Supporting Information

Self-Assembly Process of Dodecanuclear Pt(II)-Linked Cyclic Hexagon

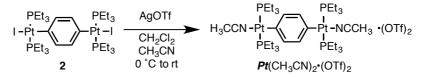
Ayako Baba, Tatsuo Kojima, and Shuichi Hiraoka*

Department of Basic Science, Graduate School of Arts and Sciences The University of Tokyo 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan E-mail: chiraoka@mail.ecc.u-tokyo.ac.jp

Contents

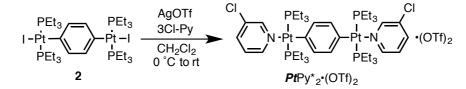
General information and materials	····S2
• Synthesis of Pt(II) dinuclear complexes	····S2
• n - k map for the self-assembly of a cyclic hexagon (Fig. S1)	····S3
• Procedure for the investigation of the self-assembly of a cyclic hexagon	····S4
• Determination of the average composition of the intermediates ($[Pt_a 1_b Py^*_c]^{2a+}$) in each time po	int
(Tables S1 and S2)	····\$5
• ESI-TOF mass study for the self-assembly of $[Pt_61_6]^{12+}$ (Fig. S2)	····S7
• ¹ H DOSY study for the self-assembly of $[Pt_61_6]^{12+}$ (Figs. S3 - S5)	····S8
• ¹ H NMR study for the self-assembly of $[Pt_61_6]^{12+}$ from 1 and $[Pt(CH_3CN)_2]^{2+}$ (Figs. S6 and 7)	····S10
• ¹ H and ¹³ C NMR spectra of Pt(II) dinuclear complexes (Fig. S8 - S10)	····S11
• References	····S12

General information


¹H NMR, ¹³C NMR, ³¹P NMR, and ¹⁹F NMR spectra were recorded using a Bruker AV-500 (500 MHz) spectrometer. All ¹H spectra were referenced using residual solvent peaks, CD_2Cl_2 (δ 5.31) and CD_3NO_2 (δ 4.33). ¹³C spectrum was referenced using a solvent peak, CD_3NO_2 (δ 62.81). ³¹P NMR and ¹⁹F NMR were referenced using external standards, 85% aq.H₃PO₄ solution and trichlorofluoromethane. Electrospray ionization time-of-flight (ESI-TOF) mass spectra were obtained using a Waters Xevo G2-S Tof mass spectrometer.

Materials

Unless otherwise noted, all solvents and reagents were obtained from commercial suppliers (TCI Co., Ltd., WAKO Pure Chemical Industries Ltd., KANTO Chemical Co., Ltd., and Sigma-Aldrich Co.) and were used as received. Ditopic ligand **1** and Pt(II) dinuclear complex **2** were prepared according to the literature.^{1,2}


Synthesis of Pt(II) dinuclear complexes

Synthesis of Pt(CH₃CN)₂·(OTf)₂

To a stirred solution of Pt(II) dinuclear complex **2** (50.0 mg, 41.9 µmol) in CH₂Cl₂ (2 mL) and CH₃CN (0.5 mL) was added AgOTf (22.6 mg, 88.0 mmol) at 0 °C in the dark and under a nitrogen atmosphere. Then a light yellow suspension immediately formed. After stirring for 2 h at rt, the suspension was filtered to remove the precipitated AgI, and the filtrate was concentrated in vacuo. Then the residue was washed with water (2 mL × 3) to remove the unreacted AgOTf and dried in vacuo with slight heating (40 °C) to afford *Pt*(CH₃CN)₂·(OTf)₂ as a colorless solid (43.9 mg, 79%). ¹H NMR (500 MHz, CD₃NO₂, 298 K): δ 6.97 (s, 4H), 2.50 (s, 6H), 1.85-1.60 (m, 24H), 1.16 (dt, *J*_{PH}= 16.7 Hz, *J*_{HH}= 8.5 Hz, 36H); ¹H NMR (500 MHz, CD₂Cl₂, 298 K): δ 6.85 (s, 4H), 2.54 (s, 6H), 1.67-1.55 (m, 24H), 1.12 (dt, *J*_{PH}= 16.8 Hz, *J*_{HH}= 8.2 Hz, 36H); ³¹P{¹H} NMR (202 Hz, CD₃NO₂, 298 K): δ 11.6 (s, *J*_{PPt}= 2699 Hz); ¹⁹F NMR (470 MHz, CD₃NO₂, 298 K): δ -82.2; ESI-TOF mass *m/z* 469.15 [M-2CH₃CN-2OTf]²⁺. ¹H NMR spectrum of *Pt*(CH₃CN)₂·(OTf)₂ is shown in Figure S8.

Synthesis of *Pt*Py*2·(OTf)2

To a stirred solution of Pt(II) dinuclear complex **2** (49.9 mg, 41.9 µmol) and 3-chloropyridine (Py*) (8.4 µL, 88 mmol) in CH₂Cl₂ (2.5 mL) was added AgOTf (22.6 mg, 88.0 mmol) at 0 °C in the dark and under a nitrogen atmosphere. Then a light yellow suspension immediately formed. After stirring for 2 h at rt, the suspension was filtered to remove the precipitated AgI, and the filtrate was concentrated in vacuo. Then the residue was washed with water (2 mL × 3) to remove the unreacted AgOTf and dried in vacuo with slight heating (40 °C) to afford *Pt*Py*₂·(OTf)₂ as a colorless solid (61.4 mg, 82%). ¹H NMR (500 MHz, CD₃NO₂, 298 K): δ 8.87 (d, *J*_{HH} = 2.2 Hz, 2H), 8.80 (dd, *J*_{HH} = 5.4, 1.1 Hz, 2H), 8.09 (ddd, *J*_{HH} = 8.4, 2.2, 1.1 Hz, 2H), 7.72 (dd, *J*_{HH} = 8.4, 5.4 Hz, 2H), 7.30-7.05 (m, 4H), 1.54-1.39 (m, 24H), 1.15 (dt, *J*_{PH}= 16.5 Hz, *J*_{HH} = 8.0 Hz, 36H); ¹³C {¹H} NMR (126 Hz, CD₃NO₂, 298 K) δ 151.97, 151.92, 140.71, 137.80 (m, *C*₀-Pt), 136.57, 129.52, 125.83 (t, ²*J*_{CP} = 9.5 Hz, *C*_r-Pt), 122.44 (q, ¹*J*_{CF} = 321 Hz, OTf), 13.60 (m, PCH₂CH₃), 7.97 (brs, PCH₂CH₃); ³¹P {¹H} NMR (202 Hz, CD₃NO₂, 298 K): δ 10.7 (s, *J*_{PPt} = 2712 Hz); ¹⁹F NMR (470 MHz, CD₃NO₂, 298 K): δ -82.2; ESI-TOF mass *m*/*z* 469.15 [M-2Py*-2OTf]²⁺. ¹H and ¹³C NMR spectra of *Pt*Py*₂·(OTf)₂ are shown in Figures S9 and S10, respectively.

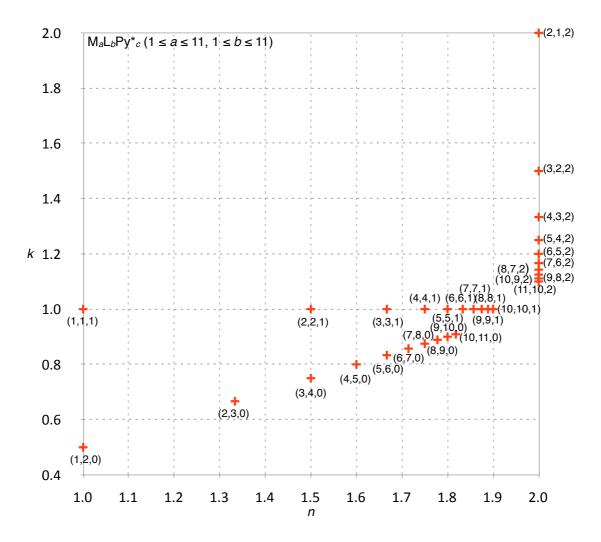
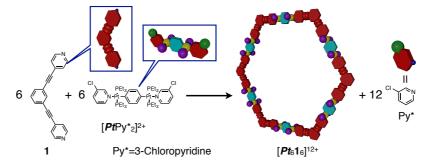


Fig. S1 An *n-k* map for the self-assembly of a cyclic hexagon. The (n, k) values for species from M₁L₂ to M₁₁L₁₀Py*₂ (30 species) are plotted as crosshairs in red. The M_aL_bPy*_c complex is depicted as (a, b, c)

Procedure for the investigation of the self-assembly of a cyclic hexagon

As an internal standard solution, [2.2]paracyclophane (4.21 mg) was dissolved in CHCl₃ (8.00 mL). The internal standard solution (40 µL) was introduced to two NMR tubes (tube A and B) and concentrated in vacuo. Then the mixture of *Pt*Py*₂·(OTf)₂ (10.0 mg, 6.83 µmol) and 25 µL of a 1,2,4,5-tetramethylbenzene solution in CD₃NO₂ (1.00 mg in 100 µL CD₃NO₂) was diluted with CD₃NO₂ (225 µL) (solution A). Then 50 µL of solution A was added to tube A and diluted with CD₃NO₂ (400 µL). At this stage, the exact concentration of *Pt*Py*₂·(OTf)₂ in this solution was unambiguously determined through the comparison with the quantity of [2.2]paracyclophane, 1,2,4,5-tetramethylbenzene, and *Pt*Py*₂·(OTf)₂ by ¹H NMR. Based on this concentration, the exact concentration of solution A was exactly determined. In parallel, ditopic ligand 1 (3.83 mg, 13.7 mol) was dissolved in CHCl₃ (500 µL) (solution B). Then 50 µL of solution B was added to tube B, concentrated in vacuo, and dissolved in CD₃NO₂ (450 µL). At this stage, the exact amount of ditopic ligand 1 in tube B was unambiguously quantified by ¹H NMR using [2.2]paracyclophane as the internal standard. Then to the solution in tube B was added exactly 1 eq. of *Pt*Py*₂·(OTf)₂ to ditopic ligand 1 in solution A at 273 K, and the self-assembly of the cyclic hexagon was monitored at 298 K by ¹H NMR every 2 hours. The quantities of 1, [*Pt*Py*₂]²⁺, [*Pt*₆1₆]¹²⁺, and Py* were quantified by the integral of each ¹H signal against the signal of the internal standard ([2.2]paracyclophane).


For the monitor of the self-assembly process, ¹H NMR spectrum was measured with 30 s delay time and scanned 32 times. It took 20 min to obtain one ¹H NMR spectrum. Because the detection of the species that converts to another species during the measurement is expected to be difficult, we estimate that the lifetime of the unobservable intermediates should be less than 20 min.

For the investigation of the self-assembly of a cyclic hexagon from 1 and $Pt(CH_3CN)_2 \cdot (OTf)_2$, the same procedure was adopted in a different interval and the quantities of 1 and $[Pt_61_6]^{12+}$ were quantified.

Determination of the average composition of the fragment species, $[Pt_a 1_b Py^*_c]^{2a+}$, in each time

point

The amounts of 1, $[PtPy*_2]^{2+}$, $[Pt_61_6]^{12+}$, and Py* at each time point during the self-assembly process were quantified by ¹H NMR measurements using [2.2]paracyclophane as an internal standard.

 $[PtPy_{2}^{*}]^{2+}$ $[Pt_61_6]^{12+}$ 1 Py* Time 0 0 0 l_0 m_0 t $l_{\rm t}$

 $m_{\rm t}$

Table S1. The quantities of each component of the above scheme

At time t, the average composition of the intermediates, $(Pt_a \mathbf{1}_b Py^*_c)_{ave}$, is expressed by equations (3) – (5).

$a = m_0 - m_t - 6 \cdot n_t$	(3)
$b = l_0 - l_t - 6 \cdot n_t$	(4)
$c = 2 \cdot m_0 - 2 \cdot m_t - o_t$	(5)

 $n_{\rm t}$

 o_{t}

where l_0 and m_0 are the quantities for 1 and $[PtPy_2^*]^{2+}$, respectively at time = 0 and l_1 , m_1 , n_1 , and o_1 are the quantities for 1, $[PtPy_2]^{2+}$, $[Pt_61_6]^{12+}$, and Py*, respectively at time = t (Table S1).

Then the ($\langle n \rangle$, $\langle k \rangle$) values for ($Pt_a \mathbf{1}_b Py^*_c$)_{ave} at each time point were determined by equations (1) and (2) in the main text. The date obtained for the self-assembly of $[Pt_61_6]^{12+}$ are listed in Table S2.

Time										
(min)	1	$\left[\boldsymbol{Pt} \mathbf{Py}^{*}_{2}\right]^{2+}$	$[\mathbf{Pt}_{6}1_{6}]^{12+}$	Py*	$[Pt1_2]^{2+}$	а	b	С	<n></n>	< <i>k</i> >
0	1.717	1.635	0.000	0.000	0.000	0.000	0.000	0.000	-	-
120	1.588	1.366	0.000	0.279	0.278	0.129	0.269	-0.021	1.040	0.480
240	1.510	1.210	0.007	0.481	0.466	0.163	0.381	-0.068	1.033	0.427
360	1.407	1.023	0.010	0.627	0.570	0.248	0.550	-0.008	0.916	0.451
480	1.348	0.913	0.014	0.806	0.678	0.284	0.638	-0.070	1.000	0.445
800	1.220	0.727	0.018	1.007	0.798	0.389	0.801	-0.014	0.990	0.486
900	1.135	0.597	0.023	1.133	0.857	0.444	0.900	0.030	0.953	0.493
1200	1.068	0.509	0.030	1.288	0.935	0.466	0.943	0.010	0.977	0.494
1440	1.031	0.445	0.037	1.416	0.978	0.461	0.965	-0.045	1.001	0.478
2340	0.880	0.288	0.055	1.674	1.017	0.505	1.016	0.000	0.995	0.497
2460	0.850	0.255	0.058	1.712	1.010	0.517	1.030	0.022	0.983	0.502
2880	0.825	0.226	0.063	1.742	0.988	0.511	1.028	0.041	0.953	0.497
3570	0.784	0.196	0.073	1.842	0.966	0.498	1.004	0.024	0.969	0.496
4320	0.725	0.165	0.086	1.981	0.962	0.474	0.953	0.002	0.994	0.498
5040	0.703	0.144	0.091	1.979	0.928	0.470	0.947	0.048	0.941	0.496
5400	0.680	0.136	0.094	2.030	0.911	0.474	0.937	0.042	0.967	0.506
7860	0.657	0.127	0.110	2.151	0.864	0.401	0.850	-0.032	0.981	0.472
8610	0.637	0.128	0.112	2.166	0.830	0.405	0.832	-0.006	0.981	0.487
9390	0.620	0.117	0.115	2.142	0.815	0.406	0.828	0.051	0.920	0.491
10020	0.603	0.115	0.117	2.218	0.820	0.410	0.816	0.010	0.993	0.502
11460	0.590	0.115	0.123	2.214	0.800	0.389	0.783	0.040	0.944	0.497
12990	0.571	0.113	0.122	2.225	0.759	0.411	0.787	0.067	0.960	0.522
14130	0.599	0.119	0.127	2.246	0.766	0.355	0.754	-0.011	0.957	0.471
18000	0.603	0.128	0.133	2.294	0.760	0.317	0.711	-0.068	0.987	0.446
19440	0.601	0.126	0.132	2.301	0.754	0.323	0.716	-0.069	0.999	0.451
19650	0.595	0.127	0.130	2.250	0.767	0.340	0.726	-0.007	0.945	0.468
20940	0.635	0.150	0.128	2.250	0.785	0.317	0.720	-0.087	0.945	0.440

Table S2. The quantities of 1, $[PtPy*_2]^{2+}$, $[Pt_6\mathbf{1}_6]^{12+}$, Py*, and $[Pt\mathbf{1}_2]^{2+}$ and the values of *a*, *b*, and *c* and the (<*n*>, <*k*>) values at each time point for the self-assembly of $[Pt_6\mathbf{1}_6]^{12+}$

ESI-TOF mass study for the self-assembly of $[Pt_61_6]^{12+}$

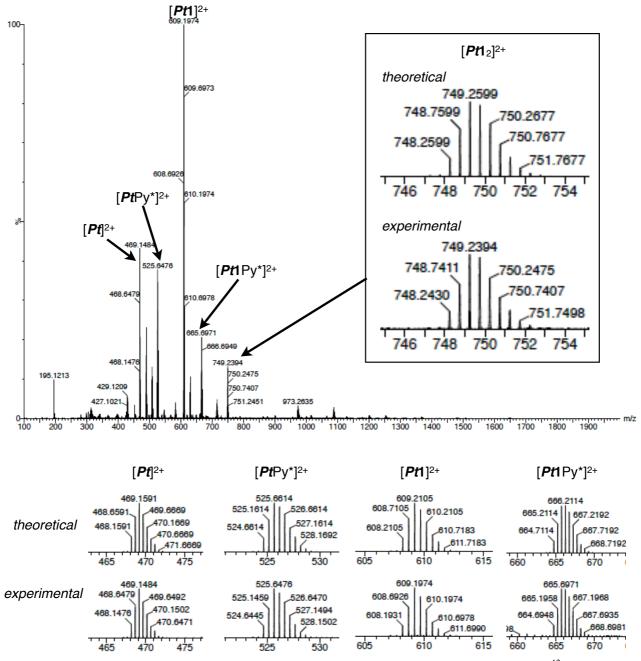
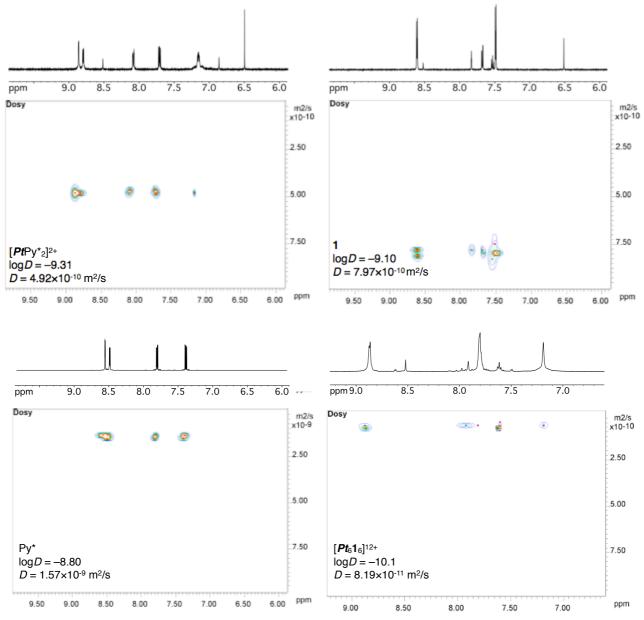
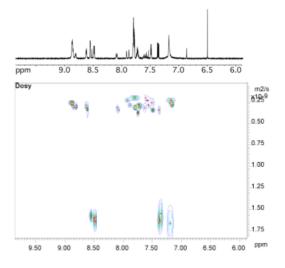
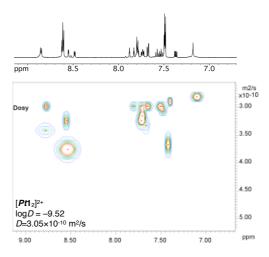




Fig. S2 ESI-TOF mass spectrum of the equilibrated sample of the self-assembly of $[Pt_61_6]^{12+}$ from 1 and $[PtPy*_2]^{2+}$.


¹H DOSY study for the self-assembly of [*Pt*₆1₆]¹²⁺

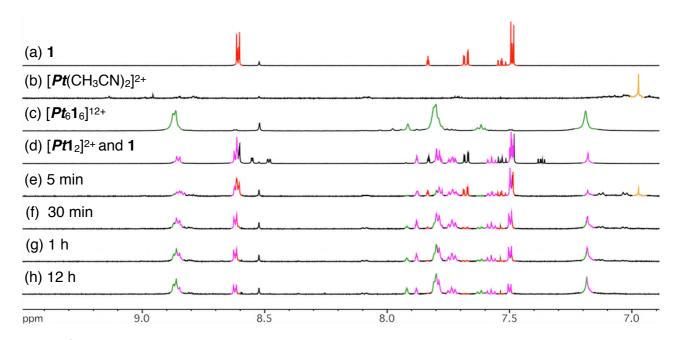

Fig. S3 ¹H DOSY spectra (500 MHz, CD₃NO₂, 298 K) of $[PtPy^*]^{2+}$, **1**, Py*, and $[Pt_6\mathbf{1}_6]^{12+}$. $[Pt_6\mathbf{1}_6]^{12+}$ was selectively obtained by mixing $Pt(CH_3CN)_2 \cdot (OTf)_2$ and **1** in a 1:1 ratio in CD₂Cl₂ and then the solvent was replaced to CD₃NO₂.

Fig. S4 ¹H DOSY spectrum (500 MHz, CD₃NO₂, 298 K) of the equilibrated sample of the self-assembly of $[Pt_6\mathbf{1}_6]^{12+}$ from **1** and $[PtPy*_2]^{2+}$.

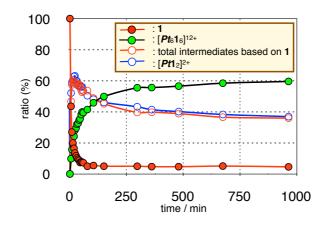


Fig. S5 ¹H DOSY spectrum (500 MHz, CD₃NO₂, 298 K) of the mixture of **1** and $[Pt1_2]^{2+}$. This mixture was obtained by mixing $[PtPy*_2]^{2+}$ and **1** in a 1:4 ratio.

¹H NMR study for the self-assembly of $[Pt_61_6]^{12+}$ from 1 and $[Pt(CH_3CN)_2]^{2+}$

Fig. S6 ¹H NMR spectra of each component for the cyclic hexagon and the reaction mixture (500 MHz, CD₃NO₂, 298 K). (a) **1**, (b) $[Pt(CH_3CN)_2]^{2+}$, (c) $[Pt_6\mathbf{1}_6]^{12+}$, (d) a mixture of $[Pt\mathbf{1}_2]^{2+}$ and **1**, and the reaction mixture monitored at (e) 5 min, (f) 30 min, (g) 1 h, and (h) 12 h. Signals colored in red, yellow, green, and purple indicate **1**, $[Pt(CH_3CN)_2]^{2+}$, $[Pt_6\mathbf{1}_6]^{2+}$, and $[Pt\mathbf{1}_2]^{2+}$, respectively.

Fig. S7 Time variation of each species in the reaction mixture of the self-assembly of the cyclic hexagon and the abundance ratio of total intermediates based on **1**.

¹H and ¹³C NMR spectra of Pt(II) dinuclear complexes

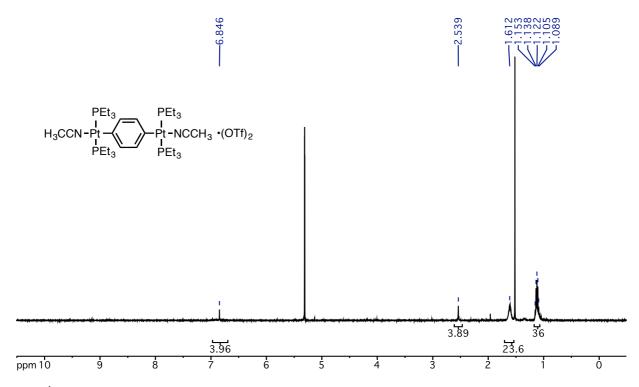
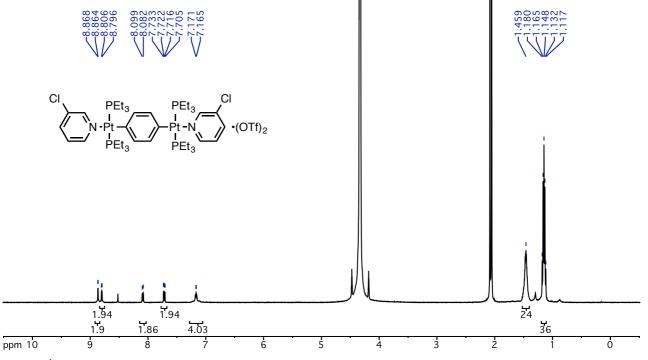
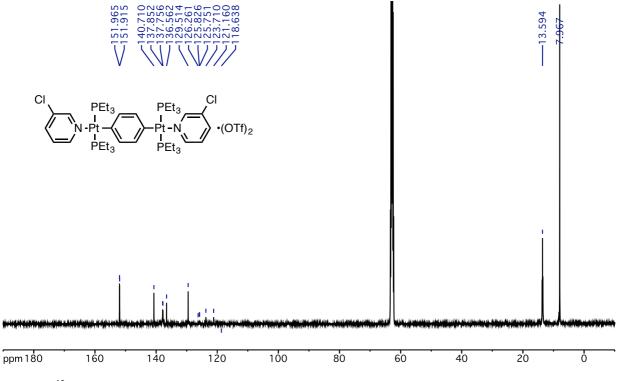




Fig. S8 ¹H NMR spectrum (500 MHz, CD₂Cl₂, 298 K) of *Pt*(CH₃CN)₂·(OTf)₂.

Fig. S9 ¹H NMR spectrum (500 MHz, CD₃NO₂, 298 K) of *Pt*Py*₂·(OTf)₂.

Fig. S10 ¹³C NMR spectrum (126 MHz, CD₃NO₂, 298 K) of *Pt*Py*₂·(OTf)₂.

References

- [1] Kaae, B. H.; Harpsøe, K.; Kvist, T.; Mathiesen, J. M.; Mølck, M.; Gloriam, D.; Jimenez, H. N.; Uberti, M. A.; Nielsen, S. M.; Nielsen, B.; Bräuner-Osborne, H.; Sauerberg, P.; Clausen, R. P.; Madsen, U. *ChemMedChem*, 2012, 7, 440.
- [2] Gardinier, J. R.; Clérac, R.; Gabbaï, F. P. J. Chem. Soc., Dalton Trans. 2001, 3453.