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Complement to Section V.A

�e distributions of radial distances g(rZn–C/N), shown in Fig. S5, allow to distinguish di�erent types of transitions. For either
dense or porous structures, the �rst two peaks (labeled 1 and 2 on the Figure, at ≃ 2 and ≃ 3.1 Å respectively) are associated to the
cyanide ions coordinating the zinc, and show very little evolution under pressure. For the dia-c structure, a third (very broad)
peak at distances r ≤ 5.0 Å is also visible; it corresponds to the distances between a given Zn, in one of the interpenetrated dia
frameworks, and the nearest cyanide ions from the other framework. With increasing pressure, this peak shi�s signi�cantly to
shorter distances (from 4.9 at zero pressure to 4.4 Å at P = 2.0 GPa) and simultaneously broadens.�is shi� is reminiscent of the
experimental observation by Collings et al. that, in the high-pressure phase of Zn(CN)2, the corresponding distances (shown in
Fig. 9 of Ref.1) decrease with increasing pressure, with a tendency towards 6-fold coordination of Zn at very large pressures. Our
approach fails to describe reliably the high-pressure phase, but we suspect that both features are indeed connected and propose the
following mechanism: an increase in pressure tends to amplify the buckling vibrations (or ⟨θ2⟩) of a cyanide ion around its Zn–Zn
axis. While such vibrations have little impact on the positions of peaks 1 and 2 in gZn–C/N(r) (at order 2 only in θ), they impact
much more the distances corresponding to the 3rd peak (at order 1 in θ), accounting for its broadening and shi� towards smaller
distances.�e latter shi� is favored by (a combined e�ect of van der Waals interactions and) compression.�e distributions of
Zn–C/N radial distances r′ evaluated on time-averaged atomic positions — see Fig. S5(c) where the third peak seems is converted
for P > 1.2 GPa into a very broad feature — indicate that this transition is accompanied by a substantial increase of disorder in the
relative atomic positions of distinct frameworks.

�is e�ect should also happen in themok phase where gr(Zn–C/N) presents also a broad peak, of similar nature, around 5 Å, but
not in the porous phases where such a peak is absent (see Fig. S5-(a)).�is may explain the fact that pressure-induced transitions
are of di�erent nature in porous structures (at lower pressures, and with a clear discontinuity in volume).�e suspected driving
mechanism for these transitions is rather a mode so�ening, that can be evidenced by the evolution of elastic constants.

∗ Email: anne.boutin@ens.fr
† Email: fx.coudert@chimie-paristech.fr. Twitter: @fxcoudert. Web: http://coudert.name/
1 I. Collings et al., J. Am. Chem. Soc. 135, 7610(2013).
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Figure S1.�e eleven T= 0K structures of Zn(CN)2 studied in this work, as obtained from energy-minimzation. Unit cells are indicated, and a bit
more than 1 unit cell is shown to better give account of the structure’s topology. Color code: Zn in red, C in grey, N in blue. Top line, from le� to
right: lon, che, unj; Second line: dia, gsi, lcs;�ird line: dia-c, una, unc; Last line: cfc,mok.
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Figure S2. Minimal and maximal values of Zn–Zn–Zn angles in (i) the nets considered in this study (11 uppermost points/continuous lines) and
(ii) other 4-coordinated nets found in the RCSR database, but not considered in the study.
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Figure S3. Energy of zinc cyanide polymorphs (per Zn(CN)2 unit) versus density. For each polymorph, the structure was obtained by re-optimizing,
with the MD force �eld (and near-zero Kelvin dynamics), the corresponding structure found by DFT.

Framework αa αb αc αV

cfc -12.62 -12.74 -12.58 -37.94
che -13.50 -13.54 -13.37 -40.41
dia -13.13 -13.15 -12.65 -38.93
dia-c -11.86 -12.18 -11.82 -35.86
gsi -13.28 -13.31 -13.54 -40.13
lcs -14.90 -14.90 -14.82 -44.62

Framework αa αb αc αV

lon -12.92 -12.79 -12.68 -38.39
mok -8.29 14.01 -5.71 0.01
una -13.70 -13.60 -14.28 -41.58
unc -14.36 -14.20 -14.93 -43.49
unj -12.21 -12.22 -11.72 -36.15

Table S1. Table giving, for each Zn(CN)2 framework listed, the linear thermal expansion coe�cients α i = 1
l i
( d l idT ), with l i = a, b, c the cell

parameters; additionally the volume thermal expansion coe�cient αV = 1
V ( dVdT ) is also given. Values are in MK−1 . Note that, apart from themok

case, for a given framework the 3 linear expansion coe�cients di�er from each other by 5 percent at most.
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Figure S4. Porosity ϕ as a function of density ρ for the structures listed, at T = 0 K and P = 0.
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Figure S5. Distributions of Zn-X distances r (in ångströms) between a Zn atom and other types of atoms (X=C or N), for the dia (a) and dia-c (b)
structures, at T = 300 K and pressures P indicated in the legend. For the dia-c, peaks refer to the type of C/N atoms, as indicated in the cartoon (1:
nearest atom of a cyanide coordinating the Zn atom; 2: other atom of such a cyanide; 3: atoms of a further neighbor cyanide, not coordinating
this Zn).(c): distributions of distances r′ of the same type as in (b), but evaluated on time-averaged structures.
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Figure S6. Plots showing the critical pressure Pc (in GPa, estimated fromMD simulations at T= 300 K) versus (a) the framework density (estimated
in MD at the same temperature and zero pressure); (b) the root mean square deviation ∆Ψ of C/N–Zn–C/N angles (in degrees, estimated from
T = 0 K structures); or (c) the bulk modulus B0 at (in GPa, estimated fromMD simulations at T= 300 K).
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Figure S7. Coe�cients B′0 estimated from MD simulations at T = 300K and subsequent �ts to Eq. (4) in the paper, for the 11 structures indicated;
they are plotted against (a) the DFT-obtained energy ∆E(T = 0K) (in kJ/mol); and (b) the angle θ0 (in degrees).
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Figure S8. Evolution of structures (a) cfc, (b) che, (c) dia, and (d) dia-c under pressure, at T = 300 K (in MD simulations of stepwise compression).
Le�: functions g(θ)/ sin(θ) with g(θ) the distribution of angle θ (see inset in Fig. 4 of the main text) at pressures indicated in the captions.
Right: Relative evolution of cell parameters a, b, c and cell angles α, β, γ versus pressure.
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Figure S9. Similar content as in Fig. S8, but for the following structures: (e) gsi, (f) lcs, (g) lon, and (h)mok.
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Figure S10. Similar content as in Fig. S8, but for the following structures: (i) una, (j) unc, and (k) unj.


