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Rigorous bounds on the effective conductivity

In this appendix we discuss rigorous bounds on the effective conductivity σ∗. These bounds will be

used to give perspective on how well the cathodes perform relative to optimal geometric configura-

tions. First, we will discuss the elementary (Weiner) bounds for a three phase material (with only

two distinct length scales) that can be homogenized in a single step. We will then demonstrate how

these elementary bounds can be improved (tightened) for a three-phase material with three distinct

length scales using the nested homogenization procedure presented here.

Bounds on σ∗ for homogenization performed in a single step. Rigorous bounds on the

effective electronic conductivity for a three phase material with two distinct length scales can be

found in [8]. Examples of such materials are the cathodes that we have studied here, but without

the extremely small scale electrolyte pores — recall that it is the presence of these electrolyte pores

that motivated us to develop the nested homogenization procedure. We have

(
pB
σB

+
pAP

σAP

+
pE
σE

)−1

≤ σ∗ ≤ pBσB + pAPσAP + pEσE =: σA. (1)

Here pB, pAP , and pE, σB, σAP , and σE, are the volume fractions (taken with respect to the

whole sample) and electronic conductivities of the binder, active material and electrolyte phases,

respectively.

Bounds on σ∗ for nested homogenization. As discussed, when a three-phase material exhibits

three distinct length scales (e.g. the cathodes studied here), a nested homogenization procedure can

be employed. As we will show, applying the elementary bounds in this same nested fashion can yield

tighter bounds on the conductivity of the whole material. First, consider applying the elementary

bounds to first stage of the homogenization over the smallest length scale, i.e. (a)(i)→(b) and

(a)(ii)→(b) shown in figure 3, which yields the values of the effective combined phase conductivities
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σ∗
AP/E and σ∗

B/E. Applying the elementary bounds to these steps we have:

(
p̃AP

σAP

+
p̃E
σE

)−1

≤ σ∗
AP/E ≤ p̃APσAP + p̃EσE, (2)(

p̂B
σB

+
p̂E
σE

)−1

≤ σ∗
B/E ≤ p̂BσB + p̂EσE. (3)

Here p̃AP and p̃E are the volume fractions of the active material and electrolyte taken with respect to

the active material/electrolyte combined phase subsample (panel (a)(i) in figure 3), whereas p̂B and

p̂E are the volume fractions of binder and electrolyte taken with respect to the binder/electrolyte

combined phase subsample (panel (a)(ii) in figure 3).

Now consider the second stage of the homogenization over the intermediate length scale, i.e.,

step (b)→(c) in figure 3, which yields the effective conductivity of the whole sample. We have

(
p̄B/E

σ∗
B/E

+
p̄AP/E

σ∗
AP/E

+
p̄E
σE

)−1

≤ σ∗ ≤ p̄B/Eσ
∗
B/E + p̄AP/Eσ

∗
AP/E + p̄EσE =: σB. (4)

Here, p̄B/E, p̄AP/E and p̄E are the volume fractions of the combined active material/electrolyte

phase, the combined binder/electrolyte phase and the electrolyte taken with respect to the whole

sample (panel (b) in figure 3).

We now note that the volume fractions of the individual phases in the whole sample are related

to the hatted, overbarred and tilded volume fractions via:

pAP = p̄AP p̃AP , (5)

pB = p̄B/E p̂B, (6)

pE = p̄E + p̄AP/E p̃E + p̄B/E p̂E. (7)

On: (i) inserting the elementary bounds for the active material/electrolyte and binder/electrolyte

combined phases, (2) and (3), into (4); (ii) rearranging, and; (iii) relating the hatted, overbarred

and tilded volume fractions to those used in (1) (via (5)–(7)), we see that the nested homogenization

bounds, (4), are tighter than those derived by directed homogenization, (1), i.e., we have σB < σA,

provided that none of the volume fractions are zero — which is certainly the case here. The bounds

3



(2)–(4) are used to provide perspective on how large the effective electronic conductivities reported

in tables 3 and 4 are with respect to their maximum values.
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