Supporting Information

EpCAM-Antibody-Labeled Noncytotoxic Polymer Vesicles for Cancer Stem Cells-Targeted Delivery of Anticancer Drug and siRNA

Jing Chen ${ }^{\dagger, \hbar, \ldots}$, Qiuming Liu ${ }^{\dagger, \hbar, \ldots}$, Jiangang Xiao ${ }^{\ddagger}$ and Jianzhong

${ }^{\dagger}$ Shanghai Tenth People’s Hospital, Tongji University, 301 Middle Yanchang Road, Shanghai 200072, China.
${ }^{\dagger}$ Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.
'Both authors contributed equally.
*Corresponding author.

Email: jzdu@tongji.edu.cn; Fax: +86-21-6958 4723; Phone: +86-21-6958

Scheme S1. Synthetic route to PEO-b-PDPA-b-PAA triblock copolymer by sequential ATRP.

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectra of (A) $\mathrm{PEO}_{43}-b-\mathrm{PDPA}_{76}-b-\mathrm{P}_{\mathrm{t}} \mathrm{BA}_{17}$ and (B) $\mathrm{PEO}_{43}-b-\mathrm{PDPA}_{76}-b-\mathrm{PAA}_{17}$ triblock copolymer in CDCl_{3}.

Calculation of ${ }^{1} \mathrm{H}$ NMR spectra

The procedure of determination of the compositions of the triblock copolymers and the conversion of DPA are listed below.

1. According to the ${ }^{1} \mathrm{H}$ NMR spectrum in Figure S1A, the degrees of polymerization of PDPA and
$\mathrm{P} t \mathrm{BA}$ were calculated by the following procedure.

Table S1. The areas of different peaks and the degree of polymerization of PDPA and P $t \mathrm{BA}$ blocks

Polymer	A_{g}	A_{h}	$A_{\mathrm{e}+\mathrm{i}+1}$	x	y
$\mathrm{PEO}_{43}-b-\mathrm{PDPA}_{x}-b-\mathrm{P} t \mathrm{BA}_{y}$	152.4	152.6	1293.5	76	17

In Table $\mathrm{S} 1, A_{\mathrm{g}}, A_{\mathrm{h}}$ and $A_{\mathrm{e}+\mathrm{i}+1}$ are the areas of peaks g, h and $\mathrm{e}+\mathrm{i}+1$ in Figure S1A. X and y are the degrees of polymerization of PDPA and P $t \mathrm{BA}$. We set that the area of peak b is 170 , which corresponds to the amount of H in $\mathrm{PEO}_{43}(43 \times 4-2=170)$. The areas of peaks g and h in Figure S 1 A are listed in Table S1. The values of x and y are obtained according to the following equations:

$$
\begin{gathered}
\text { According to peak } \mathrm{g}: x=\frac{152.4}{2}=76.2 \approx 76 \\
\text { According to peak } \mathrm{h}: x=\frac{152.6}{2}=76.3 \approx 76 \\
\text { According to peaks e }+\mathrm{i}+\mathrm{l}: y=\frac{1293.5-76 \times(3+3 \times 4)}{9}=17.1 \approx 17
\end{gathered}
$$

The conversion of DPA is $\frac{76}{80} \times 100 \%=95 \%$ (the molar ratio of DPA and PEO $_{43}$ is $80: 1$).
2. According to the ${ }^{1} \mathrm{H}$ NMR spectrum in Figure S 1 B , the hydrolysis degree of $\mathrm{P} t \mathrm{BA}$ (the degree of PAA) was calculated by the following procedure.

Table S2. The area of different peaks and the degree of polymerization of PAA block

Polymer	$A_{\mathrm{e}+\mathrm{i}}$	z
$\mathrm{PEO}_{43}-b-\mathrm{PDPA}_{76}-b-\mathrm{PAA}_{z}$	1142.5	17

In Table $\mathrm{S} 2, A_{\mathrm{e}+\mathrm{i}}$ is the area of peaks $\mathrm{e}+\mathrm{i}$ in Figure $\mathrm{S} 1 \mathrm{~B} . Z$ is the degree of PAA. We set that the area of peak b is 170 , which corresponds to the amount of H in $\mathrm{PEO}_{43}(43 \times 4-2=170)$. The area of peaks $\mathrm{e}+\mathrm{i}$ in Figure S1B is listed in Table S2. The value of z is obtained according to the following equation:

$$
\text { According to peaks } \mathrm{e}+\mathrm{i}: z=17-\frac{1142.5-76 \times(3+3 \times 4)}{9}=16.7 \approx 17
$$

Figure S2. GPC trace of $\mathrm{PEO}_{43}-b-\mathrm{PDPA}_{76}-b-\mathrm{P}^{2} \mathrm{BA}_{17}$ triblock copolymer in DMF.

Figure S3. (A) Hydrodynamic diameter and PDI and (B) count rate of polymer vesicles as a function of solution pH . The final polymer concentration in water is $0.4 \mathrm{mg} / \mathrm{mL}$ at pH 7.0 .

Figure S4. Intensity-averaged size distribution of polymer vesicles determined by DLS at $0.4 \mathrm{mg} / \mathrm{mL}$ and pH 7.0

Figure S5. (A) Effect of time on the size of polymer vesicles in 0.01 M PBS at pH 7.4 . (B) Size distribution of polymer vesicles in FBS, PBS and $\mathrm{H}_{2} \mathrm{O}$.

