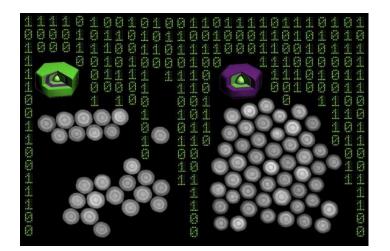
Supporting Information

Rare Earth Core/Shell Nanobarcodes for Multiplexed Trace Biodetection**

Lei Chen,[†] Xiaomin Li[†], Dengke Shen,^{†‡} Lei Zhou,[†] Dan Zhu,[§] Chunhai Fan,[§] and Fan Zhang[†]*

[†]Department of Chemistry, *iChEm*(Collaborative Innovation Center of Chemistry for Energy Materials), State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P. R. China.

[§]Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese


Academy of Sciences, Shanghai 201800, China

[‡]Key Laboratory of Materials Physics, Centre for Environmental and Energy

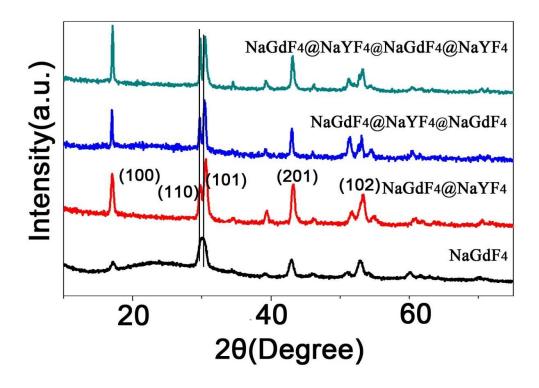
Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology,

Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese

Academy of Sciences, Hefei 230031, China.

Table S1	:	DNA	sequences
----------	---	-----	-----------

Number	DNA name	Sequences (5'-3')
1	Capture DNA ₁	GTA CCA CTA CGA GAC ACT GCC TGA ACT
		GTA
2	Capture DNA ₂	CCT ATC GAC CAT GCT CCA GCG AGA AAA
		ТСТ
3	Report DNA ₁	TAA CAA CGA TCC CTC TTTTT AAAAA
		ΑΑΑΑΑ ΑΑΑΑΑ ΑΑΑΑΑ
4	Report DNA ₂	TGT AAA GCT AGC TAT TTTTT AAAAA
		ΑΑΑΑΑ ΑΑΑΑΑ ΑΑΑΑΑ
5	Target DNA ₁	GAG GGA TCG TTG TTA TAC AGT TCA GGC
		AGT GTC TCG TAG TGG
6	Target DNA ₂	ATA GCT AGC TTT ACA AGA TTT TCT CGC
		TGG AGC ATG GTC GAT
7	Noncomplementary	ATA GCT AGC TTT ACA AGA TTT TCT CGC
	DNA ₁	TGG AGC ATG GTC GAT
8	Noncomplementary	GAG GGA TCG TTG TTA TAC AGT TCA GGC
	DNA ₂	AGT GTC TCG TAG TGG


Table S2. Calculated Number of Available Striping Patterns for a Given Number of Metals and Equal Length Stripes^a

^{*a*}The number of combinations available where M is the number of distinct materials, n is the number of stripes, and the rod is inherently asymmetric is Mⁿ.

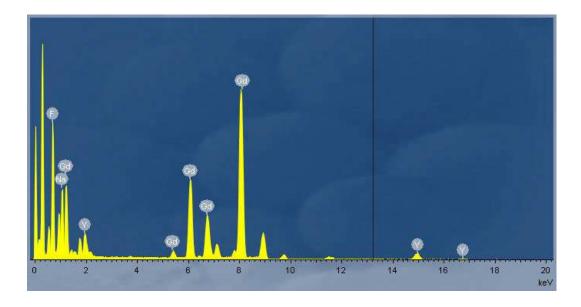

No. of stripes	(n) No. of matri	xes (M)
	2	3
1	2	3
2	4	9
3	8	27
4	16	81
5	32	243
6	64	729
7	128	2187
8	256	6561
9	512	13122
10	1024	26244

Table S3. Standard atomic spacings for different kinds of NaLnF₄ with their respective *hkl* indexs from PCPDFWIN database, and the lattice mismatch data between the NaLnF₄ materials along different directions.

Hexagonal phase								
hkl	100	110	101	111	201			
NaGdF ₄	5.210	3.010	2.976	2.314	2.115			
NaYbF ₄	5.130	2.960	2.870	2.252	2.063			
NaYF ₄	5.170	2.980	2.900	2.270	2.080			
Mismatch								
NaGdF ₄ -NaYbF ₄	1.54%	1.66%	3.56%	2.68%	2.46%			
NaGdF ₄ - NaYF ₄	0.77%	1.00%	2.55%	1.90%	1.65%			

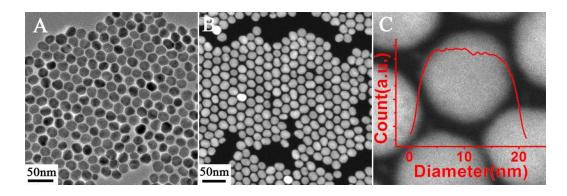
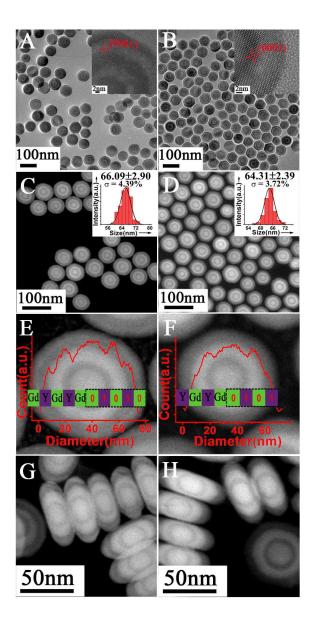


Figure S1. XRD patterns of the NaGdF₄ core (black line), NaGdF₄/NaYF₄ (C/S1) (red line), NaGdF₄/NaYF₄/NaGdF₄(C/S1/S2) (blue line) and NaGdF₄/NaYF₄/NaGdF₄/NaYF₄ (C/S1/S2/S3) NBs (green line). It is demonstrated that the crystal structures of the obtained core/shell NPs are all consistent with the structure of the core NPs. The XRD diffraction peaks narrow gradually with the growth of different layer shells, indicating that the crystalline domain size increases for the core/shell NPs. In addition, small shift of the diffraction peaks can also be detected because of the small lattice mismatch (~ 3.8%) between β-NaGdF₄ and β-NaYbF₄. These results further demonstrate the epitaxial seeded growth approach.

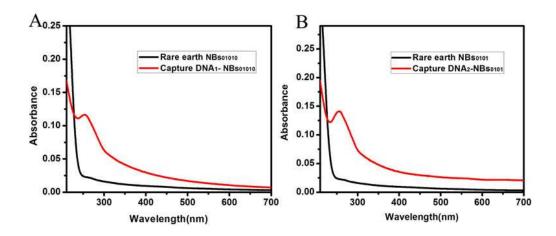
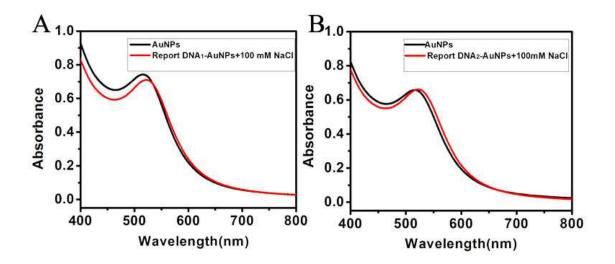
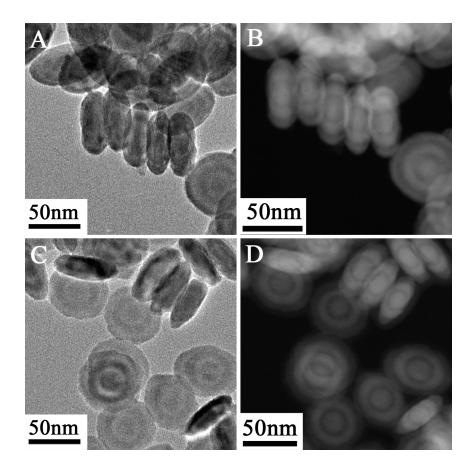


FigureS2. EDAX spectra of the NaGdF₄/NaYF₄/NaGdF₄/NaYF₄ (C/S1/S2/S3) NBs.

The existence of Na, F, Gd, Yb, Y can be confirmed, further demonstrating the multilayer core/shell nanostructure with different components.

Figure S3. TEM (A) and HAADF-STEM (B, C) images of NaGdF₄/NaYbF₄ core/shell nanoparticles.

Figure S4. TEM (A,B) and HAADF-STEM (C-H) images of NaGdF₄/NaYF₄/ NaGdF₄/NaYF₄/NaGdF₄ (NBs₀₁₀₁₀) five layer (A, C, E) and NaGdF₄/NaYF₄/NaGdF₄/NaYF₄ (NBs₀₁₀₁) four layer (B, D, F) NBs and DNA conjugated NBs₀₁₀₁₀(G) and NBs₀₁₀₁(H) NBs in water. It's worth noting that the discernible contrast not only can be confirmed from the [0001] direction (Figure E, F) but also the [$_{10\bar{1}0}$] direction (Figure G, H).

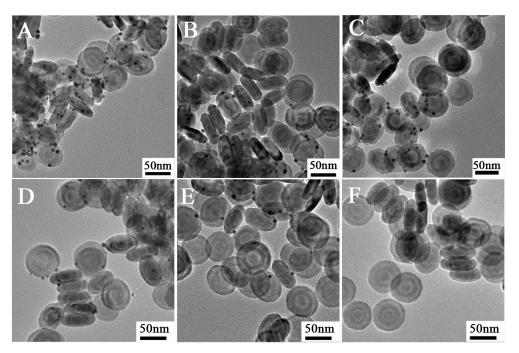

Figure S5. The UV/Vis spectrum of A) the NBs_{01010} in chloroform and capture DNA_1 - NBs_{01010} in water; B) the NBs_{0101} in chloroform and capture DNA_2 - NBs_{0101} in water.

Figure S6. UV-vis spectra of A) AuNPs and report DNA₁-AuNPs sample in solutions with 100 mM NaCl and B) AuNPs and report DNA₂-AuNPs sample in solutions with 100 mM NaCl.

Figure S7. TEM (A, C) and HAADF-STEM (B, D) images of the NaGdF₄/NaYF₄/NaGdF₄/NaYF₄/NaGdF₄ (NBs₀₁₀₁₀) with addition of noncomplementary target DNA₂ (A, B) and NaGdF₄/NaYF₄/NaGdF₄/NaYF₄ (NBs₀₁₀₁) with addition of noncomplementary target DNA₁ (C, D).

Figure S8. TEM images of the NaGdF₄/NaYF₄/NaGdF₄/NaYF₄ (NBs₀₁₀₁) and NaGdF₄/NaYF₄/NaGdF₄/NaYF₄/NaGdF₄/NaYF₄/NaGdF₄ (NBs₀₁₀₁₀) with (A) both target DNA₁ and target DNA₂; (B) only target DNA₁; (C) only target DNA₂. TEM images of the five layer NBs₀₁₀₁₀ for DNA trace detection at target concentration of (D) 60 pM DNA₂, (E) 6 pM DNA₂ and (F) no target DNA.