Supporting Information

$\rm CO_2$ capture from a binary $\rm CO_2/N_2$ and a ternary $\rm CO_2/N_2/H_2$ mixture by PSA: experiments and predictions

Dorian Marx, Lisa Joss, Max Hefti, Matteo Gazzani, Marco Mazzotti

ETH Zurich, Institute of Process Engineering, Sonneggstrasse 3, CH-8092 Zurich, Switzerland Email: marco.mazzotti@ipe.mavt.ethz.ch

1 Experimental and simulation results from binary PSA experiments

Figure S1: Experimental and simulation data for one full cycle of experiment B1.

- a) Temperature at three location in column 2: 10 cm (green), 60 cm (yellow), and 110 cm (red) from the bottom.
- b) Pressure measured at the bottom of column 2.
- c) Composition of the light product as measured by the MS.
- d) Flow rate of the light product, along with component-specific flow rates.
- e) Composition of the heavy product.

Figure S2: Experimental and simulation data for one full cycle of experiments B2 (top) and B3 (bottom).

- a) Temperature at three location in column 2: 10 cm (green), 60 cm (yellow), and 110 cm (red) from the bottom.
- b) Pressure measured at the bottom of column 2.
- c) Composition of the light product as measured by the MS.
- d) Flow rate of the light product, along with component-specific flow rates.
- e) Composition of the heavy product.

Figure S3: Experimental and simulation data for one full cycle of experiment B4.

- a) Temperature at three location in column 2: 10 cm (green), 60 cm (yellow), and 110 cm (red) from the bottom.
- b) Pressure measured at the bottom of column 2.
- c) Composition of the light product as measured by the MS.
- d) Flow rate of the light product, along with component-specific flow rates.
- e) Composition of the heavy product.

2 Experimental and simulation results from ternary PSA experiments

Figure S4: Experimental and simulation data for one full cycle of experiment T1.

- a) Temperature at three location in column 2: 10 cm (green), 60 cm (yellow), and 110 cm (red) from the bottom.
- b) Pressure measured at the bottom of column 2.
- c) Composition of the light product as measured by the MS.
- d) Flow rate of the light product, along with component-specific flow rates.
- e) Composition of the heavy product.

Figure S5: Experimental and simulation data for one full cycle of experiments T2a (top) and T2b (bottom).

- a) Temperature at three location in column 2: 10 cm (green), 60 cm (yellow), and 110 cm (red) from the bottom.
- b) Pressure measured at the bottom of column 2.
- c) Composition of the light product as measured by the MS.
- d) Flow rate of the light product, along with component-specific flow rates.
- e) Composition of the heavy product.

Figure S6: Experimental and simulation data for one full cycle of experiments T3 (top) and T4 (bottom), the two experiments with the longest adsorption step time.

- a) Temperature at three location in column 2: $10\,\mathrm{cm}$ (green), $60\,\mathrm{cm}$ (yellow), and $110\,\mathrm{cm}$ (red) from the bottom.
- b) Pressure measured at the bottom of column 2.
- c) Composition of the light product as measured by the MS.
- d) Flow rate of the light product, along with component-specific flow rates.
- e) Composition of the heavy product.

Figure S7: Experimental and simulation data for one full cycle of experiments T5 (top) and T6 (bottom), the two experiments with the alternative configurations during the pressure equalization step.

- a) Temperature at three location in column 2: 10 cm (green), 60 cm (yellow), and 110 cm (red) from the bottom.
- b) Pressure measured at the bottom of column 2.
- c) Composition of the light product as measured by the MS.
- d) Flow rate of the light product, along with component-specific flow rates.
- e) Composition of the heavy product.