Supplemental Information ## Visible-light Photocatalytic Activity of S-doped α -Bi₂O₃ Shiqi Jiang^a, Liang Wang^a, Weichang Hao^a*, Wenxian Li^b, Huiju Xin^a, Wenwen Wang^a*, Tianmin Wang^a ^a Center of Materials Physics and Chemistry, Beihang University, Beijing 100191, PR China ^b Solar Energy Technologies, School of Computing, Engineering and Mathematics, University of Western Sydney, Penrith, New South Wales, 2751, Australia Figure S1 The XRD patterns of α-Bi₂O₃ S doped at 7 % before and after photocatalytic reaction. **Figure S2** UV-Vis absorption spectra of compounds mixed with 5%, 7%, 9% $Bi_2(SO_4)_3$ and α - Bi_2O_3 Figure S3 (a) UV-Vis absorption spectra and (b) Tauc plot of Bi₂(SO₄)₃. The band gap of $Bi_2(SO_4)_3$ can be determined with the following Equation S1 below^{S1}. $$\alpha h v = A(h v - E_g)^{\frac{n}{2}}$$ (S1) The α , ν , Eg, A, and n are the absorption coefficient, the incident light frequency, the band gap, a constant and an integer, respectively. The values of n and Eg were obtained as follows: First, the approximate value of Eg was estimated through extrapolating the straight line to the wavelength axis (Fig. S2(a)), and then plotting $ln(\alpha hv)$ vs. ln(hv-Eg) (inset of Fig. S2(a)). Thus, the slope of the straightest line near the band edge is the value of n. Second, plot $(\alpha h v)^{2/n}$ vs. hv, and then evaluate the band gap Eg (4.57 eV) by drawing an extension line to the hv axis intercept (Fig. S2(b)). Figure S4 The crystal structure of $\alpha\text{-Bi}_2\text{O}_3$ with marked asymmetric Bi and O sites. ## Refence (S1) Butler, M. A. Photoelectrolysis and Physics Properties of the Semiconducting Electrode WO₂. *J. Appl. Phys.* **1977**, 48, 1914-1920.