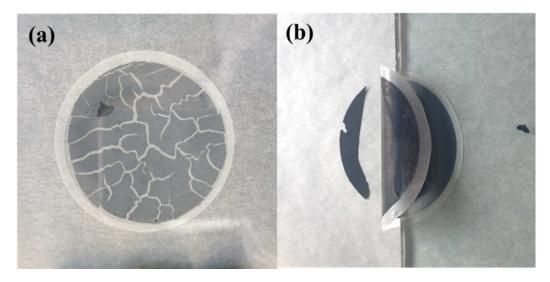
Supporting Information

Integrated Fast Assembly of Free-Standing Lithium Titanate/Carbon Nanotube/Cellulose Nanofiber Hybrid Network Film as Flexible Paper-Electrode for Lithium-ion Batteries

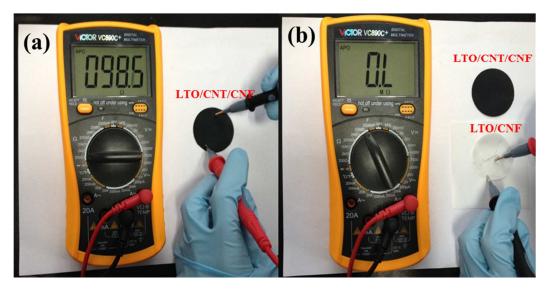
Shaomei Cao[†], Xin Feng^{*,†}, Yuanyuan Song^{||}, Xin Xue[†], Hongjiang Liu[‡], Miao Miao[†], Jianhui Fang[‡], Liyi Shi^{†,‡}

[†] Research Center of Nano Science and Technology, Shanghai University, Shanghai 200444, P. R. China

[‡] Department of Chemistry, College of Science, Shanghai University, Shanghai


200444, P. R. China

^{II} School of Materials Sciences and Engineering, Shanghai University, Shanghai


200444, P. R. China.

*Corresponding Author:

*E-mail: fengxin@shu.edu.cn (X. Feng).

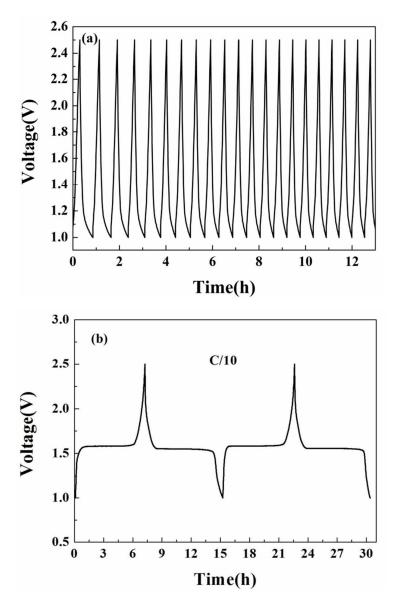
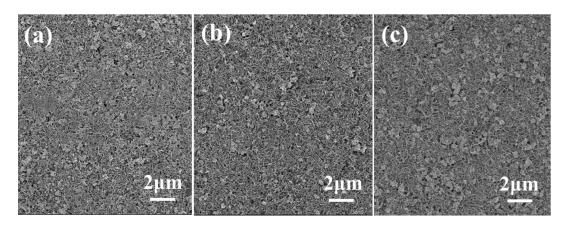


Figure S1. (a) Photograph of LTO/CNT/CNF film with LTO percentage of 80%; (b) Photograph of LTO/CNT film on a PC membrane.


Figure S2. Resistance test of (a) LTO/CNT/CNF film and (b) LTO/CNF film using an ohmmeter. The ohmic resistance of LTO/CNF film is too large to be tested, while the resistance of LTO/CNT/CNF film is 98.5 Ω .

.

Figure S3. The galvanostatic charge/discharge curves of CNT/CNF film (a) and LTO/CNT/CNF film (b).

To evaluate the contribution of CNT to the capacity of the paper-electrode, the performances of the coin half-cells using CNT/CNF film and LTO/CNT/CNF film as electrode were compared. The CNT/CNF cycled with 10 μ A·mg⁻¹ current density and the LTO/CNT/CNF cycled at C/10 (17.5 μ A·mg⁻¹) between 1.0 and 2.5V, respectively. As a result, the charge and discharge capacity of CNT/CNF is about 3 mAh·g⁻¹ (~0.01mAh·cm⁻²), which can be negligible when compared to that of LTO/CNT/CNF (160 mAh·g⁻¹).

Figure S4. Low-magnification FESEM images of (a) LCC-50, (b) LCC-60 and (c) LCC-70 after cycling at 10 C for 500 cycles.