Compact Titanium Oxycarbide: A New Substrate for Quantitative Analysis

of Molecular Films by Means of Infrared Reflection Absorption

Spectroscopy

SUPPORTING INFORMATION

Izabella Brand,^{1*} Celine Rüdiger,^{2,3} Kurt Hingerl,⁴ Engelbert Portenkirchner,³ Julia Kunze-Liebhäuser,^{3*}

¹ Department of Chemistry, University of Oldenburg, Carl von Ossietzy Str. 7-9, D-26129 Oldenburg, Germany

² Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany. Current address: ³

³ Institut für Physikalische Chemie, Leopold-Franzens-Universität Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria

⁴ Zentrum für Oberflächen- und Nanoanalytik, Universität Linz, Altenbergerstr. 69, A-4040 Linz, Austria

^{*} To whom correspondence should be addressed: <u>izabella.brand@uni-oldenburg.de</u> (phone: +49-441-3973, Fax: 0049441 798 3979), <u>Julia.Kunze@uibk.ac.at</u> (phone: +43-512-507-58013, Fax: +43-512-507 58199)

SI. 1 The optical constants of arachidic acid in IR spectral region.

The optical constants of the arachidic acid ($C_{19}H_{39}COOH$) dissolved in CCl₄ were determined from IR transmission measurements. The refractive index (*n*) and extinction coefficient (*k*) are shown in figure SI1.

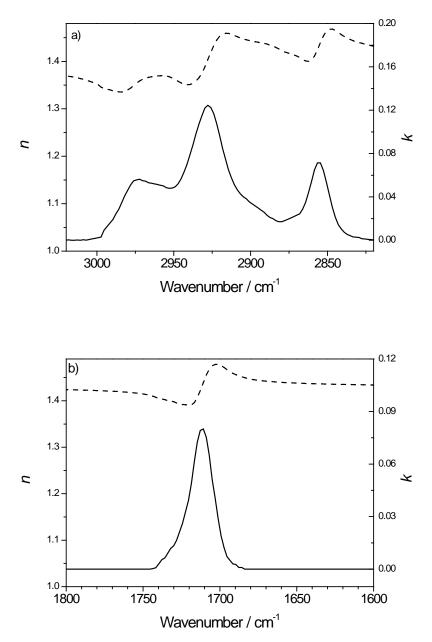


Figure SI 1. The refractive index (*n*; dahed line) and extinction coefficient (*k*; solid line) of arachidic acid in a) CH stretching and b) C=O stretching mode region.

SI. 2 PM IRRA spectra of Langmuir Blodgett (LB) monolayers of C19H39COOH on Au

Figure SI 2 shows the PM IRRA spectra of LB monolayers of $C_{19}H_{39}COOH$ on Au and the PM IRRA spectrum calculated from optical constants for randomly distributed C_{19} $H_{39}COOH$ in a monolayer thick film. In the calculation of the PM IRRA spectrum, the optical constants shown in figure SI1 were used. The stratified system was composed of air|2.7 nm thick $C_{19}H_{39}COOH$ film|Au, the angle of incidence was set to 68 °.

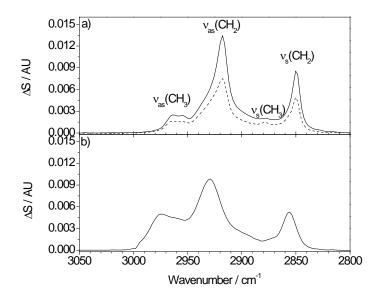


Figure SI 2. PM IRRA spectra of arachidic acid monolayers on Au; a) LB monolayers transferred at a surface pressure equal to 15 (dashed line) and 40 (solid line) mN m⁻¹, and b) calculated PM IRRA spectrum for randomly distributed molecules in a monolayer thick film.

SI. 3 Morphology of the TiO_xC_y substrate

Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to analyze the morphology and surface roughness of the compact TiO_xC_y substrate that was produced by carbothermal reduction of an anodic TiO_2 film on polycrystalline Ti at 750 °C in acetylene/argon atmosphere. SEM micrographs were taken with a field emission SEM based on a GEMINI column in a Zeiss CrossBeam NVision 40 system, where the InLens detector was chosen. The acceleration voltage was set to 4 kV at a working distance of 4 mm. Contact mode AFM was performed with a Veeco Multimode 8 instrument using a SNL-10 probe (silicon tip on silicon nitride cantilever). Analysis of the AFM micrographs was conducted with the NanoScope Analysis 1.5 software. The images where pre-processed with plane fit and zero-order flattening procedures. On these images, roughness analysis was performed.

The SEM image in figure SI 3 shows that the TiO_xC_y surface is composed of irregular grains with an average diameter of $(16 \pm 7) \mu m$.

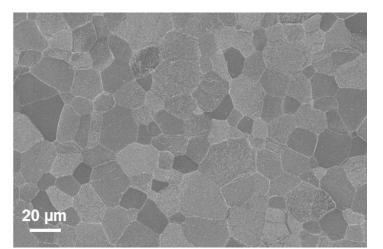


Figure SI 3. SEM image of a TiO_xC_y substrate produced at 750 °C.

Figure SI4 depicts a representative AFM image of the TiO_xC_y surface. One can clearly see protruding borders between various grains and that the surface morphology and roughness differs on different grains. Five zones of each (15 x 15) μ m² were mapped with AFM and the image root mean square height values (rms) were determined. The mean surface roughness calculated from the rms of these zones is equal to (25.3 ± 5.7) nm.

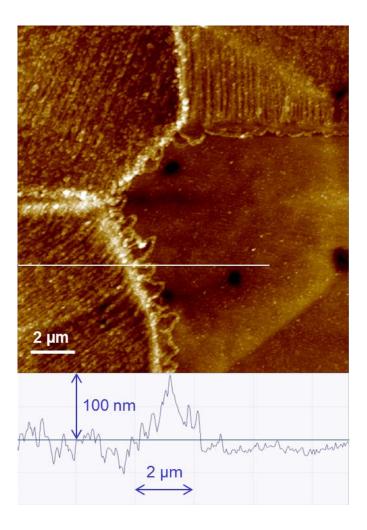


Figure SI4. AFM image of the $\mathrm{TiO}_{x}\mathrm{C}_{y}$ surface with height profile.