## **Supporting Information**

## Versatile Boron Carbide-Based Visual Obscurant Compositions for Smoke Munitions

Anthony P. Shaw,\*,<sup>†</sup> Giancarlo Diviacchi,<sup>‡</sup> Ernest L. Black,<sup>‡</sup> Jared D. Moretti,<sup>†</sup> Rajendra K. Sadangi,<sup>†</sup> Henry A. Grau, Jr.,<sup>†</sup> Robert A. Gilbert, Jr.<sup>†</sup>

<sup>†</sup> Armament Research, Development and Engineering Center, US Army RDECOM-ARDEC, Picatinny Arsenal, NJ 07806, USA

<sup>‡</sup>Edgewood Chemical Biological Center, US Army RDECOM-ECBC, Aberdeen Proving Ground, MD 21010, USA



\*e-mail: anthony.p.shaw.civ@mail.mil

## Contents:

| Table S1.       | Mass-Based Smoke Chamber Data                                            | S2     |  |  |
|-----------------|--------------------------------------------------------------------------|--------|--|--|
| Figure S1.      | igure S1. Large Format Version of Figure 1                               |        |  |  |
| Figure S2.      | <b>Yigure S2.</b> XRD/XRF Experiments and XRD Pattern                    |        |  |  |
| Figures S3-S4.  | Large Format Versions of Figures 3 and 4                                 | S4-S5  |  |  |
| Figures S5-S7.  | <b>Figures S5-S7.</b> Photographs of End-Burning BC Smoke Canister Tests |        |  |  |
| Figures S8-S10. | Photographs of a Core-Burning BC Smoke Canister Test                     | S9-S11 |  |  |

| Composition                | Y <sup>a)</sup> | α <sub>m</sub> (m²/g) <sup>b)</sup><br>380-780 nm | α <sub>m</sub> (m²/g) <sup>b)</sup><br>555 nm | a <sub>m</sub> (m²/g) <sup>b)</sup><br>Photopic | FM <sub>m</sub> (m²/g) <sup>c)</sup><br>380-780 nm | FM <sub>m</sub> (m²/g) <sup>c)</sup><br>555 nm | FM <sub>m</sub> (m²/g) <sup>c)</sup><br>Photopic |
|----------------------------|-----------------|---------------------------------------------------|-----------------------------------------------|-------------------------------------------------|----------------------------------------------------|------------------------------------------------|--------------------------------------------------|
| BC (Average) <sup>d)</sup> | 0.75 (0.03)     | 3.81 (0.40)                                       | 4.05 (0.43)                                   | 4.01 (0.43)                                     | 2.87 (0.39)                                        | 3.06 (0.43)                                    | 3.03 (0.42)                                      |
| TA <sup>e)</sup>           | 0.30            | 4.74                                              | 4.85                                          | 4.80                                            | 1.42                                               | 1.46                                           | 1.44                                             |
| HC <sup>f)</sup>           | 1.26            | 2.42                                              | 2.36                                          | 2.36                                            | 3.04                                               | 2.97                                           | 2.97                                             |

Table S1. Mass-Based Smoke Chamber Data.

a) Yield factor. b) Mass-based extinction coefficient. c) Mass-based composition figure of merit.

d) Averages for all BC grenades tested with standard deviations in parentheses.

e) Data for a typical M83 TA grenade. f) Data for an AN-M8 grenade at 25 °C and 32% relative humidity.



**Figure S1.** Large format version of Figure 1. Diagrams of the end-burning (left) and coreburning (right) experimental grenade configurations. Partial cross sections show the solid endburning pellet and the core-burning pellet with an axial core hole. The grenade lids and/or can (blue) contain vent holes covered by tape (orange). Other parts, common to both configurations, include the fuze (red), pull ring and pin (gray), and lever (green).

**XRD/XRF Experiments.** Small cylindrical pellets (2 g, 0.95 cm diameter) of a type 1 BC composition were ignited with an electrically heated nichrome wire. An inverted steel cup was positioned above the burning pellets so that a portion of the volatilized combustion products condensed within it. The light gray residue was scraped out and used for X-ray analysis.

X-ray diffraction (XRD) of the sample was carried out in a Rigaku Ultima III diffractometer with CuK $\alpha$  radiation (1.54 Å). A step size of 0.02 degrees and a scan rate of 0.25 deg/min were used. The pattern was analyzed with JADE 7 software (Materials Data Inc., Livermore CA). Semi-quantitative chemical composition analysis was carried out in a Rigaku ZSX Primus II wavelength dispersive X-ray fluorescence (XRF) spectrometer. The spectrometer contained a 4 kW Rh anode and the detector system used a scintillation counter for detecting heavy elements and a flow proportional counter for detecting light elements. The samples were tested in a vacuum and the data were analyzed using SQX software that can correct for matrix effects, overlapping lines, and secondary excitation effects by photoelectrons. Increased accuracy was achieved using built-in matching library and perfect scan analysis programs.

The major crystalline phase identified by XRD was KCl (sylvite), Figure S2. XRF indicated the presence of 36.7 wt% O, 31.4 wt% K, 25.0 wt% B, 6.7 wt% Cl, 0.1 wt% Ca, and trace elements including Si and Fe as the balance. Potassium borates and boron oxides are rarely crystalline [1].



Figure S2. XRD pattern of collected residue with KCl (sylvite) peaks marked.

[1] Akagi, R.; Ohtori, N.; Umesaki, N. Raman spectra of K<sub>2</sub>O–B<sub>2</sub>O<sub>3</sub> glasses and melts. *Journal of Non-Crystalline Solids*. **2001**, *293-295*, 471-476.



**Figure S3.** Large format version of Figure 3. Smoke screens produced by end-burning BC smoke grenades, mid-burn. Type 1 (top), type 2 (middle), type 3 (bottom).



**Figure S4.** Large format version of Figure 4. Time sequence for a core-burning BC smoke grenade containing the type 3 composition. Images show smoke screen formation at 0.4 s (top), 2.8 s (middle), and 8.0 s (bottom). The total grenade burning time was 3.5 s.



**Figure S5.** Smoke screen produced by an end-burning BC smoke canister, mid-burn. The canister contained 2 kg of the type 1 composition and burned for about 100 s.



**Figure S6.** Smoke screen produced by an end-burning BC smoke canister, mid-burn. The canister contained 2 kg of the type 2 composition and burned for about 59 s.



**Figure S7.** Smoke screen produced by an end-burning BC smoke canister, mid-burn. The canister contained 2 kg of the type 3 composition and burned for about 19 s.



**Figure S8.** Smoke screen produced by a core-burning BC smoke canister at 1.7 s. The canister contained 2 kg of the type 3 composition and burned for 8.0 s.



**Figure S9.** Smoke screen produced by a core-burning BC smoke canister at 3.9 s. The canister contained 2 kg of the type 3 composition and burned for 8.0 s.



**Figure S10.** Smoke screen produced by a core-burning BC smoke canister at 6.5 s. The canister contained 2 kg of the type 3 composition and burned for 8.0 s.