Supporting Information

Trifluoromethyl-Substituted Sulfonium Ylide: Rh-Catalyzed Carbenoid Addition to Trifluoromethylthioether

Yafei Liu, Xinxin Shao, Panpan Zhang, Long Lu* and Qilong Shen*

Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032

Table of Contents

General Information	S2
General Procedure for Rh Catalyzed Addition of Diazomalonate w	ith Trifluoro
-methylthioether	S3
General Procedure for Trifluoromethylation of β-Ketoester	S12
General Procedure for Trifluoromethylation of Aryl Iodide	S17
Reference	S21
¹ H, ¹⁹ F and ¹³ C NMR Spectra of compound 1a-o , 2a-i , 3a-i	S22
X-ray Data of Compound 1a	S72

General Information

All solvents were purified by standard method. ¹H NMR spectra were recorded on a 500 MHz, 400 MHz or 300 MHz. ¹⁹F NMR were recorded on a 376 MHz or 282 MHz spectrometer. ¹³C NMR spectra were recorded on a Bruker AM400 spectrometer and Agilent 400 or 500 MHz spectrometer. ¹H NMR and ¹³C NMR chemical shifts were determined relative to internal standard TMS at δ 0.0 and ¹⁹F NMR chemical shifts were determined relative to CFCl₃ as inter standard. Chemical shifts (δ) are reported in ppm, and coupling constants (*J*) are in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. Flash column chromatograph was carried out using 300-400 mesh silica gel at medium pressure. Elemental analysis was conducted on the VARIO EL III. X-ray structure was obtained on BRUKER SMART APEX CCD.

Alkyl trifluoromethylthioethers were prepared according to a modified procedure reported by Yagupolskii¹ and aryl trifluoromethylthioethers were prepared according to a procedure reported by Shen and coworkers.² Phenyltrifluoromethylthioether and all other reagents were received from commercial sources. Solvents were freshly dried and degassed according to the purification handbook *Purification of Laboratory Chemicals* before using.

General Procedure for Rh Catalyzed Addition of Diazomalonate with Trifluoromethylthioether

RSCF₃ (0.50 mmol, 1.0 equiv), $Rh_2(esp)_2$ (1.5 mL from stock solution A, 0.01 mol%) were placed into an oven-dried Schlenk tube that was equipped with a stirring bar under N₂. Diazomalonate (0.40 mmol, 0.8 equiv) was added. The tube was quickly sealed with a rubber stopper. The reaction was stirred at 40 °C for 24 h. The mixture was cooled to room temperature, then concentrated in *vacuo*. The product was purified by flash chromatography.

Stock solution A (2.67 \times 10⁻² M). 4.0 mg of Rh₂(esp)₂ was dissolved in 15 mL CH₂Cl₂. 2.0 mL of the above solution was diluted to 20.0 mL with CH₂Cl₂. The resulting solution was stirred at room temperature for one minute before use.

General Procedure for Formation of 1i on 8 g Scale

PhSCF₃ (7.13 g, 40 mmol), Rh₂(esp)₂ (3.0 mg, 0.01 mol%) and 120 mL CH₂Cl₂ were placed into an oven-dried Schlenk tube that was equipped with a stirring bar under N₂. Dimethyl diazomalonate (5.0 g, 32 mmol) was added slowly. The tube was quickly sealed with a rubber stopper. The reaction was stirred at 40 °C for 24 h. The mixture was cooled to room temperature. The mixture was then concentrated in *vacuo*. The product was purified by flash chromatography to give Trifluoromethyl-phenyl bis(carbomethoxy) methylide **1i** as a white solid (8.8 g, 89% yield).

Trifluoromethyl-(phenylethyl) bis(carbomethoxy) methylide 1a

White solid (113 mg, 84%). Mp: 77-78 °C. Eluent: ethyl acetate/petroleum ether = 1/1 ($R_f = 0.7$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.37 – 7.28 (m, 3 H), 7.19 (dd, J = 5.1, 3.1 Hz, 2 H), 4.62 (ddd, J = 11.7, 8.7, 5.0 Hz, 1 H), 3.75 (s, 6 H), 3.45 (dt, J = 11.7, 8.3 Hz, 1 H), 3.14 – 3.03 (m, 1 H), 2.93 (dt, J = 14.3, 8.5 Hz, 1 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -55.7 (s, 3 F); ¹³C NMR (100.7 MHz, CDCl₃, 293 K, TMS) δ 166.16, 136.24, 129.05, 128.61, 127.66, 123.52 (q, J = 333.7 Hz), 51.64, 51.51, 40.38, 29.77 ppm. IR (KBr): v = 3064, 3031, 2973, 2934, 1675, 1604, 1523, 1499, 1444, 1432, 1331, 1246, 1222, 1182, 1153, 1085, 966, 940, 922, 871, 794, 774, 748, 738, 695, 646, 569, 555 cm⁻¹. MS (ESI): 336.9 (M⁺+H). HRMS (ESI): Calculated for C₁₄H₁₅O₄SF₃Na: 359.0543 (M⁺ +Na), Found: 395.0535.

Trifluoromethyl-(phenylethyl) bis(carboethoxy) methylide 1b

Colorless oil (122 mg, 84%). Eluent: ethyl acetate/petroleum ether = 1/1 ($R_f = 0.6$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.32 (dt, J = 13.6, 6.8 Hz, 3 H), 7.19 (d, J = 6.8 Hz, 2 H), 4.61 (m, 1 H), 4.21 (d, J = 6.5 Hz, 4 H), 3.41 (m, 1 H), 3.20 – 3.03 (m, 1 H), 2.99 – 2.84 (m, 1 H), 1.29 (s, 6 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -56.0 (s, 3 F); ¹³C NMR (100.7 MHz, CDCl₃, 293 K, TMS) δ 165.75, 136.36, 129.04, 128.60, 127.60, 123.58 (q, J = 334.1 Hz), 60.21, 51.64, 40.47, 29.71, 14.43 ppm. IR (KBr): v = 2981, 1729, 1696, 1654, 1498, 1456, 1391, 1369, 1305, 1235, 1184, 1097, 1019, 774, 749, 701 cm⁻¹. MS (ESI): 364.9 (M⁺+H). HRMS (ESI): Calculated for C₁₆H₂₀O₄SF₃: 365.1025 (M⁺+H), Found: 365.1034. Trifluoromethyl-(phenylethyl) carbomethoxy carbobenzyloxy methylide 1c

Pale yellow oil (116 mg, 35%). Eluent: ethyl acetate/petroleum ether = 1/1 (R_f = 0.6). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.53 – 7.19 (m, 8 H), 7.12 (s, 2 H), 5.21 (s, 2 H), 4.60 (m, 1 H), 3.77 (s, 3 H), 3.41 (m, 1 H), 3.03 (m, 1 H), 2.98 – 2.76 (m, 1 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -55.8 (s, 3 F); ¹³C NMR (100.7 MHz, CDCl₃, 293 K, TMS) δ 166.34, 165.17, 136.67, 136.14, 129.00, 128.54, 128.41, 127.77, 127.73, 127.58, 123.49 (q, *J* = 333.8 Hz), 65.81, 51.63, 51.56, 40.34, 29.66 ppm. IR (KBr): ν = 3064, 3030, 2950, 1731, 1698, 1662, 1605, 1498, 1456, 1435, 1378, 1309, 1235, 1186, 1142, 1097, 1029, 979, 909, 772, 749, 699, 652, 584 cm⁻¹. MS (ESI): 413.0 (M⁺+H). HRMS (ESI): Calculated for C₂₀H₂₀O₄SF₃: 413.1024 (M⁺+H), Found: 413.1029.

Trifluoromethyl-(phenylethyl) carboethoxy carbobenzyloxy methylide 1d

Colorless oil (86 mg, 25%). Eluent: ethyl acetate/petroleum ether = 1/1 (R_f = 0.7). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.36 (dd, J = 15.6, 8.5 Hz, 3 H), 7.32 – 7.22 (m, 5 H), 7.13 (d, J = 5.3 Hz, 2 H), 5.22 (s, 2 H), 4.59 (m, 1 H), 4.23 (d, J = 6.8 Hz, 2 H), 3.40 (m, 1 H), 3.04 (m, 1 H), 2.97 – 2.73 (m, 1 H), 1.38 – 1.12 (m, 3 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -55.9 (s, 3 F); ¹³C NMR (100.7 MHz, CDCl₃, 293 K, TMS) δ 165.77, 165.44, 136.69, 136.24, 129.02, 128.56, 128.39, 127.74, 127.72, 127.58, 123.54 (d, J = 333.9 Hz), 65.87, 60.35, 51.87, 40.37, 29.68, 14.44 ppm. IR (KBr): v = 3064, 3031, 2980, 1731, 1698, 1655, 1586, 1498, 1456, 1376, 1301, 1230, 1142, 1096,

1029, 910, 859, 772, 749, 698, 653, 599, 583 cm⁻¹. MS (ESI): 427.0 (M⁺+H). HRMS (ESI): Calculated for $C_{21}H_{22}O_4SF_3$: 427.1180 (M⁺+H), Found: 427.1185.

Trifluoromethyl-(4-methoxyphenyl)ethyl bis(carbomethoxy) methylide 1e

White solid (129 mg, 88%). Mp: 72-73 °C. Eluent: ethyl acetate/petroleum ether = 1/1 ($R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.14 – 7.04 (m, 2 H), 6.94 – 6.81 (m, 2 H), 4.58 (ddd, J = 11.7, 8.5, 4.9 Hz, 1 H), 3.80 (s, 3 H), 3.74 (s, 6 H), 3.40 (dt, J = 11.6, 8.3 Hz, 1 H), 3.15 – 2.95 (m, 1 H), 2.87 (dt, J = 14.5, 8.4 Hz, 1 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -55.7 (s, 3 F); ¹³C NMR (100.7 MHz, CDCl₃, 293 K, TMS) δ 166.18, 159.06, 129.71, 128.14, 123.54 (q, J = 333.7 Hz), 114.42, 55.29, 51.63, 51.50, 40.73, 28.93 ppm. IR (KBr): v = 3062, 3029, 2975, 2936, 1689, 1654, 1612, 1515, 1437, 1319, 1282, 1237, 1205, 1184, 1149, 1086, 1037, 964, 829, 773, 744, 687 cm⁻¹. MS (ESI): 388.9 (M⁺+Na). HRMS (ESI): Calculated for C₁₅H₁₈O₅SF₃: 367.0817 (M⁺+H), Found: 367.0822.

Trifluoromethyl-undecyl bis(carbomethoxy) methylide 1f

White solid (136 mg, 88%). Mp: 59-61 °C. Eluent: ethyl acetate/petroleum ether = 1/1 ($R_f = 0.8$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 4.22 (ddd, J = 11.9, 9.0, 5.3 Hz, 1 H), 3.73 (s, 6 H), 3.26 (ddd, J = 11.9, 8.6, 7.4 Hz, 1 H), 1.82 – 1.56 (m, 2 H), 1.53 – 1.36 (m, 2 H), 1.35 – 1.19 (m, 14 H), 0.87 (t, J = 6.8 Hz, 3 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -55.8 (s, 3 F); ¹³C NMR (100.7 MHz, CDCl₃, 293 K, TMS) δ 166.20, 123.49 (q, J = 333.2 Hz), 52.18, 51.47, 38.98, 31.82, 29.45, 29.36, 29.23, 29.12, 28.77, 28.04, 23.65, 22.61, 14.05 ppm. IR (KBr): v = 3011, 2951, 2921, 2850, 1687, 1660, 1467, 1439, 1325, 1241, 1207, 1183, 1112, 1081, 1013, 967, 864, 799, 774, 750, 725,

555, 508, 493, 476, 466, 430 cm⁻¹. MS (ESI): 409.0 (M⁺+Na). HRMS (ESI): Calculated for $C_{17}H_{29}O_4SNaF_3$: 409.1639 (M⁺+H), Found: 409.1631.

Trifluoromethyl-(4-(4-nitrophenoxy)butyl) bis(carbomethoxy) methylide 1g

Pale yellow solid (120 mg, 71%). Mp: 91-93 °C. Eluent: ethyl acetate/petroleum ether = 1/2 (R_f = 0.1). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 8.19 (d, J = 9.2 Hz, 2 H), 6.93 (d, J = 9.3 Hz, 2 H), 4.40 (ddd, J = 12.6, 8.0, 4.5 Hz, 1 H), 4.09 (t, J = 5.1 Hz, 2 H), 3.72 (s, 6 H), 3.36 (dt, J = 11.8, 7.6 Hz, 1 H), 1.97 (ddd, J = 17.9, 13.3, 7.5 Hz, 4 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -55.7 (s, 3 F); ¹³C NMR (100.7 MHz, CDCl₃, 293 K, TMS) δ 166.17, 163.40, 141.74, 125.94, 114.34, 123.45 (q, J = 333.5 Hz), 67.38, 51.90, 51.58, 38.41, 27.41, 20.85 ppm. IR (KBr): v = 3014, 2948, 2878, 2845, 1693, 1654, 1609, 1593, 1513, 1498, 1479, 1439, 1396, 1346, 1328, 1267, 1244, 1226, 1209, 1190, 1106, 1075, 1037, 1001, 966, 864, 844, 808, 775, 751, 714, 691, 654, 554, 536 489 cm⁻¹. MS (ESI): 425.9 (M⁺+H). HRMS (ESI): Calculated for C₁₆H₁₉O₇SNF₃: 426.0819 (M⁺+H), Found: 426.0829.

Trifluoromethyl-(5-(4-methoxyphenoxy)pentyl) bis(carbomethoxy) methylide 1h

White solid (136 mg, 80%). Eluent: ethyl acetate/petroleum ether = 1/1 ($R_f = 0.5$). Mp: 69-72 °C. ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 6.86 – 6.76 (m, 4 H), 4.29 (ddd, J = 12.0, 8.9, 5.2 Hz, 1 H), 3.91 (t, J = 6.0 Hz, 2 H), 3.77 (s, 3 H), 3.74 (s, 6 H), 3.30 (ddd, J = 11.9, 8.6, 7.2 Hz, 1 H), 1.90 – 1.73 (m, 4 H), 1.73 – 1.61 (m, 2 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -55.7 (s, 3 F); ¹³C NMR (100.7 MHz, CDCl₃, 293 K, TMS) δ 166.19, 153.85, 152.87, 123.47 (q, J = 333.4 Hz), 115.33, 114.64, 67.66 , 55.69, 52.08, 51.51, 38.78, 28.56, 24.92, 23.51 ppm. IR (KBr): v = 3013, 2996, 2944, 2908, 2872, 2829, 1687, 1657, 1592, 1514, 1466, 1440, 1398, 1330, 1243, 1208, 1184, 1108, 1080, 1048, 1015, 1001, 967, 828, 807, 775, 749, 705, 552, 522 cm⁻¹. MS (ESI): 424.9

 (M^++H) . HRMS (ESI): Calculated for $C_{18}H_{24}O_6SF_3$: 425.1232 (M⁺+H), Found: 425.1240.

Trifluoromethyl-phenyl bis(carbomethoxy) methylide 1i

White solid (113 mg, 92%). Mp: 65-67 °C. Eluent: ethyl acetate/petroleum ether = 1/2 ($R_f = 0.6$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.72 (d, J = 7.7 Hz, 2 H), 7.63 (t, J = 7.3 Hz, 1 H), 7.57 (t, J = 7.4 Hz, 2 H), 3.74 (s, 6 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -51.1 (s, 3 F); ¹³C NMR (100.7 MHz, CDCl₃, 293 K, TMS) δ 165.74, 132.84, 130.19, 128.47, 125.78, 123.69 (q, J = 333.1 Hz), 54.16, 51.63 ppm. IR (KBr): v = 3528, 3065, 2995, 2952, 2843, 1736, 1705, 1667, 1579, 1477, 1436, 1301, 1243, 1182, 1077, 1023, 999, 965, 921, 821, 772, 750, 696, 684, 564, 517 cm⁻¹. MS (ESI): 308.9 (M⁺+H). HRMS (ESI): Calculated for C₁₂H₁₂O₄SF₃: 309.0399 (M⁺+H), Found: 309.0403.

Trifluoromethyl-((4-chloro)-phenyl) bis(carbomethoxy) methylide 1j

Pink solid (97 mg, 71%). Mp: 85-87 °C. Eluent: ethyl acetate/petroleum ether = 1/2 (R_f = 0.6). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.68 (d, J = 8.6 Hz, 2 H), 7.54 (d, J = 8.9 Hz, 2 H), 3.74 (s, 6 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -51.1 (s, 3 F); ¹³C NMR (100.7 MHz, CDCl₃, 293 K, TMS) δ 165.58, 139.87, 130.49, 130.08, 124.12, 123.55 (q, J = 333.6 Hz), 54.35, 51.72 ppm. IR (KBr): v = 3090, 2994, 2952, 2843, 2251, 1736, 1702, 1667, 1572, 1478, 1395, 1316, 1184, 1081, 1009, 965, 918, 821, 772, 739, 647, 577, 519 cm⁻¹. MS (ESI): 342.7 (M⁺+H). HRMS (ESI): Calculated for C₁₂H₁₁O₄ClSF₃: 343.0010 (M⁺+H), Found: 343.0013.

Trifluoromethyl-(4-tert-butylphenyl) bis(carbomethoxy) methylide 1k

Colorless oil (118 mg, 81%). Eluent: ethyl acetate/petroleum ether = 1/2 (R_f = 0.6).¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.64 (d, *J* = 8.6 Hz, 2 H), 7.54 (d, *J* = 8.8 Hz, 2 H), 3.72 (s, 6 H), 1.31 (s, 9 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -51.5 (s, 3 F); ¹³C NMR (100.7 MHz, CDCl₃, 293 K, TMS) 165.77, 156.95, 128.62, 127.27, 122.10, 123.66 (d, *J* = 332.8 Hz), 54.59, 51.51, 35.10, 30.89 ppm. IR (KBr): v = 2960, 2873, 2251, 1735, 1706, 1670, 1590, 1490, 1435, 1401, 1309, 1241, 1183, 1084, 1009, 966, 919, 830, 772, 734, 647, 598, 562 cm⁻¹. MS (ESI): 365.0 (M⁺+H). HRMS (ESI): Calculated for C₁₆H₂₀O₄SF₃: 365.1024 (M⁺+H), Found: 365.1029.

Trifluoromethyl-(4-carbomethoxy-phenyl) bis(carbomethoxy) methylide 11

White solid (124 mg, 85%). Mp: 103-104 °C. Eluent: ethyl acetate/petroleum ether = 1/2 (R_f = 0.5).¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 8.20 (d, J = 8.8 Hz, 2 H), 7.74 (d, J = 8.3 Hz, 2 H), 3.95 (s, 3 H), 3.73 (s, 6 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -50.5 (s, 3 F); ¹³C NMR (100.7 MHz, CDCl₃, 293 K, TMS) δ 165.43, 165.13, 134.01, 131.04, 130.26, 127.95, 123.54 (q, J = 334.2 Hz), 53.41, 52.73, 51.71 ppm. IR (KBr): v = 2998, 2954, 2845, 2252, 1732, 1671, 1596, 1436, 1400, 1317, 1282, 1244, 1187, 1084, 1013, 964, 916, 854, 773, 761, 733, 686, 647, 571 cm⁻¹. MS (ESI): 366.9 (M⁺+H). HRMS (ESI): Calculated for C₁₄H₁₄O₆SF₃: 367.0453 (M⁺+H), Found: 367.0448.

Trifluoromethyl-phenyl bis(carboethoxy) methylide 1m

Colorless oil (156 mg, 58%). Eluent: ethyl acetate/petroleum ether = 1/2 (R_f = 0.7). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.63 (d, J = 7.7 Hz, 2 H), 7.58 – 7.44 (m, 3 H), 4.12 (q, J = 7.1 Hz, 4 H), 1.16 (t, J = 7.1 Hz, 6 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -51.3 (s, 3 F); ¹³C NMR (100.7 MHz, CDCl₃, 293 K, TMS) δ 165.24, 132.58, 130.03, 128.12, 126.04, 123.71 (q, J = 333.6 Hz), 60.31, 53.84, 14.27 ppm. IR (KBr): v = 3065, 2982, 2905, 1776, 1701, 1654, 1579, 1532, 1478, 1446, 1391, 1369, 1299, 1234, 1179, 1085, 1022, 999, 920, 863, 838, 772, 749, 695, 684, 613, 564, 522 cm⁻¹. MS (ESI): 337.0 (M⁺+H). HRMS (ESI): Calculated for C₁₄H₁₆O₄SF₃: 337.0714 (M⁺+H), Found: 337.0716.

Trifluoromethyl-(naphthalen-2-yl) bis(carbomethoxy) methylide 1n

Pink solid (103 mg, 72%). Mp: 132-133 °C. Eluent: ethyl acetate/petroleum ether = $1/2 (R_f = 0.6)$.¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 8.21 (s, 1 H), 8.01 (d, J = 8.9 Hz, 1 H), 7.92 (d, J = 8.1 Hz, 2 H), 7.75 (d, J = 8.9 Hz, 1 H), 7.71 – 7.55 (m, 2 H), 3.76 (s, 6 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -50.9 (s, 3 F); ¹³C NMR (100.7 MHz, CDCl₃, 293 K, TMS) 165.78, 134.66, 132.84, 130.41, 130.08, 129.27, 128.76, 127.96, 125.44, 123.78 (q, J = 333.2 Hz), 123.13, 122.62, 54.53, 51.64 ppm. IR (KBr): v = 3063, 2960, 1694, 1674, 1589, 1504, 1439, 1353, 1314, 1238, 1218, 1178, 1129, 1089, 1051, 958, 888, 862, 809, 769, 760, 745, 639, 623, 559 cm⁻¹. MS (ESI): 358.9 (M⁺+H). HRMS (ESI): Calculated for C₁₆H₁₄O₄SF₃: 359.0556 (M⁺+H), Found: 359.0559.

Trifluoromethyl-((6-methoxynaphthalen)-2-yl) bis(carbomethoxy) methylide 10

Pale yellow solid (110 mg, 71%). Mp: 123-125 °C. Eluent: ethyl acetate/petroleum ether = 1/2 (R_f = 0.6). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 8.15 (s, 1 H), 7.88

(d, J = 8.9 Hz, 1 H), 7.81 (d, J = 9.0 Hz, 1 H), 7.76 (d, J = 9.8 Hz, 1 H), 7.27 (dd, J = 8.8, 2.7 Hz, 1 H), 7.17 (d, J = 2.3 Hz, 1 H), 3.95 (s, 3 H), 3.76 (s, 6 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -51.4 (s, 3 F); ¹³C NMR (100.7 MHz, CDCl₃, 293 K, TMS) δ 165.91, 160.28, 136.63, 130.43, 130.35, 129.00, 123.80 (q, J = 333.0 Hz), 128.31, 124.32, 120.99, 119.69, 105.75, 99.95, 55.52, 55.32, 51.62 ppm. IR (KBr): v = 2951, 2843, 2251, 1729, 1697, 1625, 1593, 1502, 1436, 1393, 1317, 1269, 1243, 1218, 1184, 1083, 1029, 965, 911, 853, 813, 773, 732, 647, 575 cm⁻¹. MS (ESI): 388.9 (M⁺+H). HRMS (ESI): Calculated for C₁₇H₁₆O₅SF₃: 389.0661 (M⁺+H), Found: 389.0665.

General Procedure for Trifluoromethylation of β-Ketoester

 β -ketoester (0.50 mmol, 1.0 equiv), K₂CO₃ (83 mg, 0.6 mmol, 1.2 equiv), and reagent **1i** (385 mg, 1.25 mmol, 2.5 equiv) were placed into an oven-dried Schlenk tube that was equipped with a stirring bar under N₂. The tube was quickly sealed with a rubber stopper and 3.0 mL of freshly distilled DMF was added. The reaction was stirred at 100 °C for 2 h. The mixture was cooled to room temperature, and 20 mL of distilled water and 20 mL of Et₂O was added and the organic phase was separated. The aqueous phase was extracted with Et₂O (5 x 10 mL) and the combined organic extracts were dried over anhydrous Na₂SO₄, and concentrated in *vacuo*. The product was purified by flash chromatography on silica gel or further purified by preparation HPLC.

Methyl 1-oxo-2-(trifluoromethyl)-2,3-dihydro-1*H*-indene-2-carboxylate^[3] 2a

Pale yellow solid (63 mg, 48%). Eluent: ethyl acetate/petroleum ether = 1/10 (R_f = 0.5).¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.84 (d, J = 7.7 Hz, 1 H), 7.70 (t, J = 7.8 Hz, 1 H), 7.53 (d, J = 7.7 Hz, 1 H), 7.47 (t, J = 7.5 Hz, 1 H), 3.78 (s, 3 H), 3.74 (d, J = 17.8 Hz, 1 H), 3.60 (d, J = 17.8 Hz, 1 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -69.4 (s, 3 F); ¹³C NMR (100.7 MHz, CDCl₃, 293 K, TMS) δ 192.83, 165.61, 151.64, 136.28, 134.35, 128.50, 126.30, 125.59, 123.47 (q, J = 281.6 Hz), 62.99 (q, J = 26.3 Hz), 53.55, 34.16 ppm.

Ethyl 1-oxo-2-(trifluoromethyl)-2,3-dihydro-1*H*-indene-2-carboxylate^[3] 2b

Pale yellow solid (83 mg, 61%). Eluent: ethyl acetate/petroleum ether = 1/10 (R_f = 0.5). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.81 (d, *J* = 7.8 Hz, 1 H), 7.68 (t, *J* = 7.5 Hz, 1 H), 7.52 (d, *J* = 8.3 Hz, 1 H), 7.44 (t, *J* = 7.5 Hz, 1 H), 4.22 (q, *J* = 7.1 Hz,

2 H), 3.72 (d, J = 17.7 Hz, 1 H), 3.58 (d, J = 17.7 Hz, 1 H), 1.21 (t, J = 7.1 Hz, 3 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -69.3 (s, 3 F); ¹³C NMR (100.7 MHz, CDCl₃, 293 K, TMS) δ 192.97, 165.06, 151.65, 136.19, 134.30, 128.39, 126.26, 125.38, 123.48 (q, J= 281.6 Hz), 63.01 (q, J = 26.0 Hz), 62.71, 34.08, 13.71 ppm.

Isopropyl 1-oxo-2-(trifluoromethyl)-2,3-dihydro-1*H*-indene-2-carboxylate^[3] 2c

White solid (91 mg, 64%). Eluent: ethyl acetate/petroleum ether = 1/10 ($R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.84 (d, J = 7.8 Hz, 1 H), 7.69 (t, J = 7.1Hz, 1 H), 7.53 (d, J = 7.8 Hz, 1 H), 7.46 (t, J = 7.5 Hz, 1 H), 5.10 (hept, J = 6.0 Hz, 1 H), 3.71 (d, J = 17.6 Hz, 1 H), 3.58 (d, J = 17.7 Hz, 1 H), 1.23 (d, J = 6.3 Hz, 6 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -69.2 (s, 3 F); ¹³C NMR (100.7 MHz, CDCl₃, 293 K, TMS) δ 193.05, 164.64, 151.69, 136.11, 134.48, 128.40, 126.24, 125.49, 123.54 (q, J = 281.5 Hz), 70.86, 63.24 (d, J = 25.8 Hz), 34.15, 21.36, 21.28 ppm.

tert-Butyl 1-oxo-2-(trifluoromethyl)-2,3-dihydro-1*H*-indene-2-carboxylate^[3] 2d

White solid (74 mg, 49%). Eluent: ethyl acetate/petroleum ether = 1/10 (R_f = 0.5). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.83 (d, *J* = 7.8 Hz, 1 H), 7.67 (t, *J* = 7.5 Hz, 1 H), 7.52 (d, *J* = 7.8 Hz, 1 H), 7.44 (t, *J* = 7.5 Hz, 1 H), 3.68 (d, *J* = 17.7 Hz, 1 H), 3.56 (d, *J* = 17.6 Hz, 1 H), 1.42 (s, 9 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -69.1 (s, 3 F); ¹³C NMR (100.7 MHz, CDCl₃, 293 K, TMS) δ 193.39, 164.04, 151.67, 135.98, 134.61, 128.31, 126.20, 125.38, 123.58 (q, *J* = 281.3 Hz), 84.27, 63.81 (q, *J* = 25.8 Hz), 34.24, 27.65 ppm.

Methyl 6-methyl-1-oxo-2-(trifluoromethyl)-2,3-dihydro-1*H*-indene-2-carboxyl -ate ^[5]2e

Yellow solid (67 mg, 48%). Eluent: ethyl acetate/petroleum ether = 1/10 ($R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.63 (s, 1 H), 7.51 (d, J = 8.7 Hz, 1 H), 7.41 (d, J = 7.9 Hz, 1 H), 3.77 (s, 3 H), 3.68 (d, J = 17.6 Hz, 1 H), 3.54 (d, J = 17.6Hz, 1 H), 2.42 (s, 3 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -69.4 (s, 3 F); ¹³C NMR (100.7 MHz, CDCl₃, 293 K, TMS) δ 192.91, 165.75, 149.14, 138.74, 137.63, 134.57, 125.97, 125.42, 123.55 (q, J = 281.5 Hz), 63.32 (q, J = 26.1 Hz), 53.52, 33.86, 21.04 ppm. IR (KBr): v = 2960, 1760, 1725, 1618, 1586, 1497, 1436, 1384, 1313, 1280, 1224, 1248, 1186, 1160, 1125, 1084, 1046, 966, 945, 878, 823, 792, 758, 734, 693, 657, 502 cm⁻¹. MS (ESI): 272.9 (M⁺+H). HRMS (ESI): Calculated for C₁₃H₁₂O₃F₃: 273.07 (M⁺+H), Found: 273.0733.

Methyl 5-methoxy-1-oxo-2-(trifluoromethyl)-2,3-dihydro-1H-indene-2-carboxyl -ate^[4] 2f

White solid (108 mg, 75%). Eluent: ethyl acetate/petroleum ether = 1/8 ($R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.75 (d, J = 8.6 Hz, 1 H), 6.97 (dd, J = 8.6, 2.2 Hz, 1 H), 6.93 (d, 1 H), 3.91 (s, 3 H), 3.77 (s, 3 H), 3.68 (d, J = 17.8 Hz, 1 H), 3.51 (d, J = 17.8 Hz, 1 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -69.5 (s, 3 F); ¹³C NMR (100.7 MHz, CDCl₃, 293 K, TMS) δ 190.71, 166.53, 165.81, 154.86, 136.00, 127.28, 123.57 (q, J = 281.5 Hz), 116.70, 109.35, 63.27 (q, J = 26.1 Hz), 55.86, 53.45, 34.00 ppm.

Methyl 5,6-dimethoxy-1-oxo-2-(trifluoromethyl)-2,3-dihydro-1*H*-indene-2 -carboxylate^[3] 2g

White solid (111 mg, 70%). Eluent: ethyl acetate/petroleum ether = 1/7 (R_f = 0.5). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.19 (s, 1 H), 6.91 (s, 1 H), 3.98 (s, 3 H), 3.90 (s, 3 H), 3.77 (s, 3 H), 3.62 (d, *J* = 17.5 Hz, 1 H), 3.47 (d, *J* = 17.5 Hz, 1 H); ¹⁹F

NMR (375 MHz, CDCl₃) δ -69.4 (s, 3 F); ¹³C NMR (100.7 MHz, CDCl₃, 293 K, TMS) δ 191.15, 165.84, 156.78, 150.21, 147.57, 127.06, 123.56 (q, *J* = 281.5 Hz), 106.94, 105.28, 63.30 (q, *J* = 26.0 Hz), 56.42, 56.14, 53.43, 33.78 ppm.

Methyl 1-oxo-2-(trifluoromethyl)-1,2,3,4-tetrahydronaphthalene-2-carboxylate^[3] 2h

White solid (78 mg, 57%). Eluent: ethyl acetate/petroleum ether = 1/10 ($R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 8.10 (d, J = 8.8 Hz, 1 H), 7.53 (td, J =7.5, 1.3 Hz, 1 H), 7.36 (t, J = 7.6 Hz, 1 H), 7.25 (d, J = 8.5 Hz, 1 H), 3.75 (s, 3 H), 3.02 (dd, J = 8.4, 3.9 Hz, 2 H), 2.82 (dt, J = 13.6, 4.0 Hz, 1 H), 2.47 (dt, J = 13.6, 8.5 Hz, 1 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -68.8 (s, 3 F); ¹³C NMR (100.7 MHz, CDCl₃, 293 K, TMS) δ 186.97, 165.77, 142.07, 134.32, 131.33, 128.69, 128.38, 127.26, 123.77 (q, J = 284.1 Hz), 61.93 (q, J = 24.2 Hz), 53.57, 27.68, 25.02 ppm. Methyl 5-oxo-6-(trifluoromethyl)-6,7,8,9-tetrahydro-5H-benzo[7]annulene-6 -carboxylate^[5] 2i

White solid (70 mg, 49%). Eluent: ethyl acetate/petroleum ether = 1/10 (R_f = 0.5). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.47 (d, *J* = 7.6 Hz, 1 H), 7.40 (t, *J* = 7.2 Hz, 1 H), 7.30 (t, *J* = 7.5 Hz, 1 H), 7.14 (d, *J* = 7.5 Hz, 1 H), 3.69 (s, 3 H), 2.96 (ddd, *J* = 14.7, 9.0, 5.4 Hz, 1 H), 2.85 (dt, *J* = 15.5, 5.9 Hz, 1 H), 2.56 (ddd, *J* = 14.0, 6.9, 5.4 Hz, 1 H), 2.21 (ddd, *J* = 13.8, 8.2, 5.4 Hz, 1 H), 2.11 – 1.90 (m, 2 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -67.5 (s, 3 F); ¹³C NMR (100.7 MHz, CDCl₃, 293 K, TMS) δ 197.15, 166.16, 138.71, 137.80, 131.97, 129.10, 129.04, 126.82, 123.79 (q, *J* = 285.1 Hz), 66.14 (q, *J* = 23.2 Hz), 53.30, 31.72, 27.59, 22.44 ppm. IR (KBr): v = 2956, 2875, 1751, 1699, 1599, 1484, 1449, 1361, 1264, 1199, 1164, 1119, 1075, 1026, 1012, 992, 954, 884, 855, 839, 821, 797, 772, 748, 734, 651, 630 cm⁻¹. MS (ESI): 286.9 (M⁺+H). HRMS (ESI): Calculated for $C_{14}H_{14}O_3F_3$: 287.09 (M⁺+H), Found: 287.0890.

General Procedure for Trifluoromethylation of Aryl Iodides

Ar-I +
$$\begin{array}{c} MeO_2C - CO_2Me \\ \hline S + CF_3 \\ \hline 1i \\ \end{array} \begin{array}{c} Cu (2.0 \text{ equiv}) \\ \hline DMF \\ \hline 100 \text{ °C}, 3 \text{ h} \\ \end{array} \begin{array}{c} Ar-CF_3 \\ \hline 3 \\ \hline \end{array}$$

Aryl iodide (0.50 mmol, 1.0 equiv), Cu (64 mg, 1.0 mmol, 2.0 equiv), and reagent **1i** (539 mg, 1.75 mmol, 3.5 equiv) were placed into an oven-dried Schlenk tube that was equipped with a stirring bar under N₂. The tube was quickly sealed with a rubber stopper and 5.0 mL of freshly distilled DMF was added. The reaction was stirred at 100 $^{\circ}$ C for 3 h. The mixture was cooled to room temperature, and 20 mL of distilled water and 20 mL of Et₂O was added and the organic phase was separated. The aqueous phase was extracted with Et₂O (5 x 10 mL) and the combined organic extracts were dried over anhydrous Na₂SO₄, and concentrated in *vacuo*. The product was purified by flash chromatography on silica gel or further purified by Kugelrohr distillation.

4-(Trifluoromethyl)biphenyl^[6] 3a

White solid (104 mg, 94%). Eluent: petroleum ether ($R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.70 (s, 4 H), 7.61 (d, J = 7.2 Hz, 2 H), 7.49 (t, J = 7.4 Hz, 2 H), 7.42 (t, J = 6.7 Hz, 1 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -62.4 (s, 3 F); ¹³C NMR (100.7 MHz, CDCl₃, 293 K, TMS) δ 144.69, 139.74, 129.30 (q, J = 32.5 Hz), 128.97, 128.17, 127.40, 127.26. 125.69 (q, J = 3.8 Hz). 124.24 (q, J = 262.2 Hz) ppm.

White solid (95 mg, 75%). Eluent: petroleum ether ($R_f = 0.9$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.55 (d, J = 8.9 Hz, 2 H), 7.42 (q, J = 8.0 Hz, 4 H), 7.36 – 7.30 (m, J = 8.0 Hz, 1 H), 7.04 (d, J = 8.8 Hz, 2 H), 5.11 (s, 2 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -61.5 (s, 3 F); ¹³C NMR (100.7 MHz, CDCl₃) δ 161.12, 136.17, 128.70,

128.24, 127.44, 126.91 (q, *J* = 3.8 Hz), 124.40 (q, *J* = 271.0 Hz), 123.1(q, *J* = 32.9 Hz), 114.81, 70.13 ppm.

Methyl 4-(trifluoromethyl)benzoate^[7] 3c

Colorless liquid (86 mg, 84%). Eluent: ethyl acetate/petroleum ether = 1/10 (R_f = 0.5). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 8.16 (d, *J* = 8.1 Hz, 2 H), 7.71 (d, *J* = 8.2 Hz, 2 H), 3.96 (s, 3 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -63.2 (s, 3 F); ¹³C NMR (100.7 MHz, CDCl₃) δ 165.87, 134.45 (q, *J* = 32.7 Hz), 133.36, 129.98, 125.41 (q, *J* = 3.6 Hz), 123.63 (q, *J* = 272.8 Hz), 52.51 ppm.

1-(4-(Trifluoromethyl)phenyl)ethanone^[6] 3d

White solid (74 mg, 79%). Eluent: ethyl acetate/petroleum ether = 1/10 (R_f = 0.5). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 8.06 (d, *J* = 8.1 Hz, 2 H), 7.73 (d, *J* = 8.2 Hz, 2 H), 2.64 (s, 3 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -63.2 (s, 3 F); ¹³C NMR (100.7 MHz, CDCl₃, 293 K, TMS) δ 196.97, 139.63, 134.40 (q, *J* = 32.7 Hz), 128.60, 125.66 (q, *J* = 3.8 Hz), 123.57 (q, *J* = 272.7 Hz), 26.78 ppm.

1,2,3-Trimethoxy-5-(trifluoromethyl)benzene^[8] 3e

White solid (89 mg, 75%). Eluent: petroleum ether ($R_f = 0.6$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 6.83 (s, 2 H), 3.90 (s, 6 H), 3.88 (s, 3 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -62.1 (s, 3 F); ¹³C NMR (100.7 MHz, CDCl₃) δ 153.38, 140.55, 125.70 (q, *J* = 32.6 Hz), 124.03 (q, *J* = 271.9 Hz), 102.50 (q, *J* = 3.8 Hz), 60.89, 56.26 ppm.

4-(Trifluoromethyl)benzonitrile^[7] 3f

White solid (74 mg, 87%). Eluent: ethyl acetate/petroleum ether = 1/10 ($R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 7.81 (d, J = 8.3 Hz, 2 H), 7.76 (d, J = 8.3 Hz, 2 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -63.6 (s, 3 F); ¹³C NMR (100.7 MHz, CDCl₃) δ 134.56 (q, J = 33.4 Hz), 132.67, 126.18 (q, J = 3.7 Hz), 123.02 (q, J = 273.0 Hz), 117.43, 116.04 ppm.

1-Nitro-4-(trifluoromethyl)benzene^[6] 3g

White solid (86 mg, 90%). Eluent: ethyl acetate/petroleum ether = 1/10 ($R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 8.37 (d, J = 8.5 Hz, 2 H), 7.85 (d, J = 8.5Hz, 2 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -63.2 (s, 3 F); ¹³C NMR (100.7 MHz, CDCl₃) δ 150.01, 136.10 (q, J = 33.4 Hz), 126.78 (q, J = 3.7 Hz), 124.09, 122.9 (q, J = 273.1Hz) ppm.

6-(Trifluoromethyl)quinolone^[7] 3h

White solid (72 mg, 72%). Eluent: ethyl acetate/petroleum ether = 1/10 ($R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 8.95 (d, J = 4.0 Hz, 1 H), 8.14 (d, J = 8.5Hz, 2 H), 8.04 (s, 1 H), 7.80 (d, J = 8.8 Hz, 1 H), 7.41 (dd, J = 8.3, 4.2 Hz, 1 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -62.4 (s, 3 F); ¹³C NMR (100.7 MHz, CDCl₃) δ 152.31, 148.95, 136.66, 130.55, 128.24 (q, J = 32.6 Hz), 127.01, 125.63 (q, J = 4.4 Hz), 124.93 (q, J = 3.0 Hz), 123.84 (q, J = 272.3 Hz), 122.10 ppm.

1-(Trifluoromethyl)isoquinoline^[8] 3i

White solid (69 mg, 70%). Eluent: ethyl acetate/petroleum ether = 1/10 (R_f = 0.5). ¹H NMR (400 MHz, CDCl₃, 293 K, TMS) δ 8.58 (d, *J* = 5.5 Hz, 1 H), 8.30 (d, *J* = 8.5 Hz, 1 H), 7.92 (d, *J* = 8.1 Hz, 1 H), 7.84 (d, *J* = 5.6 Hz, 1 H), δ 7.74 (dt, *J* = 15.4, 7.0 Hz, 2 H); ¹⁹F NMR (375 MHz, CDCl₃) δ -63.0 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃) δ

146.42 (q, *J* = 33.2 Hz), 140.76, 137.14, 130.90, 128.84, 127.52, 124.63 (q, *J* = 2.9 Hz), 124.59, 124.55, 122.24 (q, *J* = 276.2 Hz) ppm.

Reference

- Tyrra, W.; Naumann, D.; Hoge, B.; Yaguposkii, Y. L. J. Fluorine Chem. 2003, 119, 101.
- Shao, X.-X.; Wang, X.-Q.; Yang, T.; Lu, L.; Shen, Q. Angew. Chem. Int. Ed. 2013, 52, 3457.
- Noritake, S.; Shibata, N.; Nakamura, S.; Toru, T.; Shiro, M. Eur. J. Org. Chem. 2008, 20, 3465.
- 4. Deng, Q.-H.; Wadepohl, H.; Gade, H. J. Am. Chem. Soc. 2012, 134, 10769.
- 5. Shibata, N.; Furukawa, T.; Kawai, H.; Tokunaga, E.; Yuan, Z.; Cahard, D. Adv. Synth. Cat. 2011, 353, 2037.
- Morimoto, H.; Tsubogo, T.; Litvinas, N. D.; Hartwig, J. F. Angew. Chem. Int. Ed. 2011, 50, 3793.
- Danoun, G.; Bayarmagnai, B.; Gruenberg, M. F.; Goossen, L. J. Angew. Chem. Int. Ed. 2013, 52, 7972.
- 8. Chen, M.; Buchwald, S. L. Angew. Chem. Int. Ed. 2013, 52, 11628.

¹⁹F NMR spectrum of trifluoromethyl-(phenylethyl) bis(carbomethoxy) methylide 1a

¹³C NMR spectrum of trifluoromethyl-(phenylethyl) bis(carbomethoxy) methylide 1a

¹H NMR spectrum of trifluoromethyl-(phenylethyl) bis(carboethoxy) methylide 1b

¹⁹F NMR spectrum of trifluoromethyl-(phenylethyl) bis(carboethoxy) methylide 1b

¹³C NMR spectrum of Trifluoromethyl-(phenylethyl) bis(carboethoxy) methylide 1b

¹⁹F NMR spectrum of trifluoromethyl-(phenylethyl) carbomethoxy carbobenzyloxy methylide 1c

¹H NMR spectrum of trifluoromethyl-(phenylethyl) carbomethoxy carbobenzyloxy methylide 1c

¹H NMR spectrum of trifluoromethyl-(phenylethyl) carboethoxy carbobenzyloxy methylide 1d

¹³C NMR spectrum of trifluoromethyl-(phenylethyl) carboethoxy carbobenzyloxy methylide 1d

¹H NMR spectrum of trifluoromethyl-(4-methoxyphenyl)ethyl bis(carbomethoxy) methylide 1e

¹⁹F NMR spectrum of trifluoromethyl-(4-methoxyphenyl)ethyl bis(carbomethoxy) methylide 1e

¹H NMR spectrum of trifluoromethyl-undecyl bis(carbomethoxy) methylide 1f

¹⁹F NMR spectrum of trifluoromethyl-undecyl bis(carbomethoxy) methylide 1f

¹³C NMR spectrum of trifluoromethyl-undecyl bis(carbomethoxy) methylide 1f

¹⁹F NMR spectrum of trifluoromethyl-(4-(4-nitrophenoxy)butyl) bis(carbomethoxy) methylide 1g

¹H NMR spectrum of trifluoromethyl-(5-(4-methoxyphenoxy)pentyl) bis(carbomethoxy) methylide 1h

¹H NMR spectrum of trifluoromethyl-phenyl bis(carbomethoxy) methylide 1i

¹⁹F NMR spectrum of trifluoromethyl-phenyl bis(carbomethoxy) methylide 1i

¹H NMR spectrum of trifluoromethyl-((4-chloro)-phenyl) bis(carbomethoxy) methylide 1j

¹³C NMR spectrum of trifluoromethyl-((4-chloro)-phenyl) bis(carbomethoxy) methylide 1j

¹⁹F NMR spectrum of trifluoromethyl-(4-*tert*-butylphenyl) bis(carbomethoxy) methylide 1k

¹H NMR spectrum of trifluoromethyl-(4-carbomethoxy-phenyl) bis(carbomethoxy) methylide 11

¹H NMR spectrum of trifluoromethyl-phenyl bis(carboethoxy) methylide1m

¹⁹F NMR spectrum of trifluoromethyl-phenyl bis(carboethoxy) methylide 1m

¹H NMR spectrum of trifluoromethyl-(naphthalen-2-yl) bis(carbomethoxy) methylide 1n

¹⁹F NMR spectrum of trifluoromethyl-(naphthalen-2-yl) bis(carbomethoxy) methylide 1n

¹³C NMR spectrum of trifluoromethyl-(naphthalen-2-yl) bis(carbomethoxy) methylide 1n

¹⁹F NMR spectrum of trifluoromethyl-((6-methoxynaphthalen)-2-yl) bis(carbomethoxy) methylide 10

S43

¹H NMR spectrum of methyl 1-oxo-2-(trifluoromethyl)-2,3-dihydro-1*H*-indene-2-carboxylate 2a

¹H NMR spectrum of ethyl 1-oxo-2-(trifluoromethyl)-2,3-dihydro-1*H*-indene-2-carboxylate 2b

¹⁹F NMR spectrum of ethyl 1-oxo-2-(trifluoromethyl)-2,3-dihydro-1*H*-indene-2-carboxylate 2b

¹H NMR spectrum of isopropyl 1-oxo-2-(trifluoromethyl)-2,3-dihydro-1*H*-indene-2-carboxylate 2c

¹H NMR spectrum of *tert*-butyl 1-oxo-2-(trifluoromethyl)-2,3-dihydro-1*H*-indene-2-carboxylate 2d

¹⁹F NMR spectrum of *tert*-butyl 1-oxo-2-(trifluoromethyl)-2,3-dihydro-1*H*-indene-2-carboxylate 2d

¹H NMR spectrum of methyl 6-methyl-1-oxo-2-(trifluoromethyl)-2,3-dihydro-1H-indene-2-carboxylate 2e

¹⁹F NMR spectrum of methyl 6-methyl-1-oxo-2-(trifluoromethyl)-2,3-dihydro-1*H*-indene-2-carboxylate 2e

¹³C NMR spectrum of methyl 6-methyl-1-oxo-2-(trifluoromethyl)-2,3-dihydro-1*H*-indene-2-carboxylate 2e

¹H NMR spectrum of methyl 5-methoxy-1-oxo-2-(trifluoromethyl)-2,3-dihydro-1*H*-indene-2-carboxylate 2f

¹⁹F NMR spectrum of methyl 5-methoxy-1-oxo-2-(trifluoromethyl)-2,3-dihydro-1*H*-indene-2-carboxylate 2f

¹H NMR spectrum of methyl 5,6-dimethoxy -1-oxo-2-(trifluoromethyl)-2,3-dihydro-1*H*-indene-2-carboxylate 2g

¹³C NMR spectrum of methyl 5,6-dimethoxy -1-oxo-2-(trifluoromethyl)-2,3-dihydro-1*H*-indene-2-carboxylate 2g

¹⁹F NMR spectrum of methyl 1-oxo-2-(trifluoromethyl)-1,2,3,4-tetrahydronaphthalene-2-carboxylate 2h

¹H NMR spectrum of methyl 5-oxo-6-(trifluoromethyl)-6,7,8,9-tetrahydro-5*H*-benzo[7]annulene-6-carboxylate 2i

¹⁹F NMR spectrum of methyl 5-oxo -6-(trifluoromethyl)-6,7,8,9-tetrahydro-5*H*-benzo[7]annulene-6-carboxylate 2i

¹³C NMR spectrum of methyl 5-oxo -6-(trifluoromethyl)-6,7,8,9-tetrahydro-5*H*-benzo[7]annulene-6-carboxylate 2i

¹H NMR spectrum of 4-(trifluoromethyl)biphenyl 3a

7.703 7.7618 7.600 7.7600 7.7604 7.767 7.487 7.487 7.487 7.487 7.760

¹⁹F NMR spectrum of 4-(trifluoromethyl)biphenyl 3a

¹³C NMR spectrum of 4-(trifluoromethyl)biphenyl 3a

¹H NMR spectrum of 1-(benzyloxy)-4-(trifluoromethyl)benzene 3b

¹⁹F NMR spectrum of 1-(benzyloxy)-4-(trifluoromethyl)benzene 3b

¹³C NMR spectrum of 1-(benzyloxy)-4-(trifluoromethyl)benzene 3b

¹H NMR spectrum of methyl 4-(trifluoromethyl)benzoate 3c

¹⁹F NMR spectrum of methyl 4-(trifluoromethyl)benzoate 3c

¹³C NMR spectrum of methyl 4-(Trifluoromethyl)benzoate 3c

¹H NMR spectrum of 1-(4-(trifluoromethyl)phenyl)ethanone 3d

¹³C NMR spectrum of 1-(4-(trifluoromethyl)phenyl)ethanone 3d

¹H NMR spectrum of 1,2,3-trimethoxy-5-(trifluoromethyl)benzene 3e

¹⁹F NMR spectrum of 1,2,3-trimethoxy-5-(trifluoromethyl)benzene 3e

¹³C NMR spectrum of 1,2,3-trimethoxy-5-(trifluoromethyl)benzene 3e

¹H NMR spectrum of 4-(trifluoromethyl)benzonitrile 3f

¹³C NMR spectrum of 4-(trifluoromethyl)benzonitrile 3f

¹H NMR spectrum of 1-nitro-4-(trifluoromethyl)benzene 3g

¹⁹F NMR spectrum of 1-nitro-4-(trifluoromethyl)benzene 3g

S67

¹H NMR spectrum of 6-(trifluoromethyl)quinolone 3h

¹⁹F NMR spectrum of 6-(trifluoromethyl)quinolone 3h

¹³C NMR spectrum of 6-(trifluoromethyl)quinolone 3h

¹H NMR spectrum of 1-(trifluoromethyl)isoquinoline 3i

¹⁹F NMR spectrum of 1-(trifluoromethyl)isoquinoline 3i

¹³C NMR spectrum of 1-(trifluoromethyl)isoquinoline 3i

Figure S1. X-ray structure of compound 1i. ORTEP drawing at 50% probability
Table S1.Crystal data and structure refinement for mo_dm14643_0m.				
Identification code	mo_dm14643_0m			
Empirical formula	pirical formula C14 H15 F3 O4 S			
Formula weight	336.32			
Temperature	130 K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P 1 21/n 1			
Unit cell dimensions	a = 5.4571(5) Å	$\alpha = 90$ °.		
	b = 34.890(3) Å	$\beta = 96.378(2)$ °.		
	c = 7.6271(7) Å	$\gamma = 90$ °.		
Volume	1443.2(2) Å ³			
Z	4			
Density (calculated)	1.548 Mg/m ³			
Absorption coefficient	0.274 mm ⁻¹			
F(000)	696			
Crystal size	0.3 x 0.25 x 0.2 mm ³			
Theta range for data collection	1.167 to 30.573 °.			
Index ranges	-7<=h<=7, -49<=k<=49, -10<=l<=7			
Reflections collected	14482			
Independent reflections	4407 [R(int) = 0.0256]			
Completeness to theta = 25.242°	99.7 %			
Absorption correction	Semi-empirical from equivalents			
Max. and min. transmission	0.7461 and 0.6880			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	4407 / 0 / 201			
Goodness-of-fit on F ²	1.184			
Final R indices [I>2sigma(I)]	R1 = 0.0446, $wR2 = 0.1210$			
R indices (all data)	R1 = 0.0530, $wR2 = 0.1316$			
Extinction coefficient	n/a			
Largest diff. peak and hole	0.453 and -0.383 e.Å ⁻³			

	Х	у	Z	U(eq)
S(1)	4778(1)	950(1)	2825(1)	15(1)
F(1)	6898(2)	435(1)	1035(2)	26(1)
F(2)	3058(2)	317(1)	1063(2)	25(1)
F(3)	5569(2)	210(1)	3385(2)	23(1)
O(1)	602(2)	542(1)	4056(2)	21(1)
O(2)	1576(2)	659(1)	6948(2)	20(1)
O(3)	5244(3)	1183(1)	7774(2)	27(1)
O(4)	7534(2)	1311(1)	5571(2)	22(1)
C(1)	5054(3)	442(1)	2034(2)	18(1)
C(2)	4028(3)	931(1)	4923(2)	16(1)
C(3)	1920(3)	698(1)	5245(2)	16(1)
C(4)	-385(3)	398(1)	7272(2)	21(1)
C(5)	5584(3)	1143(1)	6237(2)	17(1)
C(6)	9072(4)	1547(1)	6778(3)	27(1)
C(7)	2104(3)	1093(1)	1318(2)	18(1)
C(8)	1246(3)	1488(1)	1874(2)	21(1)
C(9)	3208(3)	1794(1)	1941(2)	19(1)
C(10)	4322(4)	1889(1)	440(2)	23(1)
C(11)	6144(4)	2168(1)	507(3)	26(1)
C(12)	6895(4)	2355(1)	2079(3)	26(1)
C(13)	5816(4)	2264(1)	3581(3)	30(1)
C(14)	3986(4)	1985(1)	3507(3)	27(1)

Table S2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10^3) for mo_dm14643_0m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

S(1)-C(1)	1.8819(18)
S(1)-C(2)	1.6963(16)
S(1)-C(7)	1.8246(17)
F(1)-C(1)	1.328(2)
F(2)-C(1)	1.321(2)
F(3)-C(1)	1.315(2)
O(1)-C(3)	1.221(2)
O(2)-C(3)	1.3394(19)
O(2)-C(4)	1.448(2)
O(3)-C(5)	1.215(2)
O(4)-C(5)	1.361(2)
O(4)-C(6)	1.435(2)
C(2)-C(3)	1.451(2)
C(2)-C(5)	1.443(2)
C(4)-H(4A)	0.9800
C(4)-H(4B)	0.9800
C(4)-H(4C)	0.9800
C(6)-H(6A)	0.9800
C(6)-H(6B)	0.9800
C(6)-H(6C)	0.9800
C(7)-H(7A)	0.9900
C(7)-H(7B)	0.9900
C(7)-C(8)	1.529(2)
C(8)-H(8A)	0.9900
C(8)-H(8B)	0.9900
C(8)-C(9)	1.509(3)
C(9)-C(10)	1.394(2)
C(9)-C(14)	1.393(3)
C(10)-H(10)	0.9500
C(10)-C(11)	1.388(3)
C(11)-H(11)	0.9500
C(11)-C(12)	1.387(3)
C(12)-H(12)	0.9500
C(12)-C(13)	1.382(3)
C(13)-H(13)	0.9500
C(13)-C(14)	1.390(3)

Table S3. Bond lengths [Å] and angles [] for mo_dm14643_0m.

C(14)-H(14)

0.9500

C(2)-S(1)-C(1)	107.65(8)
C(2)-S(1)-C(7)	110.17(8)
C(7)-S(1)-C(1)	98.24(8)
C(3)-O(2)-C(4)	114.51(13)
C(5)-O(4)-C(6)	115.68(14)
F(1)-C(1)-S(1)	107.07(12)
F(2)-C(1)-S(1)	113.52(12)
F(2)-C(1)-F(1)	107.61(14)
F(3)-C(1)-S(1)	110.16(11)
F(3)-C(1)-F(1)	109.20(14)
F(3)-C(1)-F(2)	109.15(14)
C(3)-C(2)-S(1)	117.35(12)
C(5)-C(2)-S(1)	116.78(12)
C(5)-C(2)-C(3)	125.85(14)
O(1)-C(3)-O(2)	122.74(15)
O(1)-C(3)-C(2)	122.43(15)
O(2)-C(3)-C(2)	114.81(14)
O(2)-C(4)-H(4A)	109.5
O(2)-C(4)-H(4B)	109.5
O(2)-C(4)-H(4C)	109.5
H(4A)-C(4)-H(4B)	109.5
H(4A)-C(4)-H(4C)	109.5
H(4B)-C(4)-H(4C)	109.5
O(3)-C(5)-O(4)	121.32(15)
O(3)-C(5)-C(2)	126.00(16)
O(4)-C(5)-C(2)	112.66(14)
O(4)-C(6)-H(6A)	109.5
O(4)-C(6)-H(6B)	109.5
O(4)-C(6)-H(6C)	109.5
H(6A)-C(6)-H(6B)	109.5
H(6A)-C(6)-H(6C)	109.5
H(6B)-C(6)-H(6C)	109.5
S(1)-C(7)-H(7A)	110.0
S(1)-C(7)-H(7B)	110.0
H(7A)-C(7)-H(7B)	108.3
C(8)-C(7)-S(1)	108.69(12)

C(8)-C(7)-H(7A)	110.0
C(8)-C(7)-H(7B)	110.0
C(7)-C(8)-H(8A)	108.7
C(7)-C(8)-H(8B)	108.7
H(8A)-C(8)-H(8B)	107.6
C(9)-C(8)-C(7)	114.13(14)
C(9)-C(8)-H(8A)	108.7
C(9)-C(8)-H(8B)	108.7
C(10)-C(9)-C(8)	120.82(16)
C(14)-C(9)-C(8)	121.03(16)
C(14)-C(9)-C(10)	118.14(17)
C(9)-C(10)-H(10)	119.6
C(11)-C(10)-C(9)	120.77(17)
С(11)-С(10)-Н(10)	119.6
С(10)-С(11)-Н(11)	119.9
C(12)-C(11)-C(10)	120.28(18)
С(12)-С(11)-Н(11)	119.9
С(11)-С(12)-Н(12)	120.2
C(13)-C(12)-C(11)	119.69(18)
С(13)-С(12)-Н(12)	120.2
С(12)-С(13)-Н(13)	120.1
C(12)-C(13)-C(14)	119.88(19)
С(14)-С(13)-Н(13)	120.1
C(9)-C(14)-H(14)	119.4
C(13)-C(14)-C(9)	121.24(18)
C(13)-C(14)-H(14)	119.4

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
S(1)	16(1)	16(1)	14(1)	-1(1)	3(1)	-3(1)
F(1)	27(1)	29(1)	25(1)	-8(1)	13(1)	-2(1)
F(2)	25(1)	22(1)	27(1)	-9(1)	-2(1)	-3(1)
F(3)	28(1)	18(1)	23(1)	1(1)	3(1)	1(1)
O (1)	23(1)	23(1)	16(1)	-1(1)	3(1)	-7(1)
O(2)	21(1)	23(1)	15(1)	0(1)	4(1)	-7(1)
O(3)	28(1)	35(1)	17(1)	-9(1)	7(1)	-11(1)
O(4)	19(1)	29(1)	18(1)	-7(1)	4(1)	-9(1)
C(1)	19(1)	19(1)	17(1)	-3(1)	3(1)	-2(1)
C(2)	17(1)	18(1)	12(1)	-2(1)	3(1)	-2(1)
C(3)	17(1)	17(1)	15(1)	0(1)	4(1)	0(1)
C(4)	20(1)	24(1)	19(1)	2(1)	6(1)	-5(1)
C(5)	16(1)	17(1)	17(1)	-2(1)	2(1)	-1(1)
C(6)	23(1)	33(1)	25(1)	-11(1)	3(1)	-10(1)
C(7)	19(1)	20(1)	15(1)	2(1)	0(1)	-1(1)
C(8)	21(1)	20(1)	22(1)	0(1)	4(1)	1(1)
C(9)	21(1)	17(1)	21(1)	1(1)	4(1)	3(1)
C(10)	27(1)	22(1)	19(1)	0(1)	3(1)	0(1)
C(11)	31(1)	22(1)	25(1)	3(1)	7(1)	-2(1)
C(12)	29(1)	19(1)	31(1)	-1(1)	5(1)	-2(1)
C(13)	38(1)	26(1)	27(1)	-7(1)	6(1)	-6(1)
C(14)	34(1)	25(1)	24(1)	-5(1)	10(1)	-3(1)

Table S4. Anisotropic displacement parameters (Å²x 10³) for mo_dm14643_0m. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	Х	У	Z	U(eq)
H(4A)	-1951	491	6669	31
H(4B)	-501	383	8543	31
H(4C)	-29	143	6823	31
H(6A)	8043	1690	7524	40
H(6B)	9995	1727	6114	40
H(6C)	10230	1385	7521	40
H(7A)	2549	1104	96	21
H(7B)	759	904	1357	21
H(8A)	-175	1569	1037	25
H(8B)	668	1466	3055	25
H(10)	3827	1761	-642	27
H(11)	6880	2230	-527	31
H(12)	8145	2545	2124	31
H(13)	6324	2391	4661	36
H(14)	3252	1924	4545	32

Table S5. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Å $^2x\ 10\ ^3$) for mo_dm14643_0m.

S(1)-C(2)-C(3)-O(1)	-5.4(2)
S(1)-C(2)-C(3)-O(2)	172.88(12)
S(1)-C(2)-C(5)-O(3)	174.99(16)
S(1)-C(2)-C(5)-O(4)	-3.4(2)
S(1)-C(7)-C(8)-C(9)	56.88(17)
C(1)-S(1)-C(2)-C(3)	-52.19(15)
C(1)-S(1)-C(2)-C(5)	126.50(13)
C(1)-S(1)-C(7)-C(8)	171.78(12)
C(2)-S(1)-C(1)-F(1)	-143.17(11)
C(2)-S(1)-C(1)-F(2)	98.23(13)
C(2)-S(1)-C(1)-F(3)	-24.53(14)
C(2)-S(1)-C(7)-C(8)	59.47(13)
C(3)-C(2)-C(5)-O(3)	-6.5(3)
C(3)-C(2)-C(5)-O(4)	175.12(16)
C(4)-O(2)-C(3)-O(1)	3.8(2)
C(4)-O(2)-C(3)-C(2)	-174.47(15)
C(5)-C(2)-C(3)-O(1)	176.05(16)
C(5)-C(2)-C(3)-O(2)	-5.7(2)
C(6)-O(4)-C(5)-O(3)	-2.4(3)
C(6)-O(4)-C(5)-C(2)	176.11(16)
C(7)-S(1)-C(1)-F(1)	102.52(12)
C(7)-S(1)-C(1)-F(2)	-16.09(14)
C(7)-S(1)-C(1)-F(3)	-138.84(12)
C(7)-S(1)-C(2)-C(3)	53.90(15)
C(7)-S(1)-C(2)-C(5)	-127.42(13)
C(7)-C(8)-C(9)-C(10)	59.4(2)
C(7)-C(8)-C(9)-C(14)	-119.49(19)
C(8)-C(9)-C(10)-C(11)	-179.30(17)
C(8)-C(9)-C(14)-C(13)	179.10(19)
C(9)-C(10)-C(11)-C(12)	0.3(3)
C(10)-C(9)-C(14)-C(13)	0.1(3)
C(10)-C(11)-C(12)-C(13)	-0.2(3)
C(11)-C(12)-C(13)-C(14)	0.0(3)
C(12)-C(13)-C(14)-C(9)	0.0(3)
C(14)-C(9)-C(10)-C(11)	-0.3(3)

Table S6. Torsion angles [°] for mo_dm14643_0m.