Structural Studies of (*rac*)-BIPHEN Organomagnesiates and Intermediates in the Halogen-metal Exchange of 2-Bromopyridine

Javier Francos, Philippe C. Gros,^{*} Alan R. Kennedy, and Charles T. O'Hara^{*}

General Methods

All reactions were performed under a protective argon atmosphere using standard Schlenk techniques. Hexane and THF were obtained from Aldrich and freshly distilled from sodium/benzophenone prior to use. $(CH_2SiMe_3)_2Mg$ and $(CH_2CMe_3)_2Mg$ were prepared from the Grignard reagent $(CH_2SiMe_3)MgCl$ and $(CH_2CMe_3)MgCl$ by manipulation of the Schlenk equilibrium via the dioxane precipitation method. The resultant off-white solid was purified via sublimation at 175 °C (10^{-2} Torr) to furnish pure $(CH_2SiMe_3)_2Mg$ and $(CH_2CMe_3)_2Mg$. Other chemicals were obtained from Aldrich or Strem Chemicals and were used as supplied. ¹H and ¹³C NMR spectra were recorded on a Bruker DPX 400 MHz spectrometer. All ¹³C NMR spectra were proton decoupled. Elemental analyses were attempted using a Perkin-Elmer 2400 elemental analyzer; however, due to the extreme air sensitivity of the compounds satisfactory analyses could not be obtained.

Synthesis of [*(rac)*-**BIPHEN**]₂Li₄(**THF**)₄·(**THF**)] (1). (*rac*)-BIPHEN (0.35 g, 1 mmol) was dissolved in THF (5 mL) and cooled to 0 °C for 15 minutes. At this stage ^{*n*}BuLi (1.4 mL, 2 mmol) was added. After stirring for 1 hour, the solvent was removed *in vacuo* resulting in a pale yellow solid. The resulting solid was recrystallized from 15 mL of hot hexane. To aid the crystallization the resulting colourless solution was placed in the freezer at -35 °C, deposited a crop of colorless crystals (0.24 g, yield 47%). ¹H NMR (400.13 MHz, 298 K, d₈-THF): 1.33 (36H, s, C(CH₃)₃), 1.61 (12H, s, CH₃), 1.81-1.85 (16H, m, OCH₂CH₂, THF), 2.15 (12H, s, CH₃), 3.65-3.68 (16H, m, OCH₂CH₂, THF), 6.76 (4H, s, Ph). ¹³C {¹H} NMR (100.62 MHz, 298 K, d₈-THF): 16.61 (CH₃), 19.75 (CH₃), 25.42 (OCH₂CH₂, THF), 30.40 (C(CH₃)₃), 34.04 (C(CH₃)₃), 67.27 (OCH₂CH₂, THF), 118.33, 125.59, 131.32, 132.31, 133.75, 161.95 (Ph). ⁷Li NMR (155.50 MHz, 298 K, d₈-THF): δ -0.27.

Synthesis of [*(rac)*-**BIPHEN**]**Li₂MgBu₂(THF)₃ (2).** *(rac)*- BIPHEN (0.35 g, 1 mmol) was dissolved in hexane (10 mL) and cooled to 0 °C for 15 minutes. At this stage "BuLi (1.4 mL, 2 mmol) was added and stirred for 1 hour. ("Bu)₂Mg (1 mL of a 1M solution in heptane, 1 mmol) was added at this point, and the resulting suspension was heated gently, affording a clear solution. Addition of THF (0.24 mL, 3 mmol) and slow cooling to -28 °C resulted in the formation of clear colorless crystals (0.46 g, yield 65%). ¹H NMR (400.13 MHz, 298 K, d₈-THF): -1.73- -1.16 (2H, m, MgCH₂), -0.90 - -0.83 (2H, m, MgCH₂), 0.75-0.80 (6H, m, Bu), 1.11-1.39 (8H, s, Bu), 1.42 (18H, s, C(CH₃)₃), 1.51 (6H, s, CH₃), 1.77-1.79 (12H, m, OCH₂CH₂, THF), 2.08 (6H, s, CH₃), 3.60-3.63 (12H, m, OCH₂CH₂, THF), 6.80 (4H, s, Ph). ¹³C {¹H} NMR (100.62 MHz, 298 K, d₈-THF): 9.01 (MgCH₂), 15.10 (CH₃), 18.06 (CH₃), 21.43 (CH₃), 27.27 (2 x CH₂), 32.27(C(CH₃)₃), 34.09 (OCH₂CH₂, THF), 36.20 (*C*(C(H₃)₃), 69.15 (OCH₂CH₂, THF), 122.26, 127.09, 134.34, 134.64, 136.26, 161.97 (Ph). ⁷Li NMR (155.50 MHz, 298 K, d₈-THF): δ 1.41.

Synthesis of [*(rac)*-**BIPHEN**]**Li**₂**Mg(CH**₂**SiMe**₃)₂(**THF**)₃ (**3**). (*rac*)- **BIPHEN** (0.35 g, 1 mmol) was dissolved in hexane (10 mL) and cooled to 0 °C for 15 minutes. At this stage "BuLi (1.4 mL, 2 mmol) was added and stirred for 1 hour. (CH₂SiMe₃)₂Mg (0.2 g, 1 mmol) was added at this point, and the resulting suspension was heated gently, affording a clear solution. Addition of THF (0.24 mL, 3 mmol) and slow cooling resulted in the formation of clear colorless crystals (0.64 g, yield 82%). ¹H NMR (400.13 MHz, 298 K, *cyc*-C₆D₁₂): -2.31 (2H, m, MgCH₂Si(CH₃)₃), -1.65 (2H, m, MgCH₂Si(CH₃)₃), -0.02 (18H, s, Si(CH₃)₃), 1.45 (18H, s, C(*CH*₃)₃), 1.61 (6H, s, *CH*₃), 1.72-1.76 (12H, m, OCH₂CH₂, THF), 2.14 (6H, s, *CH*₃), 3.50-3.54 (12H, m, OCH₂CH₂, THF), 6.92 (2H, s, Ph). ¹³C {¹H} NMR (100.62 MHz, 298 K, *cyc*-C₆D₁₂): -9.74 (SiCH₂), 3.04 (Si(*C*H₃)₃), 16.04 (*C*H₃), 19.53 (*C*H₃), 25.16 (OCH₂CH₂, THF), 30.39 (C(*C*H₃)₃), 34.39(*C*(CH₃)₃), 67.63 (OCH₂CH₂, THF), 121.42, 126.07, 131.32, 132.29, 135.33, 158.97 (Ph). ⁷Li NMR (155.50 MHz, 298 K, *cyc*-C₆D₁₂): δ -0.18.

Synthesis of [(rac)-**BIPHEN**]**Li**₂**Mg**(^{*neo*}**Pe**)₂(**THF**)₂ (**4**). (*rac*)- **BIPHEN** (0.35 g, 1 mmol) was dissolved in hexane (10 mL) and cooled to 0 °C for 15 minutes. At this stage ^{*n*}BuLi (1.4 mL, 2 mmol) were added and stirred for 1 hour. (^{*neo*}**Pe**)₂Mg (0.16 g, 1 mmol) was added at this point, and the resulting suspension was heated gently, affording a clear solution. Addition of THF (0.16 mL, 2 mmol) and slow cooling resulted in the formation of clear colorless crystals (0.25 g, yield 36%). ¹H NMR (400.13 MHz, 298 K, *cyc*-C₆D₁₂): -1.10 (2H, d, ³J_{HH} = 15Hz, MgCH₂), -0.13 (2H, d, ³J_{HH} = 15Hz, MgCH₂), 1.03 (18H, s, C(CH₃)₃), 1.44 (18H, s, C(CH₃)₃), 1.61 (6H, s, CH₃), 1.73-1.76 (12H,

m, OCH₂CH₂, THF), 2.13 (6H, s, CH₃), 3.50-3.54 (12H, m, OCH₂CH₂, THF), 6.91 (4H, s, Ph). ${}^{13}C{}^{1}H{}$ NMR (100.62 MHz, 298 K, *cyc*-C₆D₁₂): 16.12 (CH₃), 19.53 (CH₃), 25.17 (OCH₂CH₂, THF), 25.51 (2 x MgCH₂), 30.14(C(CH₃)₃), 32.34 (C(CH₃)₃), 34.49 (C(CH₃)₃), 67.53 (OCH₂CH₂, THF), 121.01, 126.18, 130.97, 132.43, 135.55, 159.34 (Ph). ⁷Li NMR (155.50 MHz, 298 K, *cyc*-C₆D₁₂): δ 0.07.

Synthesis of [*(rac)*-**BIPHEN**]**Li**₂**Mg(2-pyridine**)₂(**THF**)₂ (5). *(rac)*- BIPHEN (0.35 g, 1 mmol) was dissolved in hexane (10 mL) and cooled to 0 °C for 15 minutes. At this stage "BuLi (1.4 mL, 2 mmol) was added and stirred for 1 hour. ("Bu)₂Mg (1 mL of a 1M solution in heptane, 1 mmol) was added at this point. The solution was cooled to -60 °C, and then 2-bromopyridine (0.095 mL, 1 mmol) was added, and the resulting suspension was allowed to reach ambient temperature slowly. Addition of THF (0.16 mL, 2 mmol), gently heating and slow cooling resulted in the formation of clear colorless crystals (0.32 g, yield 47%; 94% based on 2-bromopyridine). An alternative stoichiometric synthesis could be achieved by reacting isolated crystals of [*(rac)*-BIPHEN]Li₂Mg(CH₂SiMe₃)₂(THF)₃ (**3**) (0.78 g, 1 mmol) with 2-bromopyridine (0.19 mL, 2 mmol) at -60 °C. After reaching ambient temperature, THF (0.16 mL, 2 mmol) was added, obtaining a white suspension that transforms into a deep orange solution after vigorous heating. To aid crystallization, the resulting solution was placed in the freezer at -35 °C, and deposited a crop of yellow crystals (0.46 g, yield 66%). ¹H NMR (400.13 MHz, 298 K, d₈-THF): 1.26 (18H, s, C(CH₃)₃), 1.76 (6H, s, CH₃), 1.79-1.82 (8H, m, OCH₂CH₂, THF), 2.16 (6H, s, CH₃), 3.63-3.67 (8H, m, OCH₂CH₂, THF), 6.69-6.73 (2H, m, Ar), 6.79 (2H, s, Ph), 7.06-7.10 (2H, m, Ar), 7.57 (2H, d, ³J_{HH} = 7.6 Hz, Ar), 8.24 (2H, d, ³J_{HH} = 5.2 Hz, Ar). ¹³C {¹H} NMR (100.62 MHz, 298 K, d₈-THF): 16.02 (CH₃), 19.24 (CH₃), 25.00 (OCH₂CH₂, THF), 30.33 (C(CH₃)₃), 33.88 (C(CH₃)₃), 66.86 (OCH₂CH₂, THF), 117.06 (Ar), 120.49, 125.52, 128.45 (Ph), 131.79 (Ar), 132.05, 134.50 (Ph), 135.23, 145.99 (Ar), 159.57 (Ph), 214.7 (Ar). ⁷Li NMR (155.50 MHz, 298 K, d₈-THF): δ 0.65.

Table S1: Key crystallographic and refinement parameters for compounds 1-5

	1	2	3	4	5
Empirical formula	C ₆₈ H ₁₀₄ Li ₄ O ₉	C44H74Li2MgO5	$C_{44}H_{78}Li_2MgO_5Si_2$	$\mathrm{C}_{42}\mathrm{H}_{70}\mathrm{Li}_{2}\mathrm{MgO}_{4}$	C ₄₂ H ₅₆ Li ₂ MgN ₂ O
<i>M</i> _r	1093.27	721.22	781.43	677.17	691.08
Cryst syst	Monoclinic	Triclinic	Triclinic	Monoclinic	Monoclinic
Space group	C 2/c	P -1	P -1	C 2/ c	C 2/ c
a (Å)	15.9337(4)	11.3150(5)	11.1354(3)	11.7525(4)	16.4177(14)
b (Å)	21.4472(6)	11.6395(5)	12.7861(3)	17.2189(5)	12.3325(8)
c (Å)	18.7634(4)	18.4418(8)	17.7097(6)	21.5342(7)	20.0058(15)
α (deg)		88.063(3)	91.832(2)		
β (deg)	91.798(2)	81.313(4)	98.917(3)	100.468(3)	103.285(8)
γ (deg)		69.075(4)	105.629(2)		
$V(Å^3)$	6408.9(3)	2242.06(17)	2391.69(12)	4285.2(2)	3942.2(5)
Z	4	2	2	4	4
μ (mm ⁻¹)	0.072	0.637	0.126	0.077	0.087
<i>T</i> (K)	123	123	123	123	123
Reflections collected	21498	22999	20870	13998	10804
Reflections unique	7361	8791	8851	4936	4441
Reflections observed	5316	6636	6106	3735	3200
R _{int}	0.0333	0.0252	0.0311	0.0288	0.0385
No. Parameters	413	504	540	275	236
(<i>GOF</i>)	1.018	1.054	1.034	1.029	1.032
Final R indices $[P \ge \sigma(I)]$	R1 = 0.0526	R1 = 0.0640,	R1 = 0.0786	R1 = 0.0491	R1 = 0.0606
R indices (all data)	wR2 = 0.1292	wR2 = 0.1883	wR2 = 0.2336	wR2 = 0.1228	wR2 = 0.1679
Largest diff. peak and hole (e Å ⁻³)	0.294 and -0.218	0.504 and -0.301	1.382 and -0.963	0.268 and -0.201	0.578 and -0.271

Figure S1. ¹H NMR of [(rac)-BIPHEN]₂Li₄(THF)₄ · (THF) (1) in d₈-THF

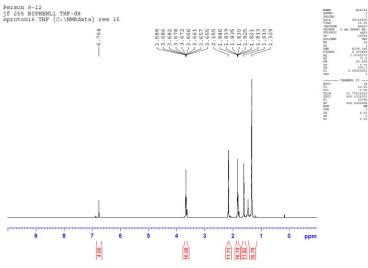


Figure S2. ⁷Li NMR of [(rac)-BIPHEN]₂Li₄(THF)₄ · (THF) (1) in d₈-THF

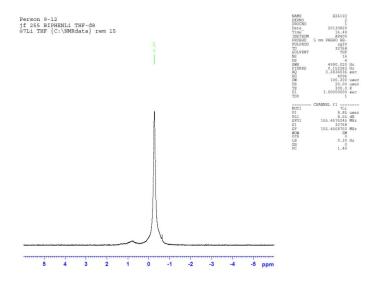
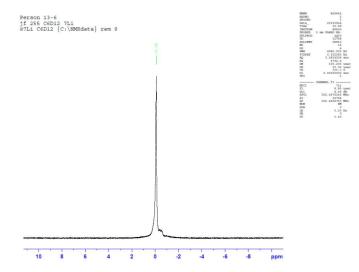



Figure S2b. ⁷Li NMR of [(*rac*)-BIPHEN]₂Li₄(THF)₄ · (THF) (1) in *cyc*-C₆D₁₂

Figure S3. ¹³C NMR of [(rac)-BIPHEN]₂Li₄(THF)₄ · (THF) (1) in d₈-THF

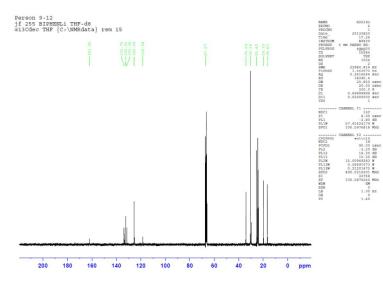


Figure S4. ¹H NMR of [(rac)-BIPHENate]Li₂Mg("Bu)₂(THF)₃ (2) in d₈-THF. The resonance at approximately -0.5 ppm is an uncharacterized soluble alkyl-containing impurity that appears to be present in the commercially sourced "Bu₂Mg. Note that the commercial reagent contains a significant quantity of Et₃Al.

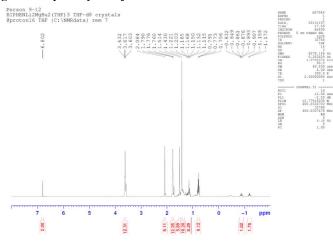
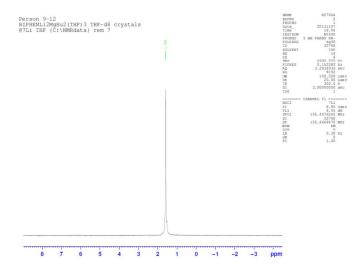
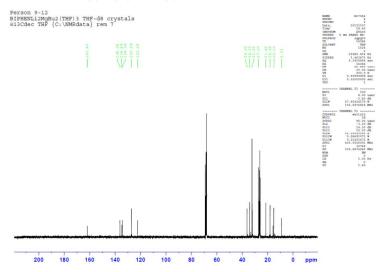




Figure S5. ⁷Li NMR of [(rac)-BIPHEN]Li₂Mg("Bu)₂(THF)₃ (2) in d₈-THF

Figure S6. ¹³C NMR of [(*rac*)-BIPHEN|Li₂Mg(ⁿBu)₂(THF)₃ (2) in d₈-THF

Figure S7. ¹H NMR of [(rac)-BIPHEN]₂Li₂Mg(THF)₄ (2b) in cyc-C₆D₁₂

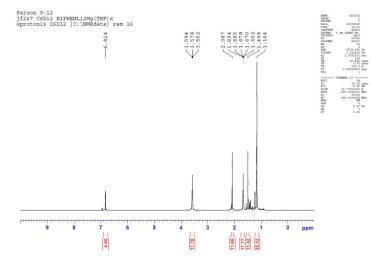


Figure S8. ¹H NMR of [(rac)-BIPHEN]Li₂Mg(CH₂SiMe₃)₂(THF)₃ (3) in cyc-C₆D₁₂

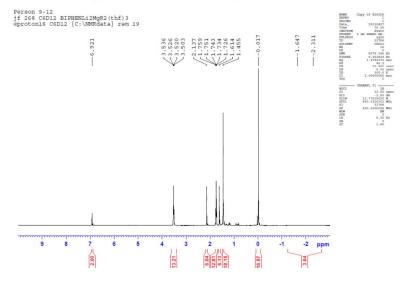


Figure S9. ⁷Li NMR of [(rac)-BIPHEN]Li₂Mg(CH₂SiMe₃)₂(THF)₃ (3) in cyc-C₆D₁₂

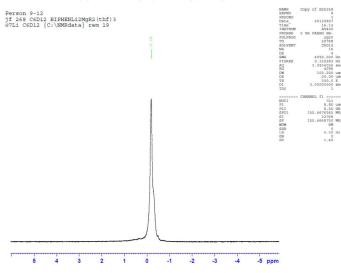


Figure S10. ¹³C NMR of [(*rac*)-BIPHEN]Li₂Mg(CH₂SiMe₃)₂(THF)₃ (3) in *cyc*-C₆D₁₂

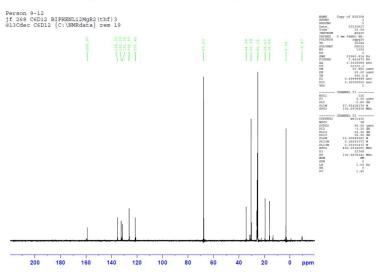


Figure S11. ¹H NMR of [(rac)-BIPHEN]Li₂Mg(^{neo}Pe)₂(THF)₂ (4) in cyc-C₆D₁₂

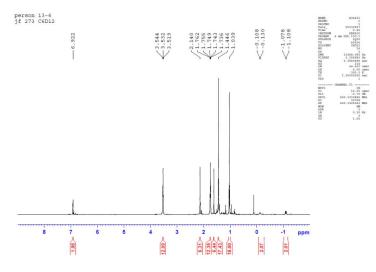


Figure S12. ⁷Li NMR of [(rac)-BIPHEN]Li₂Mg(^{neo}Pe)₂(THF)₂ (4) in cyc-C₆D₁₂

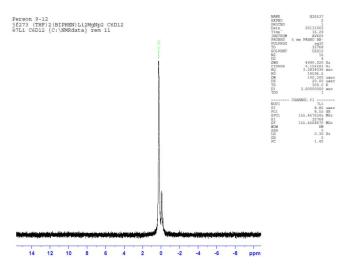


Figure S13. ¹³C NMR of [(rac)-BIPHEN|Li₂Mg(^{neo}Pe)₂(THF)₂ (4) in cyc-C₆D₁₂

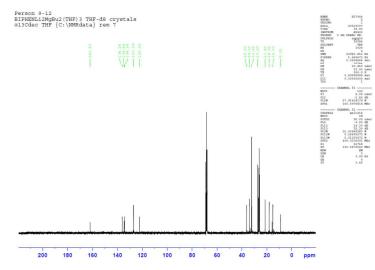


Figure S14. ¹H NMR of [(rac)-BIPHEN]Li₂Mg(2-pyridyl)₂(THF)₂ (5) in d₈-THF

Figure S15. ⁷Li NMR of [(rac)-BIPHEN]Li₂Mg(2-pyridyl)₂(THF)₂ (5) in d₈-THF

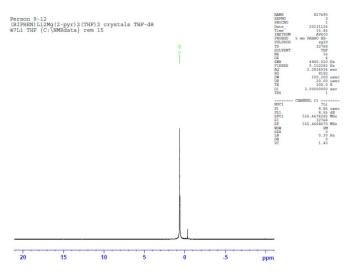
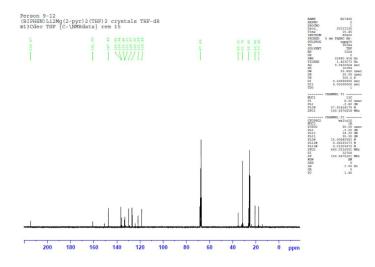



Figure S16. ¹³C NMR of [(*rac*)-BIPHEN]Li₂Mg(2-pyridyl)₂(THF)₂ (5) in d₈-THF

Solution studies of starting materials.

Figure S17. ¹H NMR of a *in situ* mixture (*rac*)-BIPHEN-H₂ + 2 ^{*n*}BuLi + ^{*n*}BuMgCl in d₈-THF

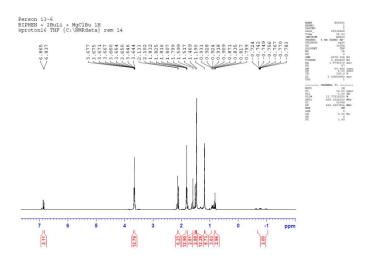


Figure S18. ⁷Li NMR of a *in situ* mixture (*rac*)-BIPHEN-H₂ + 2 ^{*n*}BuLi + ^{*n*}BuMgCl in d₈-THF

Figure S19. ¹H NMR of a *in situ* mixture (*rac*)-BIPHEN-H₂ + 2 ^{*n*}BuLi + ^{*n*}BuMgCl + ^{*n*}BuLi in d₈-THF

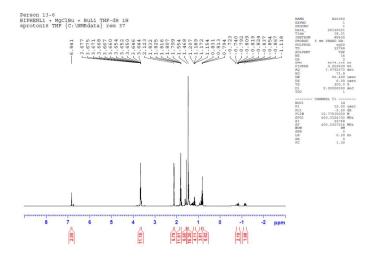


Figure S20. ⁷Li NMR of a *in situ* mixture (*rac*)-BIPHEN-H₂ + 2 ^{*n*}BuLi + ^{*n*}BuMgCl + ^{*n*}BuLi in d₈-THF

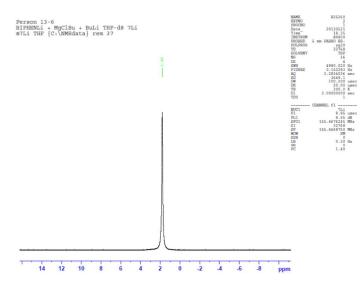


Figure S21. ¹H NMR of a *in situ* mixture (*rac*)-BIPHEN-H₂ + 2 ^{*n*}BuLi + (^{*n*}Bu)₂Mg in d₈-THF

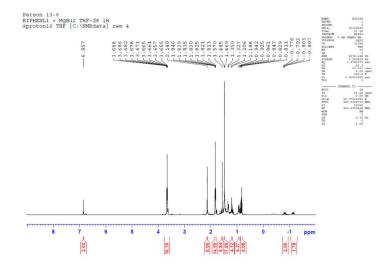


Figure S22. ⁷Li NMR of a *in situ* mixture (*rac*)-BIPHEN-H₂ + 2 ^{*n*}BuLi + (^{*n*}Bu)₂Mg in d₈-THF

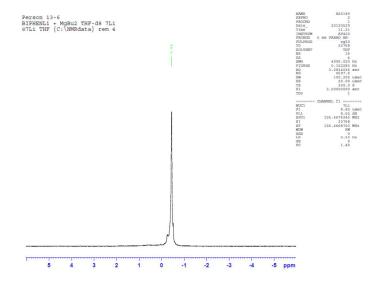


Figure S23. ¹H NMR comparison of Routes A & B in d₈-THF

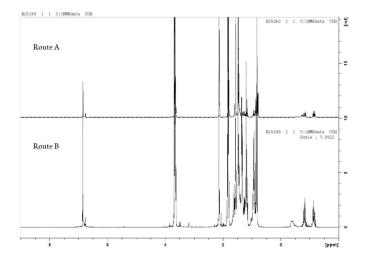


Figure S24. ¹H NMR of a mixture BIPHEN + 2BuLi + MgBu₂ after reflux.

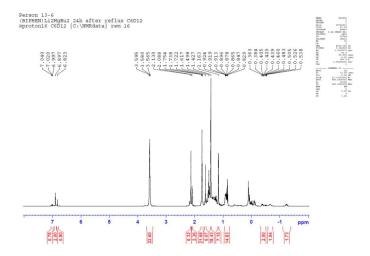


Figure S25. ⁷Li NMR of a mixture BIPHEN + 2BuLi + MgBu₂ after reflux.

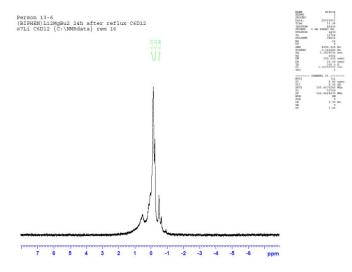


Figure S26. ¹H NMR of a mixture BIPHEN + 2BuLi + MgBu₂ after reflux. t = 2 days.

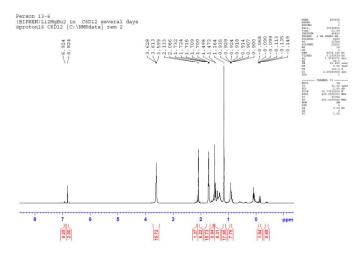
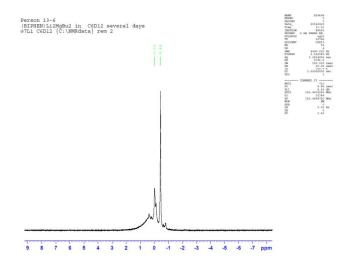
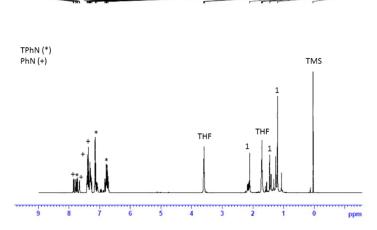
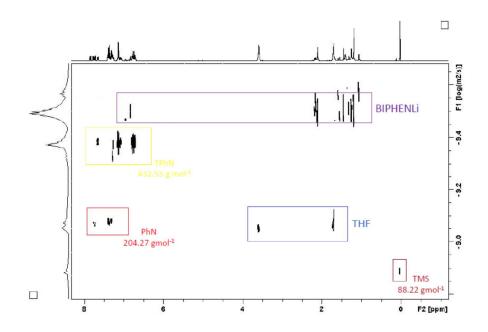
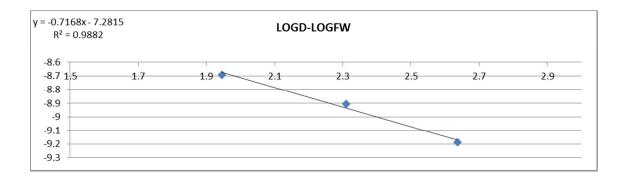




Figure S27. ⁷Li NMR of a mixture BIPHEN + 2BuLi + MgBu₂ after reflux. t = 2 days.



DOSY EXPERIMENTS


¹H NMR spectrum of [(*rac*)-BIPHEN]₂Li₄(THF)₄ · (THF) (1), TPhN, PhN and TMS at 25 °C in *cyc*-C₆D₁₂ (traces of grease are also observed).

¹H-DOSY NMR spectrum of 1 and the standards TPhN, PhN and TMS in *cyc*-C₆D₁₂ at 298 K (some traces of grease are also observed).

log D – log FW representation from the 'H-DOSY data obtained for the mixture of 1, TPhN, PhN and TMS in cyc-C₆D₁₂

Possible species of $[(rac)-BIPHEN]_2Li_4(THF)_4 \cdot (THF)$ (1) in cyc-C₆D₁₂ with errors (in brackets) respect to the FW value predicted through the DOSY study.

FW predicted for $[(rac)$ -BIPHEN] ₂ Li ₄ (THF) ₄ · (THF) (1) in cyc-C ₆ D ₁₂ = 667.4 gmol ⁻¹				
А	$[(rac)-BIPHEN]_2Li_4(THF)_4 C_{64}H_{96}Li_4O_8 = 1020.77 \text{ gmol}^{-1} (36\%)$			
В	$[(rac)-BIPHEN]_2Li_4C_{48}H_{64}Li_4O_4 = 732.5 \text{ gmol}^{-1} (9\%)$			
С	$[(rac)-BIPHEN]Li_2C_{24}H_{32}Li_2O_2 = 366.4 \text{ gmol}^{-1} (-82\%)$			
D	$[(rac)-BIPHEN]Li_2(THF)_4 = 654.86 \text{ gmol}^{-1}(-1.9\%)$			

¹H-DOSY NMR spectrum of 2 in *cyc*-C₆D₁₂ at 298 K.

