 (4°), 141.2 (4°), 143.4 (4°), 148.3 (CH), 148.7 (4°); ⁷Li NMR(C₆D₆, 194 MHz) &

-5.2. UV-vis (hexane) $\lambda_{\text{max}}(\varepsilon)$: 361 nm (18100). The purity of **1Ga**-Li(Et₂O) was confirmed by the ¹H NMR spectroscopy (Figure S1).

To a toluene (4.5 mL) solution of **1Ga**-Li(Et₂O) (159 mg, 0.245 mmol), DME (24.3 µL, 0.269 mmol) was added. After the concentration under vacuum, the resulting solid was recrystallized from toluene to give **1**-Li(DME) as pale-yellow crystals (137.9 mg, 0.208 mol, 85%); ¹H NMR (C₆D₆, 400 MHz) δ : 1.24 (d, *J* = 7 Hz, 32H), 1.34-1.45 (m, 6H), 2.21 (s, 3H), 2.53 (s, 4H), 2.62 (s, 6H), 2.89 (s, 6H), 6.02 (t, *J* = 8 Hz, 1H), 6.91 (s, 2H), 8.23 (d, *J* = 8 Hz, 2H); ¹³C NMR (C₆D₆, 100 MHz) δ : 13.1 (CH), 20.0 (CH₃), 21.5 (CH₃), 28.2 (CH₃), 59.7 (CH₃), 69.6 (CH₂), 103.0 (CH), 126.9 (CH), 129.5 (4°), 136.6 (4°), 142.6 (4°), 148.2 (CH), 150.6 (4°); ⁷Li NMR(C₆D₆, 194 MHz) δ : -4.8. he purity of **1Ga**-Li(DME) was confirmed by the ¹H NMR spectroscopy (Figure S2).

Crystalline **1Ga**-Li(DME) (54.1 mg, 0.0815 mmol) was recrystallized from DME at -35 °C to give aluminabenzene **1Ga**-Li(DME)₃ as pale-yellow crystals (59.8 mg, 0.0709 mmol, 87%): The NMR spectra of **1Ga**-(DME)₃ in C₆D₆ are identical to those of **1Ga**-(DME). This result suggests that DME molecules coordinated to lithium cation would eliminate easily to give a mixture of **1Ga**-(DME) and free DME molecules. Anal. calcd. for C₄₄H₈₆GaLiO₆Si₂: C, 62.62; H, 10.27. Found C, 62.32; H, 10.67.

Figure S1. ¹H NMR spectrum of 1Ga-Li(Et₂O) (400 MHz, C₆D₆).

Figure S2. ¹H NMR spectrum of 1Ga-Li(DME) (400 MHz, C₆D₆).

•

2. X-ray Crystallographic Analysis

Crystallographic data for **1Ga**-Li(DME), **1Ga**-Li(DME)₃, and **3** are summarized in table S1. The crystal was coated with oil (Immersion Oil, type B: Code 1248, Cargille Laboratories, Inc.) and put on a MicroMountTM (MiTeGen, LLC), and then mounted on diffractometer. Diffraction data were collected on a Saturn CCD detectors using Mo*K*α radiation. The Bragg spots were integrated using the CrystalClear program package^{S3}. Absorption corrections were applied. All the following procedure for analysis, Yadokari-XG 2009 was used as a graphical interface.^{S4} The structures were solved by a direct method with programs of SIR2004^{S5} and refined by a full-matrix least squares method with the program of SHELXL-2013.^{S6} Anisotropic temperature factors were applied to all non-hydrogen atoms. The hydrogen atoms were put at calculated positions, and refined applying riding models. The detailed crystallographic data have been deposited with the Cambridge Crystallographic Data Centre: Deposition code CCDC 1058886 (**1Ga**-Li(DME)), CCDC 1058887 (**1Ga**-Li(DME)₃), CCDC 1058888 (**3**). A copy of the data can be obtained free of charge via http://www.ccdc.cam.ac.uk/products/csd/request.

	1Ga-Li(DME)	1Ga-Li(DME) ₃	3	
formula	C36H66GaLiO2Si2	C44H86GaLiO6Si2	C ₂₈ H ₅₁ ClGaNSi ₂	
M	663.72	843.96	563.04	
T/K	173	93	93	
color	pale-yellow	pale-yellow	colorless	
size, mm	0.20 x 0.03 x 0.03	0.21 x 0.06 x 0.02	0.17 x 0.17 x 0.04	
crystal system	Monoclinic	Monoclinic	Monoclinic	
space group	<i>P</i> 2 ₁ / <i>n</i> (#14)	<i>P</i> 2 ₁ / <i>n</i> (#14)	<i>P</i> 2 ₁ / <i>n</i> (#14)	
<i>a</i> / Å	8.7398(16)	13.000(2)	14.1431(16)	
b/Å	29.690(5)	28.938(5)	13.6702(14)	
<i>c</i> / Å	15.217(3)	13.964(2)	17.1961(19)	
lpha / °	90	90	90	
eta / °	101.070(4)	108.411(2)	112.4196(13)	
γ/°	90	90	90	
$V/~{ m \AA}^3$	3875.1(12)	4984.3(14)	3073.4(6)	
Ζ	4	4	4	
$D_{\rm x}$ / g cm ⁻³	1.138	1.125	1.217	
μ / mm ⁻¹	0.799	0.640	1.077	
<i>F</i> (000)	1440	1840	1208	
θ range / °	3.04 to 27.48	3.08 to 27.50	3.12 to 27.47	
reflections collected	31909	40799	24833	
unique reflections	8863	11386	7001	
refined parameters	396	508	310	
GOF on F^2	1.080	1.085	1.082	
$R1 [I > 2\sigma(I)]^{a}$	0.0633	0.0610	0.0351	
wR2 (all data) ^b	0.1598	0.1605	0.0838	
$\Delta ho_{ m min,\ max}$ / e Å ⁻³	-0.782, 0.819	-1.138, 0.929	-0.650, 0.335	

Table S1. Crystallographic data for 1Ga-Li(DME), 1Ga-Li(DME)₃, and 3.

 $\overline{{}^{a}R1} = \Sigma ||Fo| - |Fc|| / \Sigma |Fo|, {}^{b}wR2 = [\Sigma \{w(Fo^{2} - Fc^{2})^{2} / \Sigma w(Fo^{2})^{2}\}]^{1/2}$

Figure S3. a) Molecular structure of **1Ga**-Li(DME) (50% thermal ellipsoid probability). Hydrogen atoms are omitted for clarity. b) Side view of **1Ga**-Li(DME). Hydrogen atoms and triisopropylsilyl groups are omitted for clarity. Selected bond distances (Å) and angles (°) for **1Ga**-Li(DME): Ga1–C1 = 1.939(3), Ga1–C5 = 1.941(3), Ga1–C6 = 1.985(3), C1–C2 = 1.402(4), C2–C3 = 1.403(5), C3–C4 = 1.408(5), C4–C5 = 1.396(4), Ga1–Li1 = 2.931(6), C1–Li1 = 2.562(7), C2–Li1 = 2.338(7), C3–Li1 = 2.301(7), C4–Li1 = 2.442(7), C5–Li1 = 2.702(7), C1–Ga1–C5 = 105.63(14), Ga1–C1–C2 = 114.5(2), C1–C2–C3 = 128.8(3), C2–C3–C4 = 126.6(3), C3–C4–C5 = 128.6(3), C4–C5–Ga1 = 114.9(2), C1–Ga1–C6 = 128.75(13), C5–Ga1–C6 = 125.62(13).

Figure S4. a) Molecular Structure of **1Ga**-Li(DME)₃ (50% thermal ellipsoid probability). Hydrogen atoms are omitted for clarity. b) Top view of **1Ga**-Li(DME)₃. Hydrogen atoms and Li(DME)₃ moiety are omitted for clarity. c) Side view of **1Ga**-Li(DME)₃. Triisopropyl silyl groups and hydrogen atoms are omitted for clarity. Selected bond distances (Å) and angles (°) for **1Ga**-Li(DME)₃: Ga1–C1 = 1.927(3), Ga1–C5 = 1.927(3), C1–C2 = 1.411(4), C2–C3 = 1.409(4), C3–C4 = 1.406(4), C4–C5 = 1.409(4), Ga1–C6 = 2.004(3), C1–Ga1–C5 = 108.72(11), Ga1–C1–C2 = 113.31(19), C1–C2–C3 = 128.5(2), C2–C3–C4 = 127.4(2), C3–C4–C5 = 129.0(2), C4–C5–Ga1 = 113.06(19), C1–Ga1–C6 = 127.87(11), C5–Ga1–C6 = 123.33(11).

Figure S5. a) Molecular structure of **3** (50% thermal ellipsoid probability). Hydrogen atoms are omitted for clarity. b) Side view of **3**. Triisopropylsilyl groups and hydrogen atoms are omitted for clarity. Selected bond distances (Å) and angles (°) for **3**: Ga1–C1 = 1.9574(18), Ga1–C5 = 1.9649(17), C1–C2 = 1.345(2), C2–C3 = 1.504(2), C3–C4 = 1.512(2), C4–C5 = 1.350(2), Ga1–C11 = 2.2218(5), Ga1–N1 = 2.0624(15), C1–Ga1–C5 = 111.17(7), Ga1–C1–C2 = 112.53(13), C1–C2–C3 = 130.18(16), C2–C3–C4 = 123.47(15), C3–C4–C5 = 131.19(16), C4–C5–Ga1 = 111.25(13), C1–Ga1–C11 = 116.42(5), C5–Ga1–C11 = 116.70(5), C1–Ga1–N1 = 101.81(7), C5–Ga1–N1 = 108.74(6), N1–Ga1–C11 = 99.88(4).

3. Theoretical Calculations

The geometry optimization of **1Ga** was performed at the B3LYP/6-31G(d)^{S7-S9} level of theory by using Gaussian 09 program package.^{S10} The optimized structures, selected structural parameters, and selected molecular orbitals of **1Ga** is shown in Figure S6-S8. The Wiberg bond index (WBI)^{S11} and natural population analysis (NPA)^{S12} charge distribution were calculated by natural bond orbital (NBO) method (Figure S9).^{S12} The NICS^{S13} calculation was performed using gauge-independent atomic orbital (GIAO) method^{S14} at the B3LYP/6-311+G(2d,p)^{S7, S15} level of theory (Figure S10).

Figure S6. Optimized structure and selected bond distances (Å, Red) and angles (°, Blue) of **1Ga** at the B3LYP/6-31G(d) level of theory. Hydrogen atoms are omitted for clarity.

Figure S7. Frontier molecular orbitals of **1Ga** calculated at the B3LYP/6-31G(d) level of theory. Hydrogen atoms are omitted for clarity.

Figure S8. Selected π orbitals of **1Ga** calculated at the B3LYP/6-31G(d) level of theory. Hydrogen atoms are omitted for clarity.

Figure S9. Wiberg bond induces (WBI) (Red) and natural population analysis charge distributions (Blue) of 1Ga (left) and 1Al (right).^{S2}

Figure S10. Calculated NICS values of 1Ga. Hydrogen atoms and isopropyl groups are omitted for clarity.

4. References

- (S1) Hübner, A.; Bernert, T.; Sänger, I.; Alig, E.; Bolte, M.; Fink, L.; Wagner, M.; Lerner, H.-W. *Dalton Trans.* **2010**, *39*, 7528.
- (S2) Nakamura, T.; Suzuki, K.; Yamashita, M. J. Am. Chem. Soc. 2014, 136, 9276.
- (S3) CrystalClear: Rigaku/MSC. Inc., 9009 New Trails Drive, The Woodlands TX 77381, USA (2005).
- (S4) Kabuto, C.; Akine, S.; Kwon, E. J. Cryst. Soc. Jpn. 2009, 51, 218.
- (S5) Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; Caro, L. D.; Giacovazzo, C.; Polidori,
- G.; Spagna, R. J. Appl. Cryst. 2005, 38, 381.
- (S6) Sheldrick, G. M. Acta Crystallogr. Sect. A 2008, 64, 112.
- (S7) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
- (S8) (a) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. (b) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200.
- (S9) (a) Petersson, G. A.; Bennett, A.; Tensfeldt, T. G.; Al-Laham, M. A.; Shirley, W. A.; Mantzaris, J. J. Chem. Phys.

1988, 89, 2193. (b) Petersson, G. A.; Al-Laham, M. A. J. Chem. Phys. 1991, 94, 6081.

- (S10) Gaussian 09, Revision C.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J.
- B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli,

C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

- (S11) Sizova, O. V.; Skripnikov, L. V.; Sokolov, A. Y. THEOCHEM 2008, 870, 1.
- (S12) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899.
- (S13) Chen, Z.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. v. R. Chem. Rev. 2005, 105, 3842.
- (S14) Krzysztof, W.; Hinton, J. F.; Pulay, P. J. Am. Chem. Soc. 1990, 112, 8251.
- (S15) (a) Binning, R. C. Jr.; Curtiss, L. A. J. Comp. Chem. 1990, 11, 1206. (b) Curtiss, L. A.; McGrath, M. P.; Blaudeau,
- J.-P.; Davis, N. E.; Binning, R. C. Jr.; Radom, L. J. Chem. Phys. 1995, 103, 6104.