Supporting Information

Fe and Mn complexes of 2-carbonyl pyrrolyls; scorpionate sandwich anions and extended structures

Lihong Li,[†] Guy J Clarkson,[†] Martin R. Lees,[‡] Suzanne E. Howson,[†] Sze-yin Tan,[†] Scott S. Turner,[§] Peter Scott^{†,*}

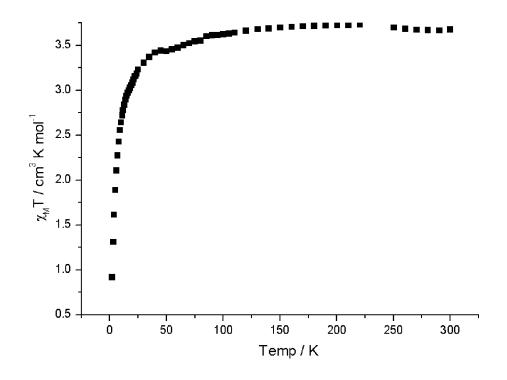
[†] Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK

[‡] Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK

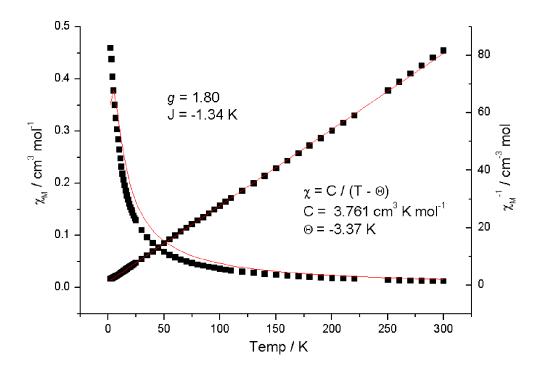
[§] Department of Chemistry, University of Surrey, Guildford, Surrey, UK, GU2 7XH

	Page
Magnetism of [Na(THF)6][(FeL ² 3)Na(L ² 3Fe)]	S2
Magnetism of [Na(THF)6][(MnL ² 3)Na(L ² 3Mn)]	S4
Magnetism of [Na(THF) ₄][(MnL ³ ₃)Na(L ³ ₃ Mn)]	S6

Magnetism of [Na(THF)6][(FeL²3)Na(L²3Fe)]


The isotropic Heisenberg magnetic model (HDVV) was used to describe the magnetism of the material.

$$\mathbf{H} = -J \mathbf{S}_{\mathbf{A}} \cdot \mathbf{S}_{\mathbf{B}}$$
$$\mathbf{S} = \mathbf{S}_{\mathbf{A}} + \mathbf{S}_{\mathbf{B}}$$


SA, SB are the local spin operators

$$\chi_{\rm M} = \frac{2Ng^2\beta^2}{kT} \frac{e^x + 5e^{3x} + 14e^{6x} + 30e^{10x} + 55e^{15x}}{1 + 3e^x + 5e^{3x} + 7e^{6x} + 9e^{10x} + 11e^{15x}}$$

With x = J/ kT for local spins S_A = S_B = 5/2

A least squares fit to the equation gives J = -1.34 cm⁻¹ and g = 1.80, confirming that the material is antiferromagnetic. However, possibly due to that the magnetic model does not count magnetic anisotropy of Fe(II) ion a small *g-factor* was obtained.

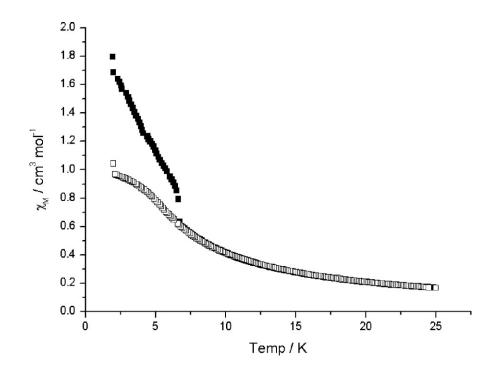


Figure S1. $\chi_{M}T$ vs T for complex [Na(THF)₆][(FeL²₃)Na(L²₃Fe)] measured at 1000 Oe

Figure S2. χ_{M} *vs T* for complex [Na(THF)₆][(FeL²₃)Na(L²₃Fe)] measured at 1000 Oe

Magnetism of [Na(THF)6][(MnL²3)Na(L²3Mn)]

Figure S3. ZFCW and FCC M *vs. T* curves for [Na(THF)₆][(MnL²₃)Na(L²₃Mn)] measured at 1000 Oe.

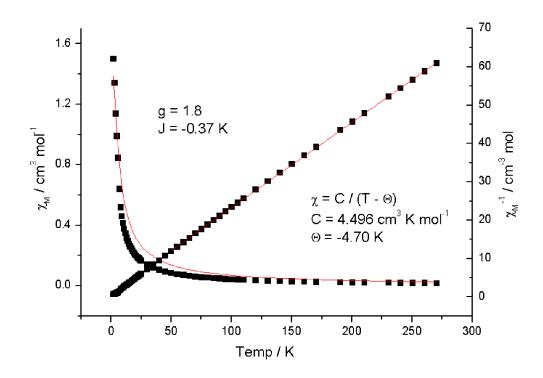
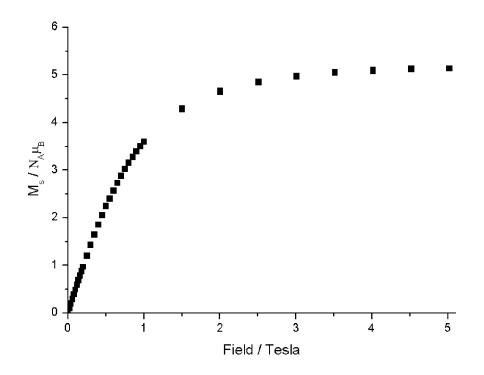



Figure S4. χM , χM^{-1} *vs. T* curves for [Na(THF)₆][(MnL²₃)Na(L²₃Mn)]

Figure S5. *M vs. H* curve for $[Na(THF)_6][(MnL^2_3)Na(L^2_3Mn)]$ measured at 2 K.

Magnetism of [Na(THF)₄][(MnL³₃)Na(L³₃Mn)]

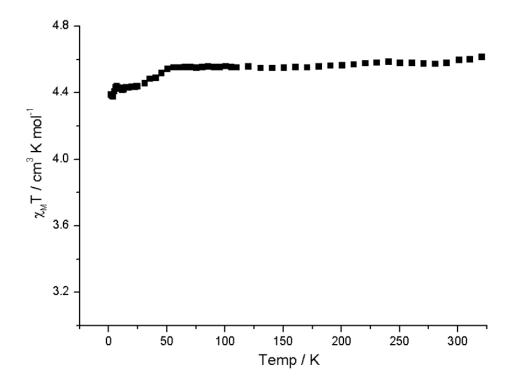
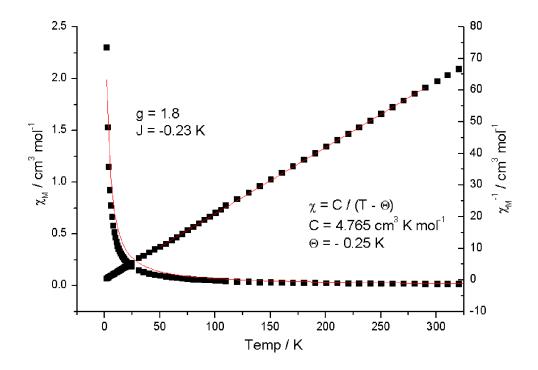



Figure S6. $\chi_M T$ vs. T for [Na(THF)4][(MnL³₃)Na(L³₃Mn)] measured at 1000 Oe

Figure S7. χ_{M} and $\chi_{M^{-1}}$ *vs. T* for [Na(THF)₄][(MnL³₃)Na(L³₃Mn)] measured at 1000 Oe