
In the one dimensional case, the solution to Eq. (5) with time dependent diffusivity is well 

known 
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Eq. (6) can be further simplified by applying Gauss's theorem: 
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Combining the above two equations yields Eq. (7). To obtain Eq. (9), an approximation 

must be made as shown in the following equation 
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which comes from the asymptotic expansion. This approximation results in less than a 1% 

error in the temperature range of 0℃ <T<1300℃ and the activation range of 30kJ/mol<𝐸𝑎 

<300kJ/mol.  Substituting this approximation into Eq. (7) gives 
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To locate the DSC curve peak position, 𝜉𝑡 is treated as an independent variable, and a value 

for 𝜉𝑝 is found that makes 𝐷𝑆𝐶′(𝜉𝑝)  zero, and then 𝑇𝑝 is found from 𝜉𝑝.  
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An approximate is made because 𝐸𝑎 𝑅𝑇⁄  always changes slowly compared to Θ𝑡  and 

therefore it can be viewed as a constant in the derivatives. The root of the above equation is 

independent of any system parameters can be found numerically as: 

 Θ𝑝 ≈ 0.0023 (S6) 

 


