Supporting Information for the article titled: Size Resolved High Temperature Oxidation Kinetics of Nano-Sized Titanium and Zirconium Particles

Yichen Zong^{1,‡}, Rohit J. Jacob[‡], Shuiqing Li¹ and Michael R. Zachariah^{*}

Department of Chemical and Biomolecular Engineering, Department of Chemistry and

Biochemistry, University of Maryland, College Park, MD 20706, USA

*Email: <u>mrz@umd.edu</u> (Prof. Michael R. Zachariah)

¹Permanent address: Key laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing, 100084, China

Figure S1. Observed emission profile vs. simulated emission profile for the coupled model fit for 90 nm particle using $\alpha = 0.3$.

Figure S2. Observed emission profile vs. simulated emission profile for the coupled model fit for 28 nm particle using $\alpha = 0.3$.

Figure S3. Comparison of different models using $\alpha = 0.3$ with the experimental emission profile for a 40 nm particle.

Variable Definitions for Model:

- X_{Ti} : Volume fraction of Titanium/Zirconium core left
- $R_{K,D,N}$: Reaction rate for Kinetic limited, Diffusion limited and Nucleation models $[s^{-1}]$
- τ : Burn time [s]
- *T* : *Particle Temperature* [K]

 P_{STiO2} : Saturation Vapor pressure of Titania [N/m²]

 P_{SZrO2} : Saturation Vapor pressure of Zirconia [N/m²]

- a: Thermal accommodation Coefficient
- *d_p*: *Particle diameter*
- m_g : Air molecular weight (4.8*10⁻²⁶ Kg)

- *K:* Boltzmann Constant $(1.38*10^{-23} \text{ m}^2 \text{ Kg s}^{-2} \text{ K}^{-1})$
- *P_g*: *Gas Pressure (1 atm)*
- *y: Adiabatic expansion factor (=1.3 at 1500 K)*
- *T_g*: Gas Temperature (1750 K)
- σ : Stefan Boltzman constant (5.67*10⁻⁸ W/m²K⁴)
- a_p : Surface area of particle (m^2)
- N_{av}: Avogadro's constant

Equations used in the Model:

Kinetic Shrinking Core:

$$\frac{dR_K}{dt} = \frac{(-3) * X_{Ti}^{2/3}}{\tau}$$

Diffusion Shrinking Core:

$$\frac{dR_D}{dt} = \frac{1}{2\tau(1 - X_{Ti}^{-\frac{1}{3}})}$$

Nucleation/ Avrami-Erofeev (A4):

$$\frac{dR_N}{dt} = \frac{(-4) * X_{Ti} * (-\log(X_{Ti}))^{0.75}}{\tau}$$

Saturation Vapor Pressure for TiO₂:

$$log_{10}P_{STIO2} = 16.2 - \frac{30361}{T} - 0.000492 * T$$

Saturation Vapor Pressure for ZrO₂:

$$log_{10}P_{SZrO2} = 3 * 10^{-9} * T^3 - 3 * 10^{-5} * T^2 + 0.074 * T - 74.126$$

Conduction Heat Transfer:

$$Q_{C} = \alpha * \pi * \left[\frac{d_{p}}{2}\right]^{2} * \frac{P_{g}}{2} * \left[\frac{8KT}{\pi m_{g}}\right]^{0.5} * \frac{(\gamma+1)}{(\gamma-1)} * \frac{(T-T_{g})}{T_{g}}$$

Radiation Heat Transfer:

$$Q_R = \varepsilon_{avg} * \sigma * \pi d_p^2 * (T^4 - T_g^4)$$

Evaporative Heat Transfer:

$$Q_V = \frac{1 * P_S a_p}{\sqrt{2 \pi KT_p}} * \frac{\Delta H_{volalization}}{N_{av}}$$

Heat generation:

$$H_{gen} = \frac{dTi_{moles}}{dt} * \Delta H_{rxn}$$

Heat transfer equation:

$$C\Delta T = H_{gen} - \Delta t * \{Q_C + Q_R + Q_V\}$$