Versatile Enantioselective Synthesis of Functionalized Lactones via CopperCatalyzed Radical Oxyfunctionalization of Alkenes

Rong Zhu and Stephen L. Buchwald*
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States

SUPPORTING INFORMATION

General considerations. All reactions were carried out with dry solvents under anhydrous conditions, unless otherwise noted. Anhydrous ethyl acetate (EtOAc), methyl tert-butyl ether (MTBE) and 2,2'-isopropylidenebis[(4S)-4-tert-butyl-2-oxazoline] (99\%) were purchased from Aldrich and used as received. Tetrakis(acetonitrile)copper(I) hexafluorophosphate was purchased from Strem and stored in a dry box. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. All chemicals were weighed on the bench top, in the air. Reactions were monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy and thin-layer chromatography (TLC) carried out on 0.25 mm E. Merck silica gel plates (60F254) using UV light as a visualizing agent and phosphomolybdic acid in ethanol or iodine on silica gel as developing agents. Flash silica gel chromatography was performed using Silicycle SiliaFlashP60 (230-400 mesh) silica gel. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AMX 400 spectrometer and were calibrated using residual solvent as an internal reference $\left(\mathrm{CDCl}_{3}: 7.26 \mathrm{ppm}\right.$ for ${ }^{1} \mathrm{H}$ NMR and 77.16 ppm for ${ }^{13} \mathrm{C}$ NMR). ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Varian 300 MHz spectrometer or a Bruker AMX 400 spectrometer and were calibrated using CFCl_{3} as an external reference (0 ppm). The following abbreviations were used to explain the multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{b}=$ broad, at $=$ apparent triplet, ad = apparent doublet. IR spectra were recorded on a Thermo Scientific Nicolet iS5 FT-IR spectrometer (iD5 ATR). HPLC analyses were performed on an Angilent 1100 series system with Daicel Chiralcel ${ }^{\circledR}$ columns ($4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$) in hexanes/i-PrOH mixtures. Melting points (m.p.) were obtained on a Mel-Temp capillary melting point apparatus. Optical rotations were measured on Jacsco P-1010 polarimeter with a sodium lamp (589 nm) at $24^{\circ} \mathrm{C}$. Elemental analyses were performed by Atlantic Microlabs Inc., Norcross, GA. HRMS (DART or ESI)
spectra were recorded on a Bruker Daltonics APEXIV 4.7 Tesla Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS).

Synthesis and Characterization of non-Commercial Substrates

4-Phenylpent-4-enoic acid (2a), ${ }^{1}$ 4-(4-bromophenyl)pent-4-enoic acid (2b), ${ }^{1}$ 4-(4-chlorophenyl)pent-4-enoic acid (2c), ${ }^{1}$ 4-(4-trifluoromethylphenyl)pent-4-enoic acid (2e), ${ }^{1}$ 4-(4-methoxyphenyl)pent-4-enoic acid (2f), ${ }^{2} \quad 4$-(3-thienyl)pent-4-enoic acid $\quad(\mathbf{2 g}),{ }^{1} \quad 4$-(3-acetylphenyl)pent-4-enoic acid (2h), ${ }^{1} 5$-phenylhex-5-enoic acid (2i), ${ }^{1}$ 3,3-dimethyl-5-phenylhex-5-enoic acid (2j), ${ }^{1}(Z)$-5-phenylhept-5-enoic acid ((Z)-2m, Z:E $=14: 1$ as determined by ${ }^{1} \mathrm{H}$ NMR analysis), ${ }^{1}$ ($\left(\right.$)-5-phenylhept-5-enoic acid $\left((E)-2 m, Z: E<1: 20\right.$ as determined by ${ }^{1} \mathrm{H}$ NMR analysis), ${ }^{1}$ were prepared according to literature procedures.

4-(4-Cyanophenyl)pent-4-enoic acid (2d): An oven-dried 100 mL round-bottom-flask equipped with a magnetic stir bar was charged with 4-cyanophenyl boronic acid (1.5 equiv, 0.96 $\mathrm{g}, 6.5 \mathrm{mmol}$) and precatalyst ($80 \mathrm{mg}, 0.02$ equiv). The flask was sealed with a rubber septum and connected to a Schlenk line though a needle. The flask was then evacuated and backfilled with argon (This sequence was repeated a total of three times). tert-Butyl 4-bromopent-4-enoate ($1.02 \mathrm{~g}, 4.3 \mathrm{mmol}, 1.0$ equiv), ${ }^{3}$ followed by anhydrous tetrahydrofuran (10 mL) and potassium phosphate aqueous solution (2 equiv, 1.84 g in 17 mL degassed water) was added via syringe. The resulting mixture was stirred at room temperature for 48 h before diluted with water (50 mL) and ethyl ether (50 mL). The aqueous phase was separated and extracted with ethyl ether (50 $\mathrm{mL} \times 3$). The combined organic layers was concentrated in vacuo. The residue was passed through a short plug of silica gel ($1 \mathrm{~cm} \times 4 \mathrm{~cm}$) and eluted with hexanes/ethyl ether until all the coupling product was eluted as detected by TLC. The elute was concentrated in vacuo and redissolved in dichloromethane (20 mL), to which at $0{ }^{\circ} \mathrm{C}$ was added 6.5 mL (20 equiv) trifluoroacetic acid slowly. The resulting mixture was stirred at room temperature for 48 h before
concentrating in vacuo to remove the solvents and excess trifluoroacetic acid. The residue was purified by silica gel flash column chromatography (hexanes: ethyl acetate $=5: 1$ to $1: 1$) followed by one recrystallization to afford 2d ($0.35 \mathrm{~g}, 40 \%$ yield) as a pale yellow solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.42(\mathrm{~s}$, 1 H), $5.25(\mathrm{~s}, 1 \mathrm{H}), 2.84(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 178.9,145.2,145.2,132.4,126.9,118.9,116.0,111.4,32.8,29.7$; IR (film) $\mathrm{v}_{\max } 2970,2232$, 1739, 1699, 1627, 1365, 1217, 905, $839 \mathrm{~cm}^{-1} ; \mathrm{R}_{\mathrm{f}}$ (hexanes: ethyl acetate $=1: 1$) $=0.25 ; \mathrm{m} . \mathrm{p} .101$ ${ }^{\circ}$ C. HRMS: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$Calcd. For $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}$: 219.1128; Found: 219.1128 .

4-Methylene-6-phenylhex-5-ynoic acid (2k): Adapted from a previously reported procedure: ${ }^{4}$ Powered anhydrous $\mathrm{AlCl}_{3}(3.7 \mathrm{~g}, 28 \mathrm{mmol}, 1.75$ equiv) was added in portions to an ice-cold mixture of succinic anhydride ($2.4 \mathrm{~g}, 24 \mathrm{mmol}, 1.5$ equiv) and 1-phenyl-2trimethylsilylacetylene (3.1 mL , 16 mmol , 1.0 equiv) in 200 mL anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h and then at room temperature for 16 h . The dark brown mixture was carefully quenched with 1 N HCl at $0^{\circ} \mathrm{C}$. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL} \times 2)$. The combined organic phase was washed with 1 N HCl , water and brine, and dried over sodium sulfate. The solvent was removed in vacuo and the residue was purified by passing through a short silica gel column to afford the crude product 4-oxo-6-phenylhex-5-ynoic acid as a brown solid ($1.6 \mathrm{~g}, 50 \%$ yield) which was used in the next reaction without further purification.

An oven-dried 200 mL round-bottom-flask equipped with a magnetic stir bar was charged with methyltriphenylphosphonium bromide ($3.7 \mathrm{~g}, 10.4 \mathrm{mmol}, 1.3$ equiv) and anhydrous THF (100 mL). The mixture was stirred at $0^{\circ} \mathrm{C}$ and sodium tert-butoxide ($2.0 \mathrm{~g}, 20.6 \mathrm{mmol}, 2.6$ equiv) was added in portions. The resulting yellow slurry was stirred at room temperature for 45 min before being cooled to $0{ }^{\circ} \mathrm{C}$. At $0^{\circ} \mathrm{C}, 4-0 x o-6$-phenylhex- 5 -ynoic acid ($1.6 \mathrm{~g}, 8 \mathrm{mmol}, 1.0$ equiv) was added slowly to the reaction mixture. The resulting mixture was stirred at room temperature for 16 h before concentrating in vacuo. The residue was diluted with 200 mL 0.5 N
aqueous sodium hydroxide and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL} \times 3)$. The aqueous layer was cooled to $0^{\circ} \mathrm{C}$, acidified $(\mathrm{pH}<2)$, and extracted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL} \times 3)$. The combined organic layers were washed with water ($30 \mathrm{~mL} \times 3$) and brine (30 mL), dried over sodium sulfate, and concentrated in vacuo. The residue was purified by silica gel flash column chromatography to afford $\mathbf{2 k}$ as a yellow solid ($0.77 \mathrm{~g}, 54 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~m}, 3 \mathrm{H}), 5.47(\mathrm{~s}, 1 \mathrm{H}), 5.38(\mathrm{~d}, \mathrm{~J}=$ $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 179.2, 131.8, 129.6, 128.5, 128.4, 123.1, 122.3, 90.2, 88.7, 33.0, 32.2; IR (film) $v_{\max } 2970,1737$, 1706, 1610, 1489, 1442, 1373, 1217, 901, 754, $689 \mathrm{~cm}^{-1} ; \mathrm{R}_{\mathrm{f}}($ hexanes: ethyl acetate $=2: 1)=$ 0.50 ; m. p. $74{ }^{\circ} \mathrm{C}$. Anal. Calcd. For $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{2}$: C, 77.98; H, 6.04. Found: C, 77.81 ; H, 6.05.

4-Methylene-6-(trimethylsilyl)hex-5-ynoic acid (21): An oven-dried 200 mL round-bottomflask equipped with a magnetic stir bar was charged with methyltriphenylphosphonium bromide ($12.8 \mathrm{~g}, 36 \mathrm{mmol}, 2.4$ equiv). The flask was sealed with a rubber septum and connected to a Schlenk line though a needle. The flask was briefly evacuated and backfilled with argon (this sequence was repeated a total of 3 times). Anhydrous THF (100 mL) was added via syringe. At $-78{ }^{\circ} \mathrm{C}$ to the stirring mixture was added n-butyl lithium solution (2.5 M in hexane, $22 \mathrm{~mL}, 54$ $\mathrm{mmol}, 3.6$ equiv) dropwise. The reaction mixture was moved to a $0^{\circ} \mathrm{C}$ bath and stirred at the same temperature for 0.5 h before being cooled to $-78{ }^{\circ} \mathrm{C}$. At $-78{ }^{\circ} \mathrm{C}$, a solution of 4 -oxo-6-(trimethylsilyl)hex-5-ynoic acid ${ }^{5}$ ($3.1 \mathrm{~g}, 15 \mathrm{mmol}, 1.0$ equiv) in anhydrous THF (2 M) was added slowly to the reaction mixture via syringe. The resulting mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 0.5 h , then $0^{\circ} \mathrm{C}$ for 2 h , and finally warmed to room temperature and stirred overnight. The reaction mixture was quenched at $0{ }^{\circ} \mathrm{C}$ by the addition of $70 \mathrm{~mL} 1 \mathrm{M} \mathrm{HCl}, 50 \mathrm{~mL}$ saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and 50 mL brine. The aqueous layer was separated and extracted with ethyl ether. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica gel flash column chromatography to afford $\mathbf{2 l}$ as a colorless oil. ($1.34 \mathrm{~g}, 42 \%$ yield)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.67(\mathrm{br}, 1 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H}), 2.61(\mathrm{t}, \mathrm{J}=7.6$ $\mathrm{Hz}, 2 \mathrm{H}$), $2.48\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}\right.$), $0.19(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.3,129.6$, 123.1, 104.4, 95.2, 32.8, 31.9, 0.0; IR (film) $\mathrm{v}_{\max } 2960,2145,1709,1608,1411,1250,904,838$, $759 \mathrm{~cm}^{-1}$; R_{f} (hexanes: ethyl acetate $=2: 1$) $=0.70$; HRMS: $[\mathrm{M}-\mathrm{H}]-$ Calcd. For $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{Si}$: 195.0847; Found: 195.0854.

General Procedure and Characterization for the Copper-Catalyzed Enantioselective Oxyfunctionalization of Alkenes

Enantioselective Oxyazidation:

General procedure A for the Cu-catalyzed enantioselective oxyazidation (Table 1):

Caution: Proper safety precautions should be followed. This reaction should be carried out behind a blast shield and only on a small scale. It should be noted that while no incident occurred during this study, azides are potentially hazardous compounds and adequate safety measures should be taken.

An oven-dried 100 mL round bottom flask equipped with a Teflon-coated magnetic stir bar was charged with tetrakis(acetonitrile)copper(I) hexafluorophosphate ($9.3 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.05$ equiv), 2,2'-isopropylidenebis[(4S)-4-tert-butyl-2-oxazoline] (L) ($7.4 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.05$ equiv) and unsaturated carboxylic acid 2 ($0.50 \mathrm{mmol}, 1.0$ equiv). The flask was sealed with a rubber septum and connected to a Schlenk line though a needle. The flask was briefly evacuated and backfilled with argon (this sequence was repeated a total of two times). The septum was removed, (diacetoxyiodo)benzene ($403 \mathrm{mg}, 1.25 \mathrm{mmol}, 2.5$ equiv, dried under high vacuum for 2 h in advance.) was quickly added into the flask and the flask was sealed again with the septum. The flask was connected to a Schlenk line though a needle. The reaction flask was then briefly evacuated and backfilled with argon (this sequence was repeated a total of three times). The reaction flask was cooled to $-78{ }^{\circ} \mathrm{C}$. At the same temperature, without stirring, anhydrous diethyl ether (30 mL) was added to the flask via syringe followed by trimethylsilyl azide ($158 \mu \mathrm{~L}, 1.20 \mathrm{mmol}$, 2.4 equiv). After cooled at $-78^{\circ} \mathrm{C}$ for 2 min , the argon pressure was removed. A venting needle was inserted. The reaction mixture was moved to a $-10^{\circ} \mathrm{C}$ bath and
stirred at the same temperature for 16 h . The reaction mixture was quenched carefully with saturated aqueous sodium bicarbonate solution (20 mL). The aqueous layer was separated and extracted with diethyl ether ($15 \mathrm{~mL} \times 3$). The combined organic layers was concentrated in vacuo. The residue was purified by silica gel flash column chromatography (EtOAc/hexanes/toluene, using UV light as a visualizing agent and phosphomolybdic acid in ethanol or iodine on silica gel as developing agents) to afford the oxyazidation product 4.

(S)-5-(azidomethyl)-5-phenyldihydrofuran-2(3H)-one (4a) Following general procedure A, the title compound was synthesized from 4-phenyl-4-pentenoic acid (2a) ($88.0 \mathrm{mg}, 0.50 \mathrm{mmol}$). The product was purified by silica gel flash column chromatography (hexanes: toluene: ethyl acetate $=1: 0: 0$ to $0: 1: 0$ to $0: 12: 1$ to $0: 8: 1$) to afford $4 \mathrm{a}\left(66.9 \mathrm{mg}, 62 \%\right.$ yield, 89% ee) as a pale yellow sticky oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.42-7.33 (m, 5 H), 3.67 (d, $J=13.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.53(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.78-2.65 (m, 2 H), 2.55-2.40 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 175.7, 140.6, 128.9, 128.6, 124.7, 87.7, 60.0, 31.4, 28.7; IR (film) $v_{\max }$ 2096, 1772, 1739, 1448, 1365, 1196, 1062, $935 \mathrm{~cm}^{-1}$; R_{f} (toluene: ethyl acetate $=4: 1)=0.6$; Anal. Calcd. For $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 60.82; H, 5.10. Found: C, 61.11; H, 5.18. $[\alpha]_{D}{ }^{24}=-28.1\left(\mathrm{c}=0.8, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by chiral HPLC analysis: Chiralcel OD-H $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, hexanes: $i-\mathrm{PrOH}=95: 5,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{R}=$ 20.6 min (major) and 26.3 min (minor).

(S)-5-(azidomethyl)-5-(4-bromophenyl)dihydrofuran-2(3H)-one

Following general procedure A, the title compound was synthesized from 4-(4-bromophenyl)pent-4-enoic acid (2b) ($127.5 \mathrm{mg}, 0.50 \mathrm{mmol}$). The product was purified by silica gel flash column chromatography (hexanes: toluene: ethyl acetate $=1: 0: 0$ to 10:0:1 to 6:1:1 to 4:2:1) to afford $\mathbf{4 b}$ ($82.6 \mathrm{mg}, 56 \%$ yield, $89 \% \mathrm{ee}$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.65 (d, J = 13.2 Hz, 1 H), 3.51 (d, $J=13.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.80-2.64 (m, 2 H), 2.52 (m, 1 H), 2.39 (m, 1 H), ; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 175.3, 139.7, 132.1, 126.6, 122.9, 87.2, 59.9, 31.5, 28.7; IR (film) $\mathrm{v}_{\max }$ 2097, 1738, 1365, 1229, 1217, $1007 \mathrm{~cm}^{-1}$; R_{f} (hexanes: toluene: ethyl acetate $=$ 2:2:1)= 0.4; Anal. Calcd. For $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Br}$: C, 44.62; H, 3.40. Found: C, 44.90; H, 3.54. $[\alpha]_{D}{ }^{24}=$ +4.8 ($\mathrm{c}=1, \mathrm{CHCl}_{3}$). The enantiomeric excess was determined by chiral HPLC analysis:

Chiralcel OD-H $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, hexanes: $i-\mathrm{PrOH}=95: 5,1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}, \mathrm{t}_{R}=24.6 \mathrm{~min}$ (major) and 31.4 min (minor).

SI-Scheme 1. Synthesis and ORTEP presentation of 7b. (thermal ellipsoids shown at 50% probability. Hydrogen atoms are omitted for clarity.)

Derivatization of 4b: (S)-5-(4-bromophenyl)-5-((4-(4-bromophenyl)-1 H-1,2,3-triazol-1$\mathbf{y l}$)methyl)dihydrofuran-2(3H)-one (7b) To a mixture of $\mathbf{4 b}$ (1.0 equiv, $25 \mathrm{mg}, 0.08 \mathrm{mmol}$), 4bromophenylacetylene (1.2 equiv, $18 \mathrm{mg}, 0.10 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{O} / \mathrm{BuOH}(1 \mathrm{~mL} / 1 \mathrm{~mL})$ was added $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(0.25$ equiv, 5 mg) and sodium ascorbate (0.5 equiv, 8 mg). The resulting mixture was stirred at room temperature for 20 h before diluted with ethyl acetate (5 mL), saturated aqueous EDTA solution (0.2 mL) and water (5 mL). The aqueous layer was extracted with ethyl acetate ($5 \mathrm{~mL} \times 3$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered through a short silica gel plug, and concentrated in vacuo. The residue was triturated with hexanes, and then recrystallized in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ to afford $\mathbf{7 b}$ as a colorless crystalline solid ($35.4 \mathrm{mg}, 88 \%$ yield, 98% ee). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $) \delta 7.86$ (s, 1 H), 7.68 (d, J = $8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.57 (m, 4 H), 7.31 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), $4.84(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}$), $4.68(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.71$ (ddd, $J=$ $13.2,9.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.50 (ddd, $J=13.2,10.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.40 (ddd, $J=17.2,9.6,8.0 \mathrm{~Hz}, 1$ H), 2.12 (ddd, $J=17.2,9.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.9,147.6,138.6$, 132.5, 132.2, 129.1, 127.5, 126.6, 123.4, 122.6, 121.5, 86.5, 58.3, 31.4, 28.0; IR (film) $\mathrm{v}_{\max }$ 1738, 1455, 1365, 1229, 1217, 1000, 922, 831, $817 \mathrm{~cm}^{-1} ; \mathrm{R}_{\mathrm{f}}($ hexanes : ethyl acetate $=1: 1)=$ 0.5; Anal. Calcd. For $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Br}_{2}$: C, 47.83; H, 3.17. Found: C, 47.78; $\mathrm{H}, 3.09 .[\alpha]_{D}{ }^{24}=+51.0$ ($\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). m. p. $235-236{ }^{\circ} \mathrm{C}$. The enantiomeric excess was determined by chiral HPLC analysis: Chiralcel IA $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, hexanes:i-PrOH $=80: 20,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \mathrm{t}_{R}=$
37.0 min (major) and 21.6 min (minor). The absolute stereochemistry of $\mathbf{7 b}$ was assigned by \mathbf{X} ray crystallography, based on which the absolute stereochemistry of $\mathbf{4 b}$ was assigned. The absolute stereochemistry of 4 a, 4c-n, 8a-c, 9a-d, 13, 14 and 15 were assigned based on analogy to $\mathbf{4 b}$.
(S)-5-(azidomethyl)-5-(4-chlorophenyl)dihydrofuran-2(3H)-one

Following general procedure A, the title compound was synthesized from 4-(4-chlorophenyl)pent-4-enoic acid (2c) ($105 \mathrm{mg}, 0.50 \mathrm{mmol}$). The product was purified by silica gel flash column chromatography (hexanes: toluene: ethyl acetate $=1: 0: 0$ to $0: 1: 0$ to $0: 12: 1$ to $0: 7: 1$) to afford $\mathbf{4 c}(65.7 \mathrm{mg}, 52 \%$ yield, 89% ee) as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.65$ (d, J=12.8 Hz, 1 H), $3.52(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.80-2.65 (m, 2 H), $2.52(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~m}, 1 \mathrm{H})$, ; ${ }^{13}{ }^{3} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.4,139.2,134.7,129.2,126.2,87.2,59.9,31.5,28.7$; IR (film) $\mathrm{v}_{\max }$ 2097, 1774, 1492, 1277, 1175, 1068, 1011, $935 \mathrm{~cm}^{-1} ; \mathrm{R}_{\mathrm{f}}$ (toluene: ethyl acetate $=4.1$) $=0.3$; Anal. Calcd. For $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Cl}$: C, 52.50; H, 4.01. Found: C, 52.35; H, 4.11. $[\alpha]_{\mathrm{D}}{ }^{24}=+1.3$ ($\mathrm{c}=$ $\left.0.9, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by chiral HPLC analysis: Chiralcel OD-H $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, hexanes: $-\mathrm{PrOH}=95: 5,1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=20.0 \mathrm{~min}$ (major) and 24.6 $\min ($ minor $)$.

(S)-5-(azidomethyl)-5-(4-cyanophenyl)dihydrofuran-2(3H)-one

Following a slightly modified general procedure A in which the combined organic layers after ethyl ether extraction was briefly washed with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ aqueous solution ($0.02 \mathrm{M}, 10 \mathrm{~mL} \times 2$) before concentrating in vacuo, the title compound was synthesized from 4-(4-cyanophenyl)pent-4-enoic acid (2d) (100 mg, 0.50 mmol). The product was purified by silica gel flash column chromatography (hexanes: toluene: ethyl acetate $=1: 0: 0$ to $0: 1: 0$ to $0: 10: 1$ to $0: 6: 1$) to afford $4 \mathbf{d}\left(56.5 \mathrm{mg}, 47 \%\right.$ yield, 90% ee) as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$) $\delta 7.71$ ($\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.52(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~d}, J=13.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.9,145.8,132.8,125.8,118.2,112.8,86.8,59.7,31.5,28.5$; IR (film) $\mathrm{v}_{\max } 2229$, 2102, 1778, 1176, 1070, 937, 838, $729 \mathrm{~cm}^{-1} ; \mathrm{R}_{\mathrm{f}}$ (toluene: ethyl acetate $=3: 1$) $=0.4$; Anal. Calcd. For $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 59.50; H, 4.16. Found: C, 59.57; H, 4.42. $[\alpha]_{\mathrm{D}}{ }^{24}=+10.8$ ($\mathrm{c}=$ $\left.0.5, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by chiral HPLC analysis: Chiralcel OD-H
$4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, hexanes: $i-\mathrm{PrOH}=85: 15,1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}, \mathrm{t}_{R}=30.6 \mathrm{~min}$ (major) and 34.3 min (minor).
(S)-5-(azidomethyl)-5-(4-trifluoromethylphenyl)dihydro furan-2(3H)-one (4e) Following a slightly modified general procedure A in which (1) tetrakis(acetonitrile)copper(I) hexafluorophosphate ($14.9 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.08$ equiv) and 2,2'-isopropylidenebis[(4S)-4-tert-
 butyl-2-oxazoline] (L) ($11.8 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.08$ equiv) were used; (2) the combined organic layers after ethyl ether extraction was briefly washed with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ aqueous solution ($0.02 \mathrm{M}, 10 \mathrm{~mL} \times 2$) before concentrating in vacuo, the title compound was synthesized from 4-(4-trifluoromethylphenyl)pent-4enoic acid (2e) ($122 \mathrm{mg}, 0.50 \mathrm{mmol}$). The product was purified by silica gel flash column chromatography (hexanes: toluene: ethyl acetate $=1: 0: 0$ to 0:1:0 to 0:12:1 to 0:8:1) to afford $\mathbf{4 e}$ ($65.5 \mathrm{mg}, 46 \%$ yield, $90 \% \mathrm{ee}$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68$ (d, $J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-$ $2.70(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.2,144.7$, 131.1 (q, $\left.J_{\mathrm{CF}}=32 \mathrm{~Hz}\right), 126.1\left(\mathrm{q}, J_{\mathrm{CF}}=4 \mathrm{~Hz}\right), 125.4,123.9\left(\mathrm{q}, J_{\mathrm{CF}}=270 \mathrm{~Hz}\right), 87.1,59.9,31.6,28.6 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.8$ (s); IR (film) $\mathrm{v}_{\max } 2102,1738,1365,1229,1217,1115,1077 \mathrm{~cm}^{-}$ ${ }^{1}$; R_{f} (toluene: ethyl acetate $=6: 1$) $=0.2$; HRMS: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$Calcd. For $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{~F}_{3} \mathrm{O}_{2}: 303.1063$; Found: 303.1050. $[\alpha]_{\mathrm{D}}{ }^{24}=-11.6\left(\mathrm{c}=0.4, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by chiral HPLC analysis: Chiralcel OD-H $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, hexanes: $i-\mathrm{PrOH}=95: 5,1.0 \mathrm{~mL} / \mathrm{min}$, $210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=19.8 \mathrm{~min}$ (major) and 25.6 min (minor).

(S)-5-(azidomethyl)-5-(4-methoxyphenyl)dihydrofuran-2(3H)-one

Following general procedure A, the title compound was synthesized from 4-(4-methoxyphenyl)pent-4-enoic acid (2f) ($103 \mathrm{mg}, 0.50 \mathrm{mmol}$). The product was purified by silica gel flash column chromatography (hexanes: toluene: ethyl acetate $=1: 0: 0$ to $0: 1: 0$ to $0: 12: 1$ to $0: 7: 1$) to afford $4 f(79.6 \mathrm{mg}, 65 \%$ yield, $75 \% \mathrm{ee})$ as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80$ (s, 3 H), 3.64 (d, J = $13.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.48 (d, $J=13.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.76-2.61 (m, 2 H), 2.51 (m, 1 H), 2.40 (m, 1 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.8,159.7,132.4,126.1,114.2,87.6,60.1,55.4$, 31.3, 28.8; IR (film) $v_{\text {max }}$ 2098, 1772, 1611, 1513, 1247, 1175, 1068, $934 \mathrm{~cm}^{-1}$; R_{f} (toluene: ethyl acetate $=4: 1)=0.5$; Anal. Calcd. For $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, 58.29; H, 5.30. Found: C, 58.44; H, 5.49 .
$[\alpha]_{D}{ }^{24}=+1.6\left(\mathrm{c}=0.6, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by chiral HPLC analysis: Chiralcel OD-H $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, hexanes: $i-\mathrm{PrOH}=95: 5,1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}, \mathrm{t}_{R}=23.2 \mathrm{~min}$ (major) and 27.6 min (minor).
(S)-5-(azidomethyl)-5-(thiophen-3-yl)dihydrofuran-2(3H)-one (4g) Following a slightly modified general procedure A in which additional 2,6-di-tert-butylpyridine ($120 \mathrm{~mL}, 0.55 \mathrm{mmol}$,
 1.1 equiv) was added via syringe after the addition of trimethylsilyl azide, the title compound was synthesized from 4-(3-thiophenyl)pent-4-enoic acid (2g) (91 $\mathrm{mg}, 0.50 \mathrm{mmol}$). The product was purified by silica gel flash column chromatography (hexanes: toluene: ethyl acetate $=10: 0: 1$ to $6: 1: 1$) to afford $\mathbf{4 g}(76.1 \mathrm{mg}, 68 \%$ yield, 82% ee) as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38$ (dd, $J=5.2 \mathrm{~Hz}, 3.0 \mathrm{~Hz} .1$ H), 7.31 (dd, $J=3.0 \mathrm{~Hz}, 1.2 \mathrm{~Hz} .1 \mathrm{H}$), 7.02 (dd, $J=5.2 \mathrm{~Hz}, 1.2 \mathrm{~Hz} .1 \mathrm{H}$), 3.71 (d, $J=13.0 \mathrm{~Hz}, 1$ $\mathrm{H}), 3.53(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.77-2.52(\mathrm{~m}, 3 \mathrm{H}), 2.40(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 175.7, 141.7, 127.6, 124.7, 121.9, 86.4, 59.3, 31.3, 28.8; IR (film) $\mathrm{v}_{\max } 2102,1775,1181,1070$, 1040, 942, $847 \mathrm{~cm}^{-1}$; R_{f} (toluene: ethyl acetate $=4: 1$) = 0.6; Anal. Calcd. For $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}$, 48.42; H, 4.06. Found: $\mathrm{C}, 48.34 ; \mathrm{H}, 3.97 .[\alpha]_{\mathrm{D}}{ }^{24}=-9.0\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by chiral HPLC analysis: Chiralcel OD-H $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, hexanes: $i-\mathrm{PrOH}=$ 95:5, $1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}, \mathrm{t}_{R}=29.0 \mathrm{~min}$ (major) and 36.9 min (minor).

(S)-5-(azidomethyl)-5-(3-acetylphenyl)dihydrofuran-2(3H)-one

Following a slightly modified general procedure A in which tetrakis(acetonitrile)copper(I) hexafluorophosphate (14.9 mg, 0.04 mmol , 0.08 equiv) and 2,2'-isopropylidenebis[(4S)-4-tert-butyl-2-oxazoline] (L) ($11.8 \mathrm{mg}, 0.04 \mathrm{mmol}$, 0.08 equiv) were used, the title compound was synthesized from 4-(3-acetylphenyl)pent-4-enoic acid (2 h) ($109 \mathrm{mg}, 0.50 \mathrm{mmol}$). The product was purified by silica gel flash column chromatography (hexanes: toluene: ethyl acetate $=1: 0: 0$ to 0:1:0 to 0:10:1 to 0:5:1) to afford $\mathbf{4 h}$ $(67.7 \mathrm{mg}, 52 \%$ yield, $90 \% \mathrm{ee})$ as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92(\mathrm{~m}, 2 \mathrm{H}), 7.62$ ($\mathrm{m}, 1 \mathrm{H}$), 7.51 ($\mathrm{m}, 1 \mathrm{H}$), 3.67 ($\mathrm{d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.57 ($\mathrm{d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.81-2.69 (m, 2 H), 2.61 (s, 3 H), 2.56-2.42 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.6,175.4,141.5,137.7$, 129.5, 129.4, 128.7, 124.4, 87.3, 60.0, 31.5, 28.7, 26.8; IR (film) $\mathrm{V}_{\max } 2101,1773,1682,1365$, 1217, 1069, $938 \mathrm{~cm}^{-1} ; \mathrm{R}_{\mathrm{f}}$ (toluene: ethyl acetate $=4: 1$)= 0.3 ; Anal. Calcd. For $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}: \mathrm{C}$, 60.22; H, 5.05. Found: C, 60.38; H, 5.12. $[\alpha]_{D}{ }^{24}=-12.8\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$. m. p. $80-81{ }^{\circ} \mathrm{C}$. The
enantiomeric excess was determined by chiral HPLC analysis: Chiralcel IA $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, hexanes: $i-\mathrm{PrOH}=90: 10,1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}, \mathrm{t}_{R}=20.5 \mathrm{~min}$ (major) and 18.7 min (minor).

(S)-6-(azidomethyl)-6-phenyltetrahydro-2H-pyran-2-one
(4i) Following general procedure A, the title compound was synthesized from 5-phenylhex-5enoic acid (2i) ($95 \mathrm{mg}, 0.50 \mathrm{mmol}$). The product was purified by silica gel flash column chromatography (hexanes: toluene: ethyl acetate $=1: 0: 0$ to 0:1:0 to 0:12:1 to 0:8:1) to afford $4 \mathbf{i}(69.8 \mathrm{mg}, 60 \%$ yield, $89 \% \mathrm{ee})$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-$ 7.32 (m, 5 H), 3.61 (d, $J=12.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.42 (d, $J=12.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.50 (ddd, $J=18 \mathrm{~Hz}, 9.6$ $\mathrm{Hz}, 7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.45 (ddd, $J=18 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.31-2.22 (m, 2 H), 1.83 ($\mathrm{m}, 1 \mathrm{H}$), $1.60(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.5,140.4,129.2,128.5,125.3,86.9,60.8,29.3$, 29.1, 16.2; IR (film) $v_{\text {max }}$ 2096, 1736, 1447, 1232, 1187, 1048, $934 \mathrm{~cm}^{-1} ; \mathrm{R}_{\mathrm{f}}$ (toluene: ethyl acetate $=4: 1$) $=0.6$; Anal. Calcd. For $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 62.33; H, 5.67. Found: C, 62.51; H, 5.78. $[\alpha]_{D}^{24}=+24.9\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by chiral HPLC analysis: Chiralcel OD-H $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, hexanes:i-PrOH $=95: 5,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{R}=$ 19.5 min (major) and 26.5 min (minor).
 (S)-6-(azidomethyl)-4,4-dimethyl-6-phenyltetrahydro-2H-pyran-2-one

Following general procedure A, the title compound was synthesized from 3,3-dimethyl-5-phenylhex-5-enoic acid (2j) ($109 \mathrm{mg}, 0.50 \mathrm{mmol}$). The product was purified by silica gel flash column chromatography (hexanes: toluene : ethyl acetate $=1: 0: 0$ to 0:1:0 to $0: 20: 1$ to $0: 15: 1$ to $0: 10: 1$) to afford $\mathbf{4 j}(83.0 \mathrm{mg}, 64 \%$ yield, 92% ee) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.30(\mathrm{~m}, 5 \mathrm{H}), 3.50(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=12.8 \mathrm{~Hz}$, 1 H), 2.33-2.17 (m, 4 H), $1.09(\mathrm{~s}, 3 \mathrm{H}), 0.78(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 171.0, 141.6, 129.0, 128.3, 125.1, 85.8, 62.0, 43.8, 41.7, 31.9, 30.7, 29.1; IR (film) $\mathrm{V}_{\max } 2970,2097,1739$, 1447, 1365, 1217, 1060, 759, $702 \mathrm{~cm}^{-1} ; \mathrm{R}_{\mathrm{f}}$ (toluene: ethyl acetate $=5: 1$) $=0.7 ;$ HRMS: $[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd. For $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Na}$: 282.1213; Found: 282.1205. $[\alpha]_{\mathrm{D}}{ }^{24}=+35.9$ ($\mathrm{c}=0.8, \mathrm{CHCl}_{3}$). The enantiomeric excess was determined by chiral HPLC analysis: Chiralcel OD-H $4.6 \mathrm{~mm} \times 250$ mm , hexanes: $i-\mathrm{PrOH}=95: 5,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{R}=13.0 \mathrm{~min}$ (major) and 15.0 min (minor).

(S)-5-(azidomethyl)-5-(phenylethynyl)dihydrofuran-2(3H)-one (4k) Following a slightly modified general procedure A in which tetrakis(acetonitrile)copper(I)
hexafluorophosphate ($14.9 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.08$ equiv) and 2,2'-isopropylidenebis[(4S)-4-tert-butyl-2-oxazoline] (L) ($11.8 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.08$ equiv) were used, the title compound was synthesized from 4-methylene-6-phenylhex-5-ynoic acid (2k) (100 mg, 0.50 mmol). The product was purified by silica gel flash column chromatography (hexanes: toluene : ethyl acetate $=1: 0: 0$ to 0:1:0 to 0:15:1 to 0:8:1) to afford $\mathbf{4 k}(61.4 \mathrm{mg}, 51 \%$ yield, $72 \% \mathrm{ee})$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 3 \mathrm{H}), 3.77(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, \mathrm{~J}$ $=13.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.83 (ddd, $J=17.6 \mathrm{~Hz}, 9.6 \mathrm{~Hz}, 9.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.71 (ddd, $J=17.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.53-2.49(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.2,132.0,129.5,128.6,121.1$, 88.1, 85.3, 80.0, 57.9, 32.2, 28.7; IR (film) $\mathrm{v}_{\max }$ 2990, 2099, 1738, 1365, 1228, 1217, 918, 756 $\mathrm{cm}^{-1} ; \mathrm{R}_{\mathrm{f}}($ hexanes: ethyl acetate $=2: 1)=0.5$; HRMS: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$Calcd. For $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{2}$: 259.1190; Found: 259.1183. $[\alpha]_{D}{ }^{24}=+35.7\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by chiral HPLC analysis: Chiralcel OD-H $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, hexanes: $i-\mathrm{PrOH}=95: 5,1.0 \mathrm{~mL} / \mathrm{min}$, $230 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=17.0 \mathrm{~min}$ (major) and 19.7 min (minor).

(S)-5-(azidomethyl)-5-((trimethylsilyl)ethynyl)dihydrofuran-2(3H)-one
(4I)
Following a slightly modified general procedure A in which tetrakis(acetonitrile)copper(I) hexafluorophosphate $(14.9 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.08$ equiv) and 2,2'-isopropylidenebis[(4S)-4-tert-butyl-2-oxazoline] (L) ($11.8 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.08$ equiv) were used, the title compound was synthesized from 4-methylene-6-(trimethylsilyl)hex-5ynoic acid (21) ($96 \mathrm{mg}, 0.50 \mathrm{mmol}$). The product was purified by silica gel flash column chromatography (hexanes: toluene : ethyl acetate $=1: 0: 0$ to $0: 1: 0$ to $0: 20: 1$ to $0: 15: 1$ to $0: 10: 1$) to afford $4 \mathrm{II}\left(52.9 \mathrm{mg}, 45 \%\right.$ yield) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.65$ (d, $J=$ $13.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.49 (d, $J=13.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.75 (ddd, $J=17.6 \mathrm{~Hz}, 9.6 \mathrm{~Hz}, 9.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.63 (ddd, $J=17.6 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.39(\mathrm{~m}, 2 \mathrm{H}), 0.18(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.1,101.2,94.0,79.4,57.7,32.1,28.6,-0.4$; IR (film) $v_{\max } 2103,1784,1739,1365,1249$, 1174, 1056, $841 \mathrm{~cm}^{-1} ; \mathrm{R}_{\mathrm{f}}($ toluene: ethyl acetate $=10: 1)=0.6 ;$ HRMS: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$Calcd. For $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Si}$: 255.1272 ; Found: 255.1275. [$\left.\alpha\right]_{\mathrm{D}}{ }^{24}=+28.6\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right)$.

Enantiomeric excess determination of $\mathbf{4 I}$ by converting to $\mathbf{4 k}$: To a solution of $\mathbf{4 I}(15 \mathrm{mg}, 0.06$ mmol) in anhydrous THF (0.5 mL) was added tetrabutylammonium fluoride (1 M in THF, 0.12
mL) slowly at $0{ }^{\circ} \mathrm{C}$. The yellow mixture was stirred at the same temperature for 0.5 h before diluted with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$. The aqueous layer was separated and extracted with ethyl ether ($1 \mathrm{~mL} \times 2$). The combined organic layers was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, passed through a silica gel plug, and concentrated in vacuo to afford the crude product. Under an Ar atmosphere, a mixture of this crude product, $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(3.5 \mathrm{mg})$, iodobenzene $(24 \mathrm{mg})$, and triethylamine (20 mg) in anhydrous THF (1 mL) was stirred at room temperature ($25{ }^{\circ} \mathrm{C}$) for 5 min before Cul (1.9 mg) was added. The reaction vessel was briefly evacuated and backfilled with argon. The reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 2 h before diluted with ethyl ether (2 $\mathrm{mL})$, saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$ and 1 M aqueous $\mathrm{HCl}(1 \mathrm{~mL})$. The aqueous layer was separated and extracted with ethyl ether ($1 \mathrm{~mL} \times 2$). The combined organic layers was concentrated in vacuo. The residue was purified by preparative thin-layer-chromatography to afford $4 \mathbf{k}$ (6 mg , ca. 40% yield over 2 steps, 82% ee). The enantiomeric excess was determined by chiral HPLC analysis: Chiralcel OD-H $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, hexanes:i-PrOH $=95: 5,1.0$ $\mathrm{mL} / \mathrm{min}, 230 \mathrm{~nm}, \mathrm{t}_{R}=17.0 \mathrm{~min}$ (major) and 19.7 min (minor).

Derivatization of Oxyazidation Product 4a (Scheme 3)

(S)-5-hydroxy-5-phenylpiperidin-2-one (5) A mixture of $\mathbf{4 a}(32 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0$ equiv, 89% ee) and $5 \% \mathrm{Pd} / \mathrm{C}(6 \mathrm{mg})$ in methanol (1 mL) was stirred at room temperature $\left(25{ }^{\circ} \mathrm{C}\right.$) under H_{2} atmosphere for 16 h . 4-Dimethylaminopyridine (2 mg , $0.015 \mathrm{mmol}, 0.1$ equiv) was added to the reaction mixture and the resulting mixture was stirred at room temperature for 8 h before concentrating in vacuo. The residue was purified by silica gel flash column chromatography (ethyl acetate: methanol =1:0 to $5: 1$) to afford 5 ($22 \mathrm{mg}, 78 \%$ yield, $89 \% \mathrm{ee}$) as a colorless solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.55(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{~m}, 2 \mathrm{H})$, $7.28(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dd}, J=12.8 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~m}, 1 \mathrm{H}), 2.48-$ 2.33 (m, 2 H), 2.01 ($\mathrm{m}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 174.6,146.6,129.4,128.5,126.1$, $70.8,54.2,33.5,28.9$; IR (film) $\mathrm{v}_{\max } 3225,2917,2384,1633,1494,1233,978,768 \mathrm{~cm}^{-1}$; R_{f} (methanol: ethyl acetate $=5: 1$) $=0.40$; HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. For $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{2}$: 192.1019; Found: 192.1026. $[\alpha]_{D}{ }^{24}=-2.2(\mathrm{c}=0.9, \mathrm{MeOH})$. m. p. 198-199 ${ }^{\circ} \mathrm{C}$. The enantiomeric excess was determined by chiral HPLC analysis: Chiralcel IA $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, hexanes: $i-\mathrm{PrOH}=95: 5,1.0$ $\mathrm{mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{R}=67.5 \mathrm{~min}$ (major) and 80.1 min (minor). dicarbonate ($84 \mathrm{mg}, 0.39 \mathrm{mmol}, 1.5$ equiv) and $5 \% \mathrm{Pd} / \mathrm{C}(5 \mathrm{mg})$ in THF (1.5 mL) was stirred at room temperature $\left(25^{\circ} \mathrm{C}\right)$ under H_{2} atmosphere for 15 h . The reaction mixture was then concentrated in vacuo. The residue was purified by silica gel flash column chromatography (hexanes: ethyl acetate $=10: 1$ to $1: 1$) to afford $6(66 \mathrm{mg}, 88 \%$ yield, 89% ee) as a colorless sticky oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.29(\mathrm{~m}, 5 \mathrm{H}), 4.91$ (br, 1 H), 3.71 (dd, J=14.8 Hz, $7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.42 (dd, J=14.8 Hz, $5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.67-2.33 (m, 4 H), 1.39 (s, 9 H); ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.5,156.2,141.1,128.8,128.2,124.8,89.1,80.0,49.3,31.2,28.8,28.3 ; \mathrm{IR}$ (film) $\mathrm{v}_{\max } 1774,1709,1508,1365,1245,1163,1115,1092,1069,912,730,700 \mathrm{~cm}^{-1}$; R_{f} (hexanes: ethyl acetate $=2: 1$) $=0.2$; Anal. Calcd. For $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{4}$: $\mathrm{C}, 65.96 ; \mathrm{H}, 7.27$. Found: C , 65.84; $\mathrm{H}, 7.31 .[\alpha]_{\mathrm{D}}{ }^{24}=-36.1\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by chiral HPLC analysis: Chiralcel OJ-H $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, hexanes: $i-\mathrm{PrOH}=90: 10,1.0 \mathrm{~mL} / \mathrm{min}, 210$ $\mathrm{nm}, \mathrm{t}_{R}=8.2 \mathrm{~min}$ (major) and 7.3 min (minor).

(S)-5-phenyl-5-((4-phenyl-1 H-1,2,3-triazol-1-yl)methyl)dihydrofuran-2(3H)-
one (7) To a mixture of $\mathbf{4 a}$ (1.0 equiv, $22 \mathrm{mg}, 0.1 \mathrm{mmol}$), phenyl acetylene (1.1 equiv, $11 \mathrm{mg}, 0.11 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{O} / \mathrm{BuOH}(1 \mathrm{~mL} / 1 \mathrm{~mL})$ was added $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (0.4 equiv, 10 mg) and sodium ascorbate (0.8 equiv, 16 mg). The resulting mixture was stirred at room temperature for 17 h before diluted with ethyl acetate (5 mL), saturated aqueous EDTA solution $(0.2 \mathrm{~mL})$ and water $(5 \mathrm{~mL})$. The aqueous layer was extracted with ethyl acetate ($5 \mathrm{~mL} \times 3$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered through a short silica gel plug, and concentrated in vacuo. The residue was triturated with hexanes to afford 7 as a white solid ($31 \mathrm{mg}, 96 \%$ yield, 89% ee). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$,) δ 7.85 (s, 1 H), 7.81 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.45-7.32$ ($\mathrm{m}, 8 \mathrm{H}$), 4.88 ($\mathrm{d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.69 (d, J $=14.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.70(\mathrm{ddd}, J=13.2,9.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{ddd}, J=13.2,10.0,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.39 (ddd, $J=17.6,9.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.09 (ddd, $J=17.6,10.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.3,148.4,139.7,130.2,129.2,129.1,129.0,128.5,126.0,124.8,121.4$, 87.0, 58.5, 31.3, 28.1; IR (film) $\mathrm{V}_{\max } 1777,1738,1449,1365,1228,1217,1147,931,764,697$ cm^{-1}; R_{f} (hexanes: ethyl acetate $=2: 1$) $=0.1$; HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. For $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}: 320.1394$; Found: 320.1373. $[\alpha]_{D}{ }^{24}=-0.6\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$. m. p. $151-152{ }^{\circ} \mathrm{C}$. The enantiomeric excess was
determined by chiral HPLC analysis: Chiralcel IA $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, hexanes: $i-\operatorname{PrOH}=85: 15$, $1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{R}=27.1 \mathrm{~min}$ (major) and 20.5 min (minor).

Trisubstituted Alkene Substrates as Mechanistic Probes (Scheme 4)

Caution: Proper safety precautions should be followed. This reaction should be carried out behind a blast shield and only on a small scale. It should be noted that while no incident occurred during this study, azides are potentially hazardous compounds and adequate safety measures should be taken.

Reaction with (Z)-2m: An oven-dried $20 \times 125 \mathrm{~mm}$ re-sealable test tube (Fisher Scientific, Cat. \#1495937) equipped with a Teflon-coated magnetic stir bar was charged with tetrakis(acetonitrile)copper(I) hexafluorophosphate ($3.8 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv), 2,2'-isopropylidenebis[(4S)-4-tert-butyl-2-oxazoline] (L) ($3.0 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv) and (Z)-2m ($0.10 \mathrm{mmol}, 1.0$ equiv). The reaction tube was sealed with a septum screw-cap (10/90, Teflon/SIL, National Scientific) and connected to a Schlenk line. The reaction tube was then briefly evacuated and backfilled with argon (this sequence was repeated a total of two times). The septum screw-cap was removed, (diacetoxyiodo)benzene ($80 \mathrm{mg}, 0.25 \mathrm{mmol}, 2.5$ equiv, dried under high vacuum for 2 h in advance.) was added into the tube quickly and the tube was sealed again with the septum screw-cap. The reaction tube was connected to a Schlenk line. The reaction tube was then briefly evacuated and backfilled with argon (this sequence was repeated a total of three times). The reaction tube was cooled to $-78{ }^{\circ} \mathrm{C}$. At the same
temperature, without stirring, anhydrous diethyl ether (6 mL) was added to the tube via syringe followed by trimethylsilyl azide ($32 \mu \mathrm{~L}, 0.24 \mathrm{mmol}, 2.4$ equiv). After cooled at $-78^{\circ} \mathrm{C}$ for 2 min , argon pressure was removed. A venting needle was inserted. The reaction mixture was moved to a $-10^{\circ} \mathrm{C}$ bath and stirred at the same temperature for 16 h . The reaction was quenched with saturated aqueous sodium bicarbonate solution (6 mL). The aqueous layer was separated and extracted with diethyl ether ($5 \mathrm{~mL} \times 3$). The combined organic layers was concentrated in vacuo. Phenanthrene (9.0 mg) was added and the crude product was analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The total yield of 4 m and 4 n was 60% as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

A small portion of the crude product was then subjected to a rapid TLC purification to remove the non-polar components (internal standard and iodobenzene) as well as the polar carboxylic acid derivatives. The residue (R_{f} (toluene: ethyl acetate $=5: 1$) between 0.4 and 0.8) was analyzed by chiral HPLC. Chiralcel OD-H/OD-H $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, pentane: $\mathrm{EtOH}=97: 3,0.8$ $\mathrm{mL} / \mathrm{min}, 210 \mathrm{~nm} .4 \mathrm{~m}$ ($11 \% \mathrm{ee}$): $\mathrm{t}_{R}=35.5 \mathrm{~min}$ (major) and 37.6 min (minor). 4 n ($93 \% \mathrm{ee}$): $\mathrm{t}_{R}=$ 33.5 min (major) and 44.8 min (major). d.r. $(\mathbf{4 m}: \mathbf{4 n})=10: 1$. Stereoisomer ratio calculated: $(\mathbf{4 m}+$ ent-4m):(4n+ent-4n)=51:49.
The rest of the crude material was purified by preparative thin-layer chromatography to afford an inseparable mixture of $\mathbf{4 m}$ and $\mathbf{4 n}$. IR (film) $\mathrm{v}_{\text {max }}$ 2094, 1739, 1447, 1365, 1230, 1217, 1033, 760, $702 \mathrm{~cm}^{-1}$; HRMS: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$Calcd. For $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{2}$: 263.1503; Found: 263.1507. $[\alpha]_{\mathrm{D}}{ }^{24}=$ $+1.2\left(\mathrm{c}=0.8, \mathrm{CHCl}_{3}\right)$.

Major diastereomer: (S)-6-((S)-1-azidoethyl)-6-phenyltetrahydro-2H-pyran-2-one (4m) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.31(\mathrm{~m}, 5 \mathrm{H}), 3.78(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.56$ (dtd, $J=14.4 \mathrm{~Hz}$, $4.4 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.46 (ddd, $J=18.4 \mathrm{~Hz}, 9.2 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.37 (dddd, $J=18.4 \mathrm{~Hz}, 7.2$ Hz, $3.6 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.06 (ddd, $J=14.4 \mathrm{~Hz}, 12.4 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.85 (m, 1 H), 1.62 (m, 1 H), 1.11 ($\mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.6,138.8,128.8,128.5,126.5$, 88.5, 65.0, 28.3, 28.0, 16.2, 14.0.

Minor diastereomer: (S)-6-((R)-1-azidoethyl)-6-phenyltetrahydro-2H-pyran-2-one (4n) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.57$ (q, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.22 (td, $J=13.6 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.17 (d, J $=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.8,140.6,129.1,128.2,125.5,88.8,64.1$, 29.8, 29.6, 16.2, 13.0.

The relative stereochemistry of $\mathbf{4 m}$ and $\mathbf{4 n}$ were assigned based on comparison with known compounds. ${ }^{6}$

Reaction with (E)-2m: Following the same procedure for the reaction with $(E)-\mathbf{2 m}$ described above, an over-dried $20 \times 125 \mathrm{~mm}$ re-sealable test tube (Fisher Scientific, Cat. \#1495937) equipped with a Teflon-coated magnetic stir bar was charged with tetrakis(acetonitrile)copper(I) hexafluorophosphate ($3.8 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv), 2,2'-isopropylidenebis[(4S)-4-tert-butyl-2oxazoline] (L) ($3.0 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.1$ equiv) and (E)-2m ($0.10 \mathrm{mmol}, 1.0$ equiv). The reaction tube was sealed with a septum screw-cap (10/90, Teflon/SIL, National Scientific) and connected to a Schlenk line. The reaction tube was then briefly evacuated and backfilled with argon (this sequence was repeated a total of two times). The septum screw-cap was removed, (diacetoxyiodo)benzene ($80 \mathrm{mg}, 0.25 \mathrm{mmol}, 2.5$ equiv, dried under high vacuum for 2 h in advance.) was added into the tube quickly and the tube was sealed again with the septum screw-cap. The reaction tube was connected to a Schlenk line. The reaction tube was then briefly evacuated and backfilled with argon (this sequence was repeated a total of three times). The reaction tube was cooled to $-78^{\circ} \mathrm{C}$. At the same temperature, without stirring, anhydrous diethyl ether (6 mL) was added to the tube via syringe followed by trimethylsilyl azide ($32 \mu \mathrm{~L}$, $0.24 \mathrm{mmol}, 2.4$ equiv). After cooled at $-78^{\circ} \mathrm{C}$ for 2 min , argon pressure was removed. A venting needle was inserted. The reaction mixture was moved to a $-10^{\circ} \mathrm{C}$ bath and stirred at the same temperature for 16 h . The reaction was quenched with saturated aqueous sodium bicarbonate solution (6 mL). The aqueous layer was separated and extracted with diethyl ether ($5 \mathrm{~mL} \times 3$). The combined organic layers was concentrated in vacuo. Phenanthrene (9.0 mg) was added and the crude product was analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The total yield of 4 m and 4 n was 80% as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

A small portion of the crude product was then subjected to a rapid TLC purification to remove the non-polar components (internal standard and iodobenzene) as well as the polar carboxylic acid derivatives. The residue (R_{f} (toluene: ethyl acetate $=5: 1$) between 0.4 and 0.8) was analyzed by chiral HPLC. $4 \mathrm{~m}: 12 \%$ ee; 4 n : 93% ee; d.r.($4 \mathrm{~m}: 4 \mathrm{n})=10: 1$. Stereoisomer ratio calculated: $(\mathbf{4 m}+$ ent-4m):(4n+ent-4n) $=51: 49$.

Additional Evidence Consistent with the Proposed Mechanism (footnote 13)

(a)

(a) Radical clock substrate 25 was treated with $\mathrm{Phl}(\mathrm{OAc})_{2}$ and TMSN_{3} in the presence of 0.5 equiv of the copper catalyst and the ligand using a protocol similar to the general procedure A described before. The oxyazidation product 26 was not observed. Cyclopropane ring-opening product 27 (1:1 mixture of alkene geometric isomers, chromatographically inseparable from other carboxylic acid derivatives in the crude reaction mixture) was detected by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture.

8-azido-5-(azidomethyl)-8-phenyloct-5-enoic acid (27) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.48$ and $5.46(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.50$ and $4.48(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.73$ and $3.69(\mathrm{~s}, 2 \mathrm{H})$, 2.642.50 (m, 2 H), 2.32 (m, 2 H), 2.17-2.09 (m, 2 H), 1.79-1.62 (m, 2 H); HRMS (DART, Negative):
[M-H] Calcd. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{6} \mathrm{O}_{2}$: 313.1418; Found: 313.1420.
(b)

(b) 3-Phenylbut-3-enoic acid (28) was treated with $\mathrm{Phl}(\mathrm{OAc})_{2}$ and TMSN_{3} in the presence of 0.1 equiv of the copper catalyst and the ligand using a protocol similar to the general procedure described before. The oxyazidation product 29 was not observed, while (3-azidoprop-1-en-2yl)benzene (30) ${ }^{7}$ was detected by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture. It is likely that 30 was formed via the copper-mediated decarboxylative elimination of the β-radical-carboxylate intermediate ${ }^{8}$ derived from the azidyl radical addition.
(c)

(c) In the oxyazidation reaction of an electron-deficient styrene derivative $\mathbf{2 e}$, side product $\mathbf{3 1}$ was identified by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture. (characteristic ${ }^{1} \mathrm{H}$ NMR signals ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.97$ ($\mathrm{q}, \mathrm{J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}$); chromatographically inseparable from other acetal derivatives in the crude reaction mixture) it is likely that 31 was formed via the nucleophilic trapping of a cationic intermediate 33 derived from the hydrogen-abstraction of a solvent molecule by an azidyl radical followed by one-electron oxidation. ${ }^{9}$

Enantioselective Oxysulfonylation:

General procedure B for optimization (Table 2): An oven-dried Fisher Scientific $13 \times 100 \mathrm{~mm}$ resealable test tube equipped with a Teflon-coated magnetic stir bar was charged with tetrakis(acetonitrile)copper(I) hexafluorophosphate ($3.7 \mathrm{mg}, 0.010 \mathrm{mmol}, 0.10$ equiv), 2,2'-isopropylidenebis[(4S)-4-tert-butyl-2-oxazoline] (L) ($2.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 0.10$ equiv), p-tosyl chloride 10a ($0.11 \mathrm{mmol}, 1.1$ equiv), base and $\mathbf{2 a}$ ($0.10 \mathrm{mmol}, 1.0$ equiv). The reaction tube was sealed with a septum screw-cap (Thermo Scientific ASM PHN CAP w/PTFE/SIL, cat. \#03378316). The reaction tube was connected to a Schlenk line though a needle. The reaction tube was then briefly evacuated and backfilled with argon (this sequence was repeated a total of three times). Anhydrous EtOAc (2 mL) was added to the tube via syringe and the argon pressure was removed. The reaction mixture was stirred at room temperature for 16 h . The reaction mixture was diluted with saturated aqueous sodium bicarbonate solution (4 mL) and ethyl acetate (2 mL). The aqueous layer was separated and extracted with ethyl acetate (4 $\mathrm{mL} \times 3$). The combined organic layers was concentrated in vacuo. The residue was analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy using phenanthrene as an internal standard. The residue was purified by
thin-layer chromatography to afford the oxysulfonylation product 8a, which was analyzed by chiral HPLC.

General procedure C for substrate scope (Scheme 4): An oven-dried Fisher Scientific 20×150 mm re-sealable test tube equipped with a Teflon-coated magnetic stir bar was charged with tetrakis(acetonitrile)copper(I) hexafluorophosphate ($18.7 \mathrm{mg}, 0.05 \mathrm{mmol}, 0.10$ equiv), 2,2'-isopropylidenebis[(4S)-4-tert-butyl-2-oxazoline] (L) (14.7 mg, $0.05 \mathrm{mmol}, 0.10$ equiv), arylsulfonyl chloride 10 ($0.55 \mathrm{mmol}, 1.1$ equiv), silver carbonate ($82.8 \mathrm{mg}, 0.30 \mathrm{mmol}, 0.60$ equiv) and 2 ($0.50 \mathrm{mmol}, 1.0$ equiv). The reaction tube was sealed with a septum screw-cap (10/90, Teflon/SIL, National Scientific) and connected to a Schlenk line. The reaction tube was then briefly evacuated and backfilled with argon (this sequence was repeated a total of three times). Anhydrous EtOAc (8 mL) was added to the tube via syringe and the argon pressure was removed. The reaction mixture was stirred at room temperature for 16 h . The reaction mixture was diluted with saturated aqueous sodium bicarbonate solution (8 mL) and ethyl acetate (4 mL). The aqueous layer was separated and extracted with ethyl acetate ($8 \mathrm{~mL} \times 3$). The combined organic layers was concentrated in vacuo. The residue was then purified by silica gel flash column chromatography ($\mathrm{Et}_{2} \mathrm{O} /$ Hexanes or $\mathrm{EtOAc} /$ Hexanes) to afford the oxysulfonylation product 8.

(S)-5-phenyl-5-(tosylmethyl)dihydrofuran-2(3H)-one (8a) Following general procedure C , the title compound was synthesized from 4-phenylpent-4-enoic acid (2a) ($0.50 \mathrm{mmol}, 88 \mathrm{mg}$) and tosyl chloride (10a) ($0.55 \mathrm{mmol}, 105 \mathrm{mg}$). The product was purified by silica gel flash column chromatography ($\mathrm{Et}_{2} \mathrm{O} /$ hexanes $=1: 1$ to $3: 1$) to afford $\mathbf{8 a}\left(149.8 \mathrm{mg}, 91 \%\right.$ yield, 74% ee). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $\delta 7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 7 \mathrm{H}), 3.77(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=14.8$ Hz, 1 H), 3.35 (ddd, $J=12.8 \mathrm{~Hz}, 10.0 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.84 (ddd, $J=17.6 \mathrm{~Hz}, 10.0 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1$ H), 2.63 (ddd, $J=12.8 \mathrm{~Hz}, 10.0 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.48 (ddd, $J=17.6 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 10.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.42 (s, 3 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.4,145.0,142.0,137.6,128.9,128.0,124.6,4.8$, 65.1, 32.6, 28.3, 21.7; IR (film) $\mathrm{v}_{\text {max }} 1776,1596,1449,1318,1285,1173,1137,1084,1049,841$ $\mathrm{cm}^{-1} ; \mathrm{R}_{\mathrm{f}}$ (hexanes: ethyl ether $\left.=1: 2\right)=0.3$; $\mathrm{HRMS}:\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$Calcd. For $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~S}: 348.1264$; Found: 348.1248. $[\alpha]_{D}{ }^{24}=-3.2\left(c=1.5, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by chiral HPLC analysis: Chiralcel IA $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, hexanes: $i-\mathrm{PrOH}=90: 10,1.0 \mathrm{~mL} / \mathrm{min}, 230$ $\mathrm{nm}, \mathrm{t}_{R}=34.5 \mathrm{~min}$ (minor) and 36.9 min (major).

(S)-5-(((4-bromophenyl)sulfonyl)methyl)-5-(4-chlorophenyl)dihydrofuran-2(3H)-one

Following general procedure C , the title compound was synthesized from 4-(4-chlorophenyl)
 pent-4-enoic acid (2c) ($0.50 \mathrm{mmol}, 105 \mathrm{mg}$) and 4bromobenzenesulfonyl chloride (10b) ($0.55 \mathrm{mmol}, 140.5 \mathrm{mg}$). The product was purified by silica gel flash column chromatography ($\mathrm{Et}_{2} \mathrm{O} /$ hexanes $=3: 1$ to $7: 1$ to $\mathrm{EtOAc} /$ hexanes $=1: 1$) to afford $\mathbf{8 b}$ (204.8 $\mathrm{mg}, 95 \%$ yield, 78% ee). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(\mathrm{~m}, 4 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.23 (d, J=8.4 Hz, 2 H), 3.73 (m, 2 H), 3.27 (ddd, $J=12.8 \mathrm{~Hz}, 9.6 \mathrm{~Hz}, 8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.82 (ddd, J $=17.6 \mathrm{~Hz}, 9.6 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.61 (ddd, J=12.8 Hz, 9.6 Hz, 4.4 Hz, 1 H), 2.49 (ddd, J=17.6 $\mathrm{Hz}, 8.4 \mathrm{~Hz}, 9.6 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.9,139.8,139.3,135.0,132.7,129.6$, 129.2, 126.3, 84.1, 65.1, 33.1, 28.1; IR (film) $\mathrm{v}_{\max } 1776,1572,1326,1140,1067,1137,997,812$ cm^{-1}; R_{f} (hexanes: ethyl acetate $=1: 1$) $=0.2$; $\mathrm{HRMS}:\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$Calcd. For $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ClBrNO}_{4} \mathrm{~S}$: 447.9808; Found: 447.9827. $[\alpha]_{D}{ }^{24}=+12.9\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by chiral HPLC analysis: Chiralcel IA $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, hexanes: $i-\operatorname{PrOH}=85: 15$, $1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}, \mathrm{t}_{R}=35.0 \mathrm{~min}$ (minor) and 68.4 min (major).

(S)-5-(3-acetylphenyl)-5-(((4-(trifluoromethyl)phenyl)sulfonyl)methyl)dihydrofuran-2(3H)-

one (8c) An oven-dried Fisher Scientific $20 \times 150 \mathrm{~mm}$ re-sealable test tube equipped with a Teflon-coated magnetic stir bar was charged with tetrakis(acetonitrile)copper(I)
 hexafluorophosphate $(18.7 \mathrm{mg}, 0.05 \mathrm{mmol}, 0.10$ equiv), 2,2'-isopropylidenebis[(4S)-4-tert-butyl-2-oxazoline] (L) (14.7 mg, 0.05 $\mathrm{mmol}, 0.10$ equiv), silver carbonate ($82.8 \mathrm{mg}, 0.60 \mathrm{mmol}, 1.2$ equiv) and 2 h ($109 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv). The reaction tube was sealed with a septum screw-cap (10/90, Teflon/SIL, National Scientific) and connected to a Schlenk line. The reaction tube was then briefly evacuated and backfilled with argon (this sequence was repeated a total of three times). A solution of 4-trifluoromethylbenzenesulfonyl chloride (10c) ($134 \mathrm{mg}, 0.55 \mathrm{mmol}, 1.1$ equiv) in anhydrous $\mathrm{EtOAc}(8 \mathrm{~mL})$ was added to the tube via syringe under argon. The argon pressure was removed and the reaction mixture was stirred at room temperature for 16 h . The reaction mixture was diluted with saturated aqueous sodium bicarbonate solution (8 mL) and ethyl acetate (4 mL). The aqueous layer was separated and extracted with ethyl acetate ($8 \mathrm{~mL} \times 3$). The combined organic layers was concentrated in vacuo. The residue purified by silica gel flash column chromatography $\left(E_{2} \mathrm{O} /\right.$ hexanes $=3: 1$ to

EtOAc/hexanes $=1: 1$) to afford $\mathbf{8 c}\left(142.2 \mathrm{mg}, 67 \%\right.$ yield, 81% ee). ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.92 (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.84 (m, 2 H), 7.75 (d, J=8.4 Hz, 2 H), 7.56 (m, 1 H), 7.45 (m, 1 H), 3.86 (d, J=15.2 Hz, 1 H), 3.83 (d, J=15.2 Hz, 1 H), 3.28 (ddd, $J=12.8 \mathrm{~Hz}, 9.6 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.85 (ddd, $J=17.6 \mathrm{~Hz}, 9.6 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.66 (ddd, $J=12.8 \mathrm{~Hz}, 9.6 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.57 (s, 3 H), 2.50 (ddd, $J=17.6 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 9.6 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.3,174.8$, 143.7, 142.1, 137.7, 135.6 (q, $J_{\text {CF }}=33 \mathrm{~Hz}$), 129.5, 129.3, 128.9, $128.8,126.5\left(q, J_{C F}=4 \mathrm{~Hz}\right.$), 124.3, $123.1\left(q, J_{\mathrm{CF}}=272 \mathrm{~Hz}\right), 84.1,64.9,33.4,28.0,26.8 ;{ }^{19} \mathrm{~F} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-63.3$ (s); IR (film) $\mathrm{v}_{\max } 1782,1683,1403,1320,1167,1132,1061,914,844 \mathrm{~cm}^{-1} ; \mathrm{R}_{\mathrm{f}}$ (hexanes: ethyl acetate $=1: 1)=0.2$; HRMS: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$Calcd. For $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{~S}$: 444.1087; Found: 444.1090. $[\alpha]_{D}{ }^{24}=-0.8\left(c=0.9, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by chiral HPLC analysis: Chiralcel IA $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, hexanes: $i-\mathrm{PrOH}=85: 15,1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}, \mathrm{t}_{R}=$ 51.6 min (minor) and 55.5 min (major).

Enantioselective oxyarylation

Caution: Proper safety precautions should be followed. This reaction should be carried out behind a blast shield and only on a small scale. It should be noted that while no incident occurred during this study, aryldiazonium salts are potentially hazardous compounds and adequate safety measures should be taken.

General procedure D for the enantioselective oxyarylation (Scheme 5): An oven-dried Fisher Scientific $20 \times 150 \mathrm{~mm}$ re-sealable test tube equipped with a Teflon-coated magnetic stir bar was charged with tetrakis(acetonitrile)copper(I) hexafluorophosphate ($22.4 \mathrm{mg}, 0.06 \mathrm{mmol}, 0.12$ equiv), 2,2-isopropylidenebis[(4S)-4-tert-butyl-2-oxazoline] (L) ($14.7 \mathrm{mg}, 0.05 \mathrm{mmol}, 0.1$ equiv), aryldiazonium tetrafluoroborate 11 ($1.0 \mathrm{mmol}, 2.0$ equiv) and $\mathbf{2}$ ($0.50 \mathrm{mmol}, 1.0$ equiv). The tube was then sealed with a septum screw-cap (10/90, Teflon/SIL, National Scientific) and connected to a Schlenk line. The vessel was briefly evacuated and backfilled with argon (this sequence was repeated a total of three times). Anhydrous EtOAc (8 mL) was added to the tube via syringe followed by 2,6-di-tert-butylpyridine ($224 \mu \mathrm{~L}, 2.0$ equiv). Argon pressure was removed. A venting needle was inserted. The reaction mixture was stirred at room temperature $\left(25^{\circ} \mathrm{C}\right)$ for 16 h . The reaction mixture was carefully diluted with saturated aqueous sodium bicarbonate solution (8 $\mathrm{mL})$ and $\mathrm{EtOAc}(4 \mathrm{~mL})$. The aqueous layer was separated and extracted with EtOAc ($8 \mathrm{~mL} \times 3$).

The combined organic layers were concentrated in vacuo. The residue was then purified by silica gel flash column chromatography ($\mathrm{Et}_{2} \mathrm{O} /$ Hexanes or $\mathrm{EtOAc} / \mathrm{Hexanes}$) to afford the oxyarylation product 9 .

(R)-4-((2-(4-chlorophenyl)-5-oxotetrahydrofuran-2-yl)methyl)benzonitrile (9a) Following general procedure D , the title compound was synthesized from 4-(4-chlorophenyl)pent-4-enoic acid (2c) (105 mg, 0.50 mmol) and 4cyanophenyldiazonium tetrafluoroborate $(217 \mathrm{mg})$. The product was purified by silica gel flash column chromatography $\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $=2: 1$ to $\mathrm{EtOAc} /$ hexanes $=2: 1$) to afford 9a(115.1 mg, 74\% yield, 73% ee) as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.42-2.38$ ($\mathrm{m}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.5,140.6,140.3,134.2,132.1,131.4,128.9,126.4$, 118.7, 111.3, 87.9, 48.6, 34.3, 28.5; IR (film) $\mathrm{v}_{\max } 1742,1434,1366,1229,1217 \mathrm{~cm}^{-1}$; $\mathrm{R}_{\mathrm{f}}($ hexanes: ethyl acetate $=1: 1)=0.3 ; \mathrm{HRMS}:\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$Calcd. For $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{ClN}_{2} \mathrm{O}_{2}$: 329.1051; Found: 329.1071. $[\alpha]_{\mathrm{D}}{ }^{24}=+48.8$ ($\mathrm{c}=1.1, \mathrm{CHCl}_{3}$). The enantiomeric excess was determined by chiral HPLC analysis: Chiralcel OD-H $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, hexanes: $;-\mathrm{PrOH}=90: 10,1.0 \mathrm{~mL} / \mathrm{min}$, $230 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=34.5 \mathrm{~min}$ (major) and 39.5 min (minor).
(R)-ethyl-4-((2-(4-cyanophenyl)-5-oxotetrahydrofuran-2-yl)methyl)benzoate (9b) Following general procedure D , the title compound was synthesized from 4-(4-cyanophenyl)pent-4-enoic acid (2d) ($100 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 4-ethoxycarbonylphenyldiazonium
 tetrafluoroborate (264 mg). The product was purified by silica gel flash column chromatography $\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $=2: 1$ to $\mathrm{EtOAc} /$ hexanes $\left.=1: 1\right)$ to afford 9 b ($132.0 \mathrm{mg}, 76 \%$ yield, 71% ee) as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.64 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.40 (d, J $=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.36(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.27(\mathrm{~d}, J$ $=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{ddd}, J=12.8 \mathrm{~Hz}, 10.0 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.51-$ 2.33 ($\mathrm{m}, 2 \mathrm{H}$), 2.26 (ddd, $J=17.2 \mathrm{~Hz}, 9.6 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.3$, $166.4,148.1,139.3$ 132.6, 130.6, 129.9, 129.7, 125.8, 118.4, 112.2, 87.9, 61.2, 48.5, 33.6, 28.5, 14.5; IR (film) $\mathrm{v}_{\max } 2228,1774,1738,1717,1365,1277,128,1217,1104,1021 \mathrm{~cm}^{-1}$; $\mathrm{R}_{\mathrm{f}}($ hexanes: ethyl acetate $=1: 1)=0.1$; HRMS: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$Calcd. For $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}$: 367.1652;

Found: 367.1665. $[\alpha]_{D}{ }^{24}=+11.3\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by chiral HPLC analysis: Chiralcel AD-H $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, hexanes: $i-\mathrm{PrOH}=85: 15,1.0 \mathrm{~mL} / \mathrm{min}$, $230 \mathrm{~nm}, \mathrm{t}_{R}=20.3 \mathrm{~min}$ (major) and 29.1 min (minor).
(R)-4-((5-oxo-2-(4-(trifluoromethyl)phenyl)tetrahydrofuran-2-yl)methyl)benzonitrile

Following general procedure D, the title compound was synthesized from 4-(4-trifluoromethylphenyl)pent-4-enoic acid (2e) (122 mg, 0.50 mmol) and 4 cyanophenyldiazonium tetrafluoroborate $(217 \mathrm{mg})$. The product was purified by silica gel flash column chromatography $\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $=2: 1$ to EtOAc/hexanes $=1: 1$) to afford 9 c ($90.4 \mathrm{mg}, 52 \%$ yield, 76% ee) as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.63-2.51 (m, 2 H), 2.47-2.33 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.3,146.2,140.0$, 132.2, $131.4,130.6\left(q, J_{C F}=32 \mathrm{~Hz}\right), 125.8\left(q, J_{\mathrm{CF}}=3 \mathrm{~Hz}\right), 125.4,123.9\left(\mathrm{q}, J_{\mathrm{CF}}=270 \mathrm{~Hz}\right)$, 118.7, 111.5, 87.8, 48.5, 34.2, 28.4; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.7 (s); IR (film) $\mathrm{v}_{\max } 1738$, 1434, 1365, 1229, 1217, $1163 \mathrm{~cm}^{-1} ; \mathrm{R}_{\mathrm{f}}$ (toluene: ethyl acetate $=5: 1$) $=0.3$; HRMS: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$ Calcd. For $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$: 363.1315; Found: 363.1332. $[\alpha]_{\mathrm{D}}{ }^{24}=+8.0\left(\mathrm{c}=0.9, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by chiral HPLC analysis: Chiralcel OD-H $4.6 \mathrm{~mm} \times 250$ mm , hexanes: $i-\mathrm{PrOH}=90: 10,1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}, \mathrm{t}_{R}=30.3 \mathrm{~min}$ (major) and 37.6 min (minor).

(R)-6-(3,5-bis(trifluoromethyl)benzyl)-6-phenyltetrahydro-2 H-pyran-2-one (9d) Following general procedure D, the title compound was synthesized from 5-phenylhex-5-enoic acid (2i) ($95 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 3,5-bis(trifluoromethyl)phenyldiazonium tetrafluoroborate (328 mg). The product was purified by silica gel flash column chromatography (hexanes: ethyl acetate $=10: 1$ to $4: 1$) to afford 9d (164.9 $\mathrm{mg}, 82 \%$ yield, $56 \% \mathrm{ee}$) as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70$ (s, 1 H), $7.36-$ 7.30 ($\mathrm{m}, 5 \mathrm{H}$), 7.19-7.178 (m, 2 H), 3.28 (d, $J=14.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.26 (d, $J=14.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.472.33 (m, 3 H), 1.97 (ddd, J=14.4, 12.8, $4.8 \mathrm{~Hz}, 1 \mathrm{H}$), $1.80(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.8,141.3,137.7,131.1\left(\mathrm{q}, \mathrm{J}_{\mathrm{CF}}=33 \mathrm{~Hz}\right), 130.9,129.0,128.2,125.3,123.3(\mathrm{q}$, $\left.J_{\text {CF }}=271 \mathrm{~Hz}\right), 120.9(\mathrm{~m}), 86.7,49.9,31.7,29.1,16.2 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.9(\mathrm{~s}) ;$ IR (film) $\mathrm{v}_{\max } 1736,1378,1275,1235,1167,1125,1044,894 \mathrm{~cm}^{-1} ; \mathrm{R}_{\mathrm{f}}$ (toluene: ethyl acetate $=$ $5: 1$) $=0.6 ;\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$Calcd. For $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F}_{6} \mathrm{NO}_{2}: 420.1393$; Found: 420.1370. $[\alpha]_{\mathrm{D}}{ }^{24}=+2.3$ ($\mathrm{c}=0.7$,
CHCl_{3}). The enantiomeric excess was determined by chiral HPLC analysis: Chiralcel OD-H 4.6 $\mathrm{mm} \times 250 \mathrm{~mm}$, hexanes: $i-\mathrm{PrOH}=90: 10,1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}, \mathrm{t}_{R}=7.1 \mathrm{~min}$ (major) and 10.6 min (minor).

Enantioselective diacyloxylation (Scheme 7)

Caution: Proper safety precautions should be followed. This reaction should be carried out behind a blast shield and only on a small scale. It should be noted that while no incident occurred during this study, peroxides are potentially hazardous compounds and adequate safety measures should be taken.

An oven-dried Fisher Scientific $20 \times 150 \mathrm{~mm}$ re-sealable test tube equipped with a Teflon-coated magnetic stir bar was charged with tetrakis(acetonitrile)copper(I) hexafluorophosphate (18.7 mg , $0.05 \mathrm{mmol}, 0.10$ equiv), 2,2'-isopropylidenebis[(4S)-4-tert-butyl-2-oxazoline] (L) ($14.7 \mathrm{mg}, 0.05$ mmol, 0.10 equiv), dibenzoyl peroxide (75%) ($244 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5$ equiv), manganese powder ($55 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.0$ equiv) and 2c ($105 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv). The tube was then sealed with a Teflon screw-cap septum (10/90, Teflon/SIL, National Scientific) and connected to a Schlenk line. The vessel was briefly evacuated and backfilled with argon (this sequence was repeated a total of three times). Anhydrous EtOAc (8 mL) was added to the tube via syringe and the argon pressure was removed. A venting needle was inserted. The reaction mixture was stirred at room temperature $\left(25^{\circ} \mathrm{C}\right)$ for 16 h . The reaction mixture was carefully diluted with saturated aqueous sodium bicarbonate solution (8 mL) and EtOAc (4 mL). Internal standard (phenanthrene) was added. The aqueous layer was separated and extracted with EtOAc (8 $m L \times 3)$. The combined organic layers were concentrated in vacuo. The residue was analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy (${ }^{1} \mathrm{H}$ NMR yield: 13: 29\%; 14: 40\%). The residue was then purified by silica gel flash column chromatography (hexanes: ethyl acetate $=10: 1$ to $4: 1$ to toluene: ethyl acetate $=4: 1$) to afford $13(42.5 \mathrm{mg}, 26 \%$ yield, $65 \% \mathrm{ee})$ and 14 ($50.8 \mathrm{mg}, 35 \%$ yield, $66 \% \mathrm{ee}$).

(S)-(2-(4-Chlorophenyl)-5-oxotetrahydrofuran-2-yl)methyl benzoate (13) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97$ ($\mathrm{m}, 2 \mathrm{H}$), 7.59 ($\mathrm{m}, 1 \mathrm{H}$), 7.47-7.41 (m, 6 H), 4.64 (d, J =12.4 Hz, 1 H), 4.45 (d, J=12.4 Hz, 1 H), 2.82-2.71 (m, 2 H), 2.63-2.45 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.7,166.0,138.7,134.8,133.73$, 129.8, 129.3, 129.2, 128.8, 126.6, 86.6, 69.9, 31.5, 28.9; IR (film) $v_{\max } 1779,1720,1264,1111$,

1093, 1012, $910 \mathrm{~cm}^{-1} ; \mathrm{R}_{\mathrm{f}}$ (toluene: ethyl acetate $\left.=5: 1\right)=0.4 ;[\mathrm{M}+\mathrm{H}]^{+}$Calcd. For $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ClO}_{4}$: 331.0732; Found: 331.0750. $[\alpha]_{D}{ }^{24}=-16.4$ ($\mathrm{c}=0.4, \mathrm{CHCl}_{3}$). The enantiomeric excess was determined by chiral HPLC analysis: Chiralcel OD-H $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, hexanes:i-PrOH $=$ 90:10, $1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}, \mathrm{t}_{R}=16.8 \mathrm{~min}$ (major) and 31.9 min (minor).

(R)-5-Benzyl-5-(4-chlorophenyl)dihydrofuran-2(3H)-one (14) ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.23(\mathrm{~m}, 7 \mathrm{H}), 7.08(\mathrm{~m}, 2 \mathrm{H}), 3.22(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.10$ (d, J=14.0 Hz, 1 H), 2.57 (ddd, $J=12.8,10.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.44-2.28 (m, 2 H), 2.11 (m, 1 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 176.2, 142.1, 134.8, 133.8, 130.8, 128.7, 128.5, 127.4, 126.4, 88.6, 48.8, 33.2, 28.8; IR (film) $\mathrm{v}_{\max } 1772,1492,1163,1003,926$, $808,701 \mathrm{~cm}^{-1} ; \mathrm{R}_{\mathrm{f}}$ (toluene: ethyl acetate $\left.=5: 1\right)=0.6 ;\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$Calcd. For $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{CINO}_{2}$: 304.1099; Found: 304.1105. $[\alpha]_{D}{ }^{24}=+4.1\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by chiral HPLC analysis: Chiralcel OD-H $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, hexanes: $i-\mathrm{PrOH}=95: 5$, $1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}, \mathrm{t}_{R}=19.5 \mathrm{~min}$ (major) and 18.2 min (minor).

Enantioselective Oxyalkylation (Scheme 8)

(S)-5-(4-chlorophenyl)-5-ethyldihydrofuran-2(3H)-one (15) (Scheme 7) An oven-dried Fisher Scientific $20 \times 150 \mathrm{~mm}$ re-sealable test tube equipped with a Teflon-coated magnetic stir bar was charged with tetrakis(acetonitrile)copper(I) hexafluorophosphate $(37.3 \mathrm{mg}, \quad 0.10 \mathrm{mmol}, 0.20$ equiv), 2,2'-isopropylidenebis[(4S)-4-tert-butyl-2-oxazoline] (L) ($29.4 \mathrm{mg}, \quad 0.10 \mathrm{mmol}, 0.20$ equiv), (diacetoxyiodo)benzene ($320 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.0$ equiv), potassium fluoride ($15 \mathrm{mg}, 0.25 \mathrm{mmol}$, 0.50 equiv) and 2c ($105 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv). The tube was then sealed with a Teflon screw-cap septum (10/90, Teflon/SIL, National Scientific) and connected to a Schlenk line. The vessel was briefly evacuated and backfilled with argon (this sequence was repeated a total of three times). Anhydrous MTBE (8 mL) was added to the tube via syringe and the argon pressure was removed. The reaction mixture was stirred at room temperature $\left(25^{\circ} \mathrm{C}\right)$ for 16 h . The reaction mixture was carefully diluted with saturated aqueous sodium bicarbonate solution $(8 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{~mL})$. The aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}(8 \mathrm{~mL} \times 3)$. The combined organic layers were concentrated in vacuo. The residue was then purified by
silica gel flash column chromatography (hexanes: ethyl acetate $=10: 1$ to 4:1) to afford 15 (22.0 $\mathrm{mg}, 20 \%$ yield, $60 \% \mathrm{ee})$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{~m}, 1 \mathrm{H})$, 2.51-2.39 (m, 3 H), 1.97 ($q, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $0.82(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.4,141.5,133.6,128.8,126.4,89.5,35.4,34.7,28.8,8.3$; IR (film) $v_{\max } 1739,1365,1229$, 1217, 1091; R_{f} (hexanes: ethyl acetate $=2: 1$) $=0.5 ;[\mathrm{M}+\mathrm{H}]^{+}$Calcd. For $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{ClO}_{2}$: 225.0677; Found: 225.0683. The enantiomeric excess was determined by chiral HPLC analysis: Chiralcel OJ-H $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, hexanes:i-PrOH = 90:10, $1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}, \mathrm{t}_{R}=14.7 \mathrm{~min}$ (major) and 11.3 min (minor).

Effect of concentration on enantioselectivity

The enantioselectivity slightly decreases as the system gets more concentrated, as shown by the following chart using oxytrifluoromethylation as an example (SI-Scheme 2). The enantiomeric excess of the product 17a dropped to 72% from 82% as the concentration increased from 0.05 M to 0.5 M . Concentrations lower than 0.05 M did not afford significant ee improvement but resulted in much lower conversion of $\mathbf{2 a}$ as well as lower yield of 17a (~10\% yield at 0.005 M). Similar trend was observed with the oxyazidation reaction, where the product 4c's ee increased from 80% to 85% as the reaction concentration decreased from 0.042 M to 0.017 M (at RT). However $<10 \%$ yield was obtained at 0.005 M .

SI-Scheme 2. Concentration effect.

Hammett plot (Scheme 9)

Independent reactions: An oven-dried screw-cap NMR tube was charged with tetrakis(acetonitrile)copper(I) hexafluorophosphate ($1.9 \mathrm{mg}, 0.0050 \mathrm{mmol}, 0.10$ equiv) and sealed with a Teflon screw-cap septum. The tube was connected to a Schlenk line. The tube was briefly evacuated and backfilled with argon (this sequence was repeated a total of two times). The argon pressure was removed. 0.60 mL of a stock solution in anhydrous methylene chloride under argon containing 16 ($0.083 \mathrm{~mol} / \mathrm{L})$, $\mathbf{2}(0.083 \mathrm{~mol} / \mathrm{L}), \mathbf{L}(0.0083 \mathrm{~mol} / \mathrm{L})$ and internal standard (α, α, α-trifluorotoluene) was added to the tube via syringe. The reaction progress was monitored by ${ }^{19}$ F NMR spectroscopy. The initial reaction rate was determined and used for the calculation of $\log \left(\mathrm{k}_{\mathrm{R}} / \mathrm{k}_{\mathrm{H}}\right)$.
(a) Independent reactions

R	$\log \left(\mathrm{k}_{\mathrm{R}} / \mathrm{k}_{H}\right)$		
run 1	run 2	ave	
OMe	0.098	0.076	0.087 ± 0.011
H	-0.023	0.022	0.000 ± 0.022
Cl	-0.15	-0.16	-0.154 ± 0.006
CN	-0.30	-0.39	-0.343 ± 0.047

One-pot competition experiments: An oven-dried Fisher Scientific $13 \times 100 \mathrm{~mm}$ re-sealable test tube equipped with a Teflon-coated magnetic stir bar was charged with tetrakis(acetonitrile)copper(I) hexafluorophosphate ($3.7 \mathrm{mg}, 0.010 \mathrm{mmol}, 0.10$ equiv), 2,2'-isopropylidenebis[(4S)-4-tert-butyl-2-oxazoline] (L) ($2.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 0.10$ equiv) and 16 (3.2 $\mathrm{mg}, 0.010 \mathrm{mmol}, 0.10$ equiv). The reaction tube was sealed with a septum screw-cap (Thermo Scientific ASM PHN CAP w/PTFE/SIL, cat. \#03378316). The reaction tube was connected to a Schlenk line though a needle. The reaction tube was then briefly evacuated and backfilled with argon (this sequence was repeated a total of three times). The argon pressure was removed and 1.2 mL of a stock solution in anhydrous methylene chloride under argon containing 2 (0.042 $\mathrm{mol} / \mathrm{L}, 0.50$ equiv) and $\mathbf{2 a}$ ($0.042 \mathrm{~mol} / \mathrm{L}, 0.50$ equiv) was added to the tube via syringe. The
reaction mixture was stirred at room temperature for 1 min . The reaction mixture was diluted with saturated aqueous sodium bicarbonate solution (4 mL) and ethyl ether (2 mL). The aqueous layer was separated and extracted with ethyl acetate ($2 \mathrm{~mL} \times 3$). The combined organic layers was concentrated in vacuo. The residue was redissolved in CDCl_{3} and internal standard (α, α, α-trifluorotoluene) was added. The resulting mixture was analyzed by ${ }^{19} \mathrm{~F}$ NMR spectroscopy (proton decoupled). The product ratio 17/17a was determined and used for the calculation of $\log \left(\mathrm{k}_{\mathrm{R}} / \mathrm{k}_{\mathrm{H}}\right)$.
(b) Competition reactions

R	product ration (17:17a)					$\log \left(k_{\text {P }} / k_{H}\right)$
	\# 1	\# 2	\#3	\#4	\#5	
OMe	1.60	1.64	1.70	1.58	1.66	0.21 ± 0.01
Cl	0.89	0.90	0.87	0.93	0.92	-0.046 ± 0.01
CN	0.55	0.54	0.46	0.44	-	-0.30 ± 0.04

Effect of ligand stoichiometry (Figure 1)

An oven-dried Fisher Scientific $13 \times 100 \mathrm{~mm}$ re-sealable test tube equipped with a Teflon-coated magnetic stir bar was charged with tetrakis(acetonitrile)copper(I) hexafluorophosphate (3.7 mg , $0.010 \mathrm{mmol}, 0.10$ equiv). The reaction tube was sealed with a septum screw-cap (Thermo Scientific ASM PHN CAP w/PTFE/SIL, cat. \#03378316). The reaction tube was connected to a Schlenk line though a needle. The reaction tube was then briefly evacuated and backfilled with argon (this sequence was repeated a total of three times). The argon pressure was removed. $20 x \mu \mathrm{~L}$ of stock solution of 2,2'-isopropylidenebis[(4S)-4-tert-butyl-2-oxazoline] (L) ($0.050 \mathrm{~mol} / \mathrm{L}$ in anhydrous methylene chloride) was added via syringe followed by additional (600-20x) $\mu \mathrm{L}$ anhydrous methylene chloride. The resulting mixture was stirred at RT for 1 min , to which 0.60 mL of a stock solution in anhydrous methylene chloride under argon containing 2c ($0.16 \mathrm{~mol} / \mathrm{L}$, 1.0 equiv), 16 ($0.16 \mathrm{~mol} / \mathrm{L}, 1.0$ equiv) and internal standard (α, α, α-trifluorotoluene) was added via syringe. The reaction mixture was stirred at room temperature for y min $(\mathrm{y}=1.5$ or 3.0). The reaction mixture was diluted with saturated aqueous sodium bicarbonate solution (4 mL) and $\mathrm{CHCl}_{3}(2 \mathrm{~mL})$. The organic layer was separated and analyzed by ${ }^{19} \mathrm{~F}$ NMR spectroscopy.

Experimental References and Notes

[1] Zhu, R.; Buchwald, S. L. Angew. Chem. Int. Ed. 2013, 52, 12655.
[2] Whitehead, D. C.; Yousefi, R.; Jaganathan, A.; Borhan, B. J. Am. Chem. Soc. 2010, 132, 3298.
[3] Karila, D.; Leman, L.; Dodd, R. H. Org. Lett. 2011, 13, 5830.
[4] Nayyar, N. K.; Hutchison, D. R.; Martinelli, M. J. J. Org. Chem. 1997, 62, 982.
[5] Jian, Y.-J.; Tang, C.-J.; Wu, Y. J. Org. Chem. 2007, 72, 4851.
[6] Murai, K.; Nakamura, A.; Matsushita, T.; Shimura, M.; Fujioka, H. Chem. Eur. J. 2012, 18, 8448. The ${ }^{1} \mathrm{H}$ NMR spectra of 4 m and 4 n were compared to those reported for compounds \mathbf{i}, \mathbf{i} and iii. The splitting patterns and chemical shifts for H1. H2. H3. and H4 were compared.

[7] Gardiner, M.; Grigg, R.; Kordes, M.; Sridharan, V.; Vicker, N. Tetrahedron 2001, 57, 7729.
[8] Li, Z.; Cui, Z.; Liu, Z.-Q. Org. Lett. 2013, 15, 406.
[9] Pedersen, C. M.; Marinescu, L. G.; Bols, M. Org. Biomol. Chem., 2005, 3, 816.
$\mathrm{RZ}-4-166-\mathrm{H}$

HPLC traces for 4a:

Sample Name: RZ-4-166-RAC

Acq. Operator : RZ	Seq. Line : 2
Acq. Instrument : Instrument 1	Location : Vial 17
Injection Date : 7/22/2014 8:52:16 AM	Inj :
	Inj Volume : 1 ¢

Acq. Method : C: \CHEM32\1\DATA \RONG\NAOYUKI_LC 2014-07-22 08-08-53\RZ-5IPA-1ML-2013-.M

(\pm) $\mathbf{4 a}$
DAD1 C, Sig=210,8 Ref=360,100 (C:ICHEM3211IDATAIRONGINAOYUKI_LC 2014-07-22 08-08-531RZ-4-166-RAC.D)

Signal 3: DAD1 C, Sig=210,8 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{~A}^{2}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	20.893		0.7269	8601.23047	175.76074	50.1902
2	26.266	BB	0.7623	8536.03516	137.86684	49.8098
Total	s :			1.71373 e 4	313.62758	

Sample Name: RZ-4-166

Signal 3: DAD1 C, Sig=210, 8 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{~A}^{2}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \frac{\%}{8} \end{gathered}$
1	20.631		0.7812	4.02596 e 4	773.55682	94.3599
2	26.250	VB	0.7156	2406.40234	40.01611	5.6401
Total	3 :			4.26660 e 4	813.57293	

HPLC traces for 4b:

Sample Name: RZ-4-182-RAC
Sample Name: RZ-4-182-RAC

Acq. Operator : RZ	Seq. Line : 1
Acq. Instrument : Instrument 1	Location : Vial 16

Injection Date : 8/6/2014 5:46:23 PM

Inj : 1
Inj Volume : $1 \mu \mathrm{l}$

$(\pm)-\mathbf{4 b}$
Different Inj Volume from Sequence ! Actual Inj Volume : $5 \mu \mathrm{l}$
Acq. Method : C:\CHEM32\1\DATA\RONG\NAOYUKI_LC 2014-08-06 17-43-53\RZ-5IPA-1ML-2013-.M
DAD1 A, Sig=230,4 Ref=360, 100 (C:ICHEM3211|DATAIRONGINAOYUKI_LC 2014-08-06 17-43-53IRZ-4-182-RAC.D)

Signal 1: DAD1 A, Sig=230,4 $\operatorname{Ref}=360,100$

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} \mathrm{~S}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	24.793		0.6001	5160.43164	133.17227	49.9961
2	31.251		0.7904	5161.24463	99.30509	50.0039
Total	s :			1.03217 e 4	232.47736	

Sample Name: RZ-4-182
Acq. Operator : RZ
Acq. Instrument : Instrument 1
Injection Date : 8/1/2014 7:17:52 AM
Different Inj Volume from Sequence Actual Inj Volume : $3 \mu \mathrm{l}$
Seq. Line : 1
Location : Vial 16
Inj : $\quad 1$ Acq. Method : C:\CHEM32\1\DATA RONG \NAOYUKI_LC 2014-08-01 07-15-31\RZ-5IPA-1ML-2013-.M
DAD1 A, Sig=230,4 Ref=360,100 (C:ICHEM32111DATAIRONGINAOYUKI_LC 2014-08-01 07-15-311RZ-4-182.D)

Signal 1: DAD1 A, Sig=230,4 Ref=360,100

Peak	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[m A U * s]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	24.588	BB	0.5745	4195.15039	110.60049	94.5795
2	31.432	BB	0.5531	240.42851	5.16516	5.4205
Total	s :			4435.57890	115.76566	

HPLC traces for 4c:

Sample Name: RZ-4-172-RAC

Acq. Operator : RZ
Acq. Instrument : Instrument 1
Injection Date : 7/22/2014 10:50:36 AM
Location : Vial 18
Inj : 18

Injection Date : 7/22/2014 10:50:36 AM
Inj Volume : $1 \mu l$
$(\pm)-4 \mathrm{C}$
Acq. Method : C:\CHEM32\1\DATA RONG \backslash NAOYUKI_LC 2014-07-22 08-08-53\RZ-5IPA-1ML-2013-.M

Signal 1: DAD1 A, Sig=230,4 $\operatorname{Ref}=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[m A U * s]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	19.977	BB	0.6513	1820.84253	40.13295	50.0045
2	24.279	BB	0.7439	1820.51843	31.80194	49.9955
Total	s :			3641.36096	71.93489	

Sample Name: RZ-4-172

Acq. Operator : RZ
Seq. Line : 4
Acq. Instrument : Instrument 1
Injection Date : 7/22/2014 10:09:30 AM
Location : Vial 17
(Inj Volume : $1 \mu \mathrm{l}$

Different Inj Volume from Sequence ! Actual Inj Volume : $2 \mu \mathrm{l}$

Acq. Method : C:\CHEM32\1\DATA \backslash RONG \backslash NAOYUKI_LC 2014-07-22 08-08-53\RZ-5IPA-1ML-2013-.M
DAD1 A, Sig=230,4 Ref=360,100 (C:ICHEM32111DATAIRONGINAOYUKI_LC 2014-07-22 08-08-53IRZ-4-172.D)

Signal 1: DAD1 A, Sig=230,4 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	20.026	BB	0.7173	4562.40234	96.20024	94.4555
2	24.587	BB	0.6477	267.80951	4.91480	5.5445
Total	s :			4830.21185	101.11505	

RZ-4-190-H

4d
1 H NMR

HPLC traces for 4d:

```
Sample Name: RZ-4-190-RAC
```

===	
Acq. Operator : RZ	Seq. Line : 1
Acq. Instrument : Instrument 1	Location : Vial 17
Injection Date : 8/20/2014 1:43:52 PM	Inj : 1

Inj Volume : 1μ

$(\pm)-4 d$ Different Inj Volume from Sequence ! Actual Inj Volume : $6 \mu \mathrm{l}$ Acq. Method : C:\CHEM32\1\DATA\RONG\NAOYUKI_LC 2014-08-20 13-41-32\RZ-15IPA-2014.M

DAD1 A, Sig=230,4 Ref=360,100 (C:ICHEM3211LDATAIRONGINAOYUKI_LC 2014-08-20 13-41-32IRZ-4-190-RAC.D)

Signal 1: DAD1 A, Sig=230,4 Ref=360,100

Sample Name: RZ-4-190

Signal 1: DAD1 A, Sig=230,4 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{2} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	30.587	MM	1.0066	5841.70020	96.71944	94.8775
2	34.303	MM	0.9822	315.39474	5.35182	5.1225
Total	s :			6157.09494	102.07127	

$R Z-4-186-C$

HPLC traces for 4e:

Sample Name: RZ-4-186-RAC
== 1
Acq. Operator : RZ
Acq. Instrument : Instrument 1
Injection Date : $8 / 19 / 20148: 53: 02 \mathrm{AM}$

$(\pm)-4 \mathbf{e}$

Different Inj Volume from Sequence ! Actual Inj Volume : $3 \mu \mathrm{l}$

DAD1 C, Sig=210,8 Ref=360,100 (C:ICHEM32111DATAIRONGINAOYUKI_LC 2014-08-19 08-50-48IRZ-4-186-RAC.D)

Signal 3: DAD1 C, Sig=210,8 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{2} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	19.468		0.4645	3856.93750	122.78101	50.3897
2	24.534	BB	0.6219	3797.28760	84.88390	49.6103
Tota	s :			7654.22510	207.66491	

Sample Name: RZ-4-186

Acq. Operator : RZ
Seq. Line : 1
Acq. Instrument : Instrument 1
Injection Date : 8/19/2014 2:53:19 PM
Different Inj Volume from Sequence ! Actual Inj Volume : 12μ

$4 e$

DAD1 C, Sig=210,8 Ref=360,100 (C:ICHEM3211IDATAIRONGINAOYUKI_LC 2014-08-19 14-50-59IRZ-4-186.D)

Signal 3: DAD1 C, $\operatorname{Sig}=210,8$ Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[m A U * s]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	19.774	MM	0.5860	5388.30957	153.24788	94.7703
2	25.563	MM	0.7042	297.34396	7.03758	5.2297
Total	s :			5685.65353	160.28546	

$\mathrm{RZ}-4-164-\mathrm{H}$

4f
${ }^{1} \mathrm{H}$ NMR

HPLC traces for 4f:

Sample Name: RZ-4-164-RAC
==
Acq. Operator : RZ
Acq. Instrument : Instrument 1
Injection Date : 7/28/2014 9:53:18 AM

Different Inj Volume from Sequence ! Actual Inj Volume : $8 \mu \mathrm{l} \quad(\mathbf{4}) \mathbf{- 4 f}$

DAD1 A, Sig=230,4 Ref=360,100 (C:ICHEM3211LDATAIRONGINAOYUKI_LC 2014-07-28 09-09-46IRZ-4-164-RAC.D)

Signal 1: DAD1 A, Sig=230,4 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} s\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	22.892	BB	0.8382	1.31085 e 4	233.07202	50.1893
2	26.958	BB	0.9848	1.30096 e 4	187.66890	49.8107
Total	s :			$2.61181 e 4$	420.74092	

Sample Name: RZ-4-164
Acq. Operator : RZ Seq. Line : 1

Acq. Instrument : Instrument 1
Injection Date : 7/28/2014 9:12:06 AM Location : Vial 16

InvVolume :
Inj Volume : 1μ

Different Inj Volume from Sequence ! Actual Inj Volume : $5 \mu \mathrm{l}$ Acq. Method $: C: \backslash C H E M 32 \backslash 1 \backslash D A T A \backslash R O N G \backslash N A O Y U K I _L C$ 2014-07-28 09-09-46\RZ-5IPA-1ML-2013-.M

DAD1 A, Sig=230,4 Ref=360,100 (C:ICHEM32\11DATAIRONGWAOYUKI_LC 2014-07-28 09-09-46IRZ-4-164.D)

Signal 1: DAD1 A, Sig=230,4 Ref=360,100

RZ-4-218A-H

HPLC traces for $\mathbf{4 g}$:

Data File C:\CHEM32\1\DATA\RONG\NAOYUKI_LC 2014-10-09 07-45-20\RZ-4-218A-RAC.D Sample Name: RZ-4-218A-RAC

Injection Date : 10/9/2014 11:09:11 AM
Inj Vol
Different Inj Volume from Sequence ! Actual Inj Volume : $8 \mu \mathrm{l}$
Acq. Method $: C: \backslash C H E M 32 \backslash 1 \backslash D A T A \backslash R O N G \backslash N A O Y U K I _L C$ 2014-10-09 07-45-20 \RZ-5IPA-1ML-2013-.M

DAD1 A, Sig=230,4 Ref=360,100 (C:ICHEM32I11DATAIRONGINAOYUKI_LC 2014-10-09 07-45-20IRZ-4-218A-RAC.D)

Signal 1: DAD1 A, Sig=230,4 $\operatorname{Ref}=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	28.881		0.6575	8484.71289	189.09726	50.0582
2	36.433	BB	0.7776	8464.98535	151.09933	49.9418
Total	s :			1.69497 e 4	340.19659	

Data File C: \CHEM32\1\DATA \backslash RONG Sample Name: RZ-4-218A
Acq. Operator :

Seq. Line : 4
Acq. Instrument : Instrument 1
Injection Date : 10/9/2014 9:36:43 AM
Location : Vial 17
Inj Volume : 1
Inj Volume : $1 \mu \mathrm{l}$

$4 g$
Different Inj Volume from Sequence ! Actual Inj Volume : $12 \mu \mathrm{l}$
Acq. Method : C:\CHEM32\1\DATA \backslash RONG \backslash NAOYUKI_LC 2014-10-09 07-45-20 \backslash RZ-5IPA-1ML-2013-.M

DAD1 A, Sig=230,4 Ref=360,100 (C:ICHEM3211DATAIRONGINAOYUKI_LC 2014-10-09 07-45-20IRZ-4-218A.D)

Signal 1: DAD1 A, Sig=230,4 $\operatorname{Ref}=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	28.987	BB	0.6492	6429.18652	143.35242	91.1065
2	36.921	BB	0.6312	627.59711	11.86257	8.8935
Total	s :			7056.78363	155.21498	

$\mathrm{RZ}-4-180-\mathrm{H}$

HPLC traces for 4h:

Sample Name: RZ-4-180-RAC
$==1$

Acq. Operator : RZ
Seq. Line : 1
Acq. Instrument : Instrument 1
Injection Date : 9/1/2014 1:01:22 PM
Location : Vial 16 Inj : 1
Inj Volume : $1 \mu \mathrm{l}$
Different Inj Volume from Sequence ! Actual Inj Volume : $5 \mu \mathrm{l}$
Acq. Method : C: \CHEM32\1\DATA \RONG\NAOYUKI_LC 2014-09-01 12-58-58\RZ-SHUTDOWN.M

DAD1 A, Sig=230,4 Ref=360,100 (C:ICHEM32\11DATAIRONGWAOYUKI_LC 2014-09-01 12-58-58\RZ-4-180-RAC.D)

Signal 1: DAD1 A, Sig=230,4 Ref=360,100

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~S}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & {[\mathrm{mAU}]} \end{aligned}$	Area \%
1	17.812		0.4240	2168.58911	76.19683	50.0957
2	19.649		0.4531	2160.30054	70.98513	49.9043
Total	s :			4328.88965	147.18196	

Sample Name: RZ-4-180

Acq. Operator	: RZ	Seq. Line : 1
Acq. Instrument	: Instrument 1	Location : Vial 16

Inj Volume : $1 \mu \mathrm{l}$
4h

DAD1 A, Sig=230,4 Ref=360,100 (C:ICHEM32111DATAIRONGINAOYUKI_LC 2014-07-29 17-59-26IRZ-4-180-IA.D)

Signal 1: DAD1 A, Sig=230,4 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	18.680	BB	0.3921	219.16219	7.26251	4.7844
2	20.504	MM	0.5649	4361.62939	128.67712	95.2156
Total	s :			4580.79158	135.93964	

HPLC traces for 4i:

Sample Name: RZ-4-158-rac
Acq. Operator : RZ
Acq. Instrument : Instrument 1
Injection Date : $6 / 6 / 2014 \quad 4: 34: 38 \mathrm{PM}$
Seq. Line : 1
Acq. Instrument : Instrument 1
Injection Date : 6/6/2014 4:34:38 PM
Inj Vol

(\pm) $4 \mathbf{i}$
Different Inj Volume from Sequence ! Actual Inj Volume : $3 \mu \mathrm{l}$ Acq. Method : C: \CHEM32\1\DATA\RONG\NAOYUKI_LC 2014-06-06 16-33-29\RZ-5IPA-1ML-2013-.M
DAD1 C, Sig=210,8 Ref=360,100 (C:ICHEM32 ...ATAIRONGINAOYUKI_LC 2014-06-06 16-33-29IRZ-4-158(OD-H)-RAC.D)

Signal 3: DAD1 C, Sig=210,8 $\operatorname{Ref}=360,100$

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{\star} \mathrm{S}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	19.877		0.5830	2242.23364	52.84458	50.1395
2	26.877		0.6945	2229.76001	38.56628	49.8605
Total	s :			4471.99365	91.41086	

Sample Name: RZ-4-158

Signal 3: DAD1 C, Sig=210, 8 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	```RetTime [min]```	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	19.534	MM	0.7066	5116.65674	120.68810	94.3405
2	26.546	MM	0.8724	306.94647	5.86426	5.6595
Total	S :			5423.60321	126.55235	

RZ-4-208-H

HPLC traces for $\mathbf{4 j}$:

Sample Name: RZ-4-208-RAC
$===================$

Seq. Line : 1

Acq. Operator : RZ
Location : Vial 16
Injection Date : 9/16/2014 3:33:43 PM
Inj : $\quad 1$
(\pm) 4 j

Different Inj Volume from Sequence ! Actual Inj Volume : $4 \mu \mathrm{l}$
Acq. Method : C:\CHEM32\1\DATA \backslash RONG $\backslash Z Y$ 2014-09-16 15-31-25\RZ-5IPA-1ML-2013-.M

DAD1 C, Sig=210,8 Ref=360,100 (C:ICHEM32111DATAIRONGIZY 2014-09-16 15-31-25IRZ-4-208-RAC.D)

Signal 3: DAD1 C, Sig=210,8 Ref=360,100

Sample Name: RZ-4-208

Signal 3: DAD1 C, Sig=210,8 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{2} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	13.009	VB	0.3308	1.19998 e 4	558.26044	95.8692
2	15.036	BV	0.3174	517.04474	20.01099	4.1308
Tota	,			1.25169 e 4	578.27143	

RZ-4-188-H

$\mathbf{4 k}$
${ }^{1} \mathrm{H}$ NMR

HPLC traces for $4 k$:

```
Sample Name: RZ-4-188-RAC
```


$(\pm)-\mathbf{4 k}$

Different Inj Volume from Sequence ! Actual Inj Volume : $16 \mu \mathrm{l}$ Acq. Method : C:\CHEM32\1\DATA\RONG\NAOYUKI_LC 2014-08-25 15-24-07\RZ-5IPA-1ML-2013-.M

DAD1 A, Sig=230,4 Ref=360,100 (C:ICHEM32111DATAIRONGINAOYUKI_LC 2014-08-25 15-24-071RZ-4-188-RAC-D)

Signal 1: DAD1 A, Sig=230,4 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[m A U * s]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	17.083		0.4547	2134.21069	71.40211	50.3162
2	19.742		0.4543	2107.38574	77.31142	49.6838
Total	s :			4241.59644	148.71352	

Sample Name: RZ-4-188

Signal 1: DAD1 A, Sig=230,4 Ref=360,100

Peak \#	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	16.944	VB	0.4069	5986.67236	230.57608	85.8726
2	19.660	BB	0.4423	984.89868	32.43007	14.1274

HPLC traces for compound 4k derived from 41:

Sample Name: RZ-4-188-RAC

Acq. Operator : RZ	Seq. Line : 2
Acq. Instrument : Instrument 1	Location : Vial 16
Injection Date : $8 / 25 / 2014$ 4:07:52 PM	Inj : 1

$(\pm)-\mathbf{4 k}$

Different Inj Volume from Sequence ! Actual Inj Volume : $16 \mu \mathrm{l}$ Acq. Method : C:\CHEM32\1\DATA\RONG\NAOYUKI_LC 2014-08-25 15-24-07\RZ-5IPA-1ML-2013-.M

DAD1 A, Sig=230,4 Ref=360,100 (C:ICHEM32111DATAIRONGINAOYUKI_LC 2014-08-25 15-24-071RZ-4-188-RAC-D)

Signal 1: DAD1 A, Sig=230,4 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} s\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	17.083		0.4547	2134.21069	71.40211	50.3162
2	19.742	MM	0.4543	2107.38574	77.31142	49.6838
Total	s :			4241.59644	148.71352	

Sample Name: RZ-4-195

Signal 1: DAD1 A, Sig=230,4 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~S}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	16.999	MM	0.4347	3871.66455	148.43346	91.1778
2	19.725	MM	0.4853	374.61334	12.86601	8.8222
Total	s			4246.27789	161.29947	

RZ-4-202-H

RZ_4-202-C

71.79
20.99

HPLC traces for $4 m$ and $4 n$:

Sample Name: RZ-4-198

Acq. Operator : R2	Seq. Line :
Acq. Instrument : Instrument 1	Location : Vial 15
Injection Date : 9/5/2014 2:42:58 PM	Inj :
	Inj Volume : $1 \mu \mathrm{l}$
Different Inj Volume from Sequence	Inj Volume : $10 \mu 1$

$(\pm)-4 \mathrm{~m}$
(major)

from $(E)-2 \mathbf{m}$

4m

d.r. $=10: 1$

Signal 3: DAD1 C, Sig-210,8 Ref-360,100

Peak	RetTime [min]		$\begin{aligned} & \text { Width } \\ & \text { [nin] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\text { mA }{ }^{\prime}{ }^{3}\right.} \end{gathered}$	Helght [mAN]	$\begin{gathered} \text { Area } \end{gathered}$
1	33.504	B8	0.5563	2393.19165	59.87408	8.6433
2	35.536	BV	0.6450	1.41347e4	329.12018	51.0492
	37.567	vB	0.6900	1.10800e4	243.89116	40.0169
4	44.810	NM	1.0080	80.43877	1.32999	0.2905
Totals :				2.76884 4	634.21541	

from $(Z)-2 m$
Sample Name: RZ-4-202B

Acq. Operator : RZ	Seq. Line : 3
Acq. Instrument : Instrument 1	Location : Vial 17
Injection Date : 9/5/2014 4:34:11 PM	Inj : 1
	Inj Volume : $1 \mu \mathrm{l}$
Different Inj Volume from Sequence !	Inj Volume : $20 \mu \mathrm{l}$

Acq. Method : C: \CHEM32\1\DATA \backslash RONG $\backslash 2 Y$ 2014-09-05 14-40-24\R2-3-IPA-08ML-ETOH.M

Peak	RetTime Type [min]	width [min]	$\underset{\substack{\text { area } \\\left[0^{*} s\right]}}{n_{2}}$	Helight [mAU]	$\underset{i}{\text { Area }}$
1	33.374 BB	0.4942	1512.04651	37.04641	8.8356
2	35.441 BB	0.6560	8655.40430	197.23421	50.5775
3	37.46588	0.6805	6993.37061	151.03995	40.2811
4	44.568 mm	0.6933	52.33103	1.25798	0.3058

$\mathrm{RZ}-4-84-\mathrm{H}$

RZ-4-162 r2-H

RZ-4-135-H

RZ-4-135-C

HPLC traces for 5:

```
Sample Name: RZ-4-174-RAC
```

Acq. Operator : RZ	Seq. Line :
Acq. Instrument : Instrument 1	Location : Vial 16
Injection Date : 7/30/2014 1:08:06 PM	Inj :
Different Inj Volume from Sequence !	Inj Volume : $1 \mu \mathrm{l}$

(\pm) 5

Different Inj Volume from Sequence ! Actual Inj Volume : $4 \mu \mathrm{l}$
Acq. Method : C:\CHEM32\1\DATA RONG \NAOYUKI_LC 2014-07-30 13-05-43\RZ-5IPA-2014-70MIN.M

DAD1 C, Sig=210,8 Ref=360,100 (C:ICHEM32\11DATAIRONGWAOYUKI_LC 2014-07-30 13-05-43IRZ-4-174-RAC.D)

Signal 3: DAD1 C, Sig=210,8 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{2} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	64.933		3.1716	2.59173 e 4	136.19344	50.1438
2	72.272		3.5883	2.57686 e 4	119.68867	49.8562
Total				5.16859 e 4	255.88211	

Sample Name: RZ-4-174

Signal 3: DAD1 C, Sig=210, 8 Ref $=360,100$

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} S\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	67.532		3.8921	1.58979 e 4	68.07827	94.6059
2	80.106	MM	3.7487	906.45111	4.03003	5.3941
Total	5 :			1.68044 e 4	72.10830	

HPLC traces for 6:

Sample Name: RZ-4-220-RAC

DAD1 C, Sig=210,8 Ref=360,100 (C:ICHEM3211IDATAIRONGINAOYUKI_LC 2014-10-14 08-32-32IRZ-4-220-RAC-.D)

Signal 3: DAD1 C, Sig=210, 8 Ref $=360,100$

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{\star} \mathrm{S}\right]} \end{gathered}$	Height [mAU]	Area \%
1	7.229		0.3042	1.14757 e 4	628.67841	49.8381
2	8.148		0.3413	1.15502 e 4	564.09924	50.1619
Totals	s :			2.30259 e 4	1192.77765	

 Sample Name: RZ-4-220

Signal 3: DAD1 C, Sig=210,8 $\operatorname{Ref}=360,100$

$\mathrm{RZ}-4-184-\mathrm{H}$

HPLC traces for 7:

Sample Name: RZ-4-184-RAC

Acq. Operator : RZ	Seq. Line : 1
Acq. Instrument : Instrument 1	Location : Vial 19

Injection Date : 8/7/2014 9:24:47 AM

Location : Vial 19

Inj Volume

(\pm) 7
Different Inj Volume from Sequence ! Actual Inj Volume : $5 \mu \mathrm{l}$ Acq. Method : C: \CHEM32\1\DATA $\backslash R O N G \backslash N A O Y U K I _L C ~ 2014-08-07$ 09-22-20\RZ-15IPA-2014.M
DAD1 C, Sig=210,8 Ref=360,100 (C:ICHEM3211IDATAIRONGINAOYUKI_LC 2014-08-07 09-22-20\RZ-4-184-RAC.D)

Signal 3: DAD1 C, Sig=210,8 $\operatorname{Ref}=360,100$

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~S}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	21.032		0.6184	3.28333 e 4	781.09888	49.6663
2	28.194		0.8013	$3.32746 e 4$	618.87622	50.3337
Total	s :			6.61078 e 4	1399.97510	

Sample Name: RZ-4-184

Acq. Operator $: ~ R Z$	Seq. Line : 2
Acq. Instrument : Instrument 1	Location : Vial 16
Injection Date $: 8 / 19 / 201411: 13: 39 \mathrm{AM}$	Inj : 1

7
Different Inj Volume from Sequence ! Actual Inj Volume : $2 \mu \mathrm{l}$
Acq. Method : C: \CHEM32\1\DATA $\backslash R O N G \backslash N A O Y U K I _L C$ 2014-08-19 10-30-20\RZ-15IPA-2014.M

Signal 3: DAD1 C, Sig=210, 8 Ref $=360,100$

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	Area \%
1	20.479	MM	0.6195	421.91553	11.35162	5.3494
2	27.149		0.8317	7465.23828	149.60146	94.6506
Total	s :			7887.15381	160.95307	

HPLC traces for 7b:

Sample Name: RZ-4-197-RAC

(\pm)-7b

Signal 2: DAD1 B, Sig=254,16 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[m A U * s]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	21.116	MM	0.7375	2749.44751	62.13118	50.0031
2	36.332	MM	1.1271	2749.10229	40.65299	49.9969
Total	s :			5498.54980	102.78416	

Sample Name: RZ-4-197

Signal 2: DAD1 B, Sig=254,16 $\operatorname{Ref}=360,100$

Peak	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	21.649		0.5420	202.84988	4.48220	1.1461
2	37.033	MM	1.1893	1.74961 e 4	245.18356	98.8539
Total	s :			1.76989 e 4	249.66576	

SI-Table 1. Crystal data and structure refinement for compound 7b.

Identification code	X14147
Empirical formula	C19 H15 Br2 N3 O2
Formula weight	477.16
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	P 212121
Unit cell dimensions	$a=7.1816(11) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=11.0851(15) \AA$ 成 $\quad \beta=90^{\circ}$.
	$\mathrm{c}=21.848(3) \AA \quad \gamma=90^{\circ}$.
Volume	1739.3(4) \AA^{3}
Z	4
Density (calculated)	$1.822 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$4.681 \mathrm{~mm}^{-1}$
F(000)	944
Crystal size	$0.110 \times 0.065 \times 0.015 \mathrm{~mm}^{3}$
Theta range for data collection	1.864 to 30.032°.
Index ranges	$-10<=\mathrm{h}<=10,-13<=\mathrm{k}<=14,-30<=1<=30$
Reflections collected	37176
Independent reflections	$4912[\mathrm{R}(\mathrm{int})=0.0502]$
Completeness to theta $=25.242^{\circ}$	98.3 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.5645 and 0.4825
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4912 / 387 / 235
Goodness-of-fit on F^{2}	1.028
Final R indices [$\mathrm{I}>2$ sigma(I)]	$\mathrm{R} 1=0.0326, \mathrm{wR} 2=0.0653$
R indices (all data)	$\mathrm{R} 1=0.0428, \mathrm{wR} 2=0.0683$
Absolute structure parameter	-0.004(4)
Extinction coefficient	n / a
Largest diff. peak and hole	0.709 and -0.727 e..$^{-3}$

SI-Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for compound 7b. $U(e q)$ is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.

	x	y	z	$\mathrm{d}(\mathrm{eq})$
$\mathrm{Br}(1)$	$6633(1)$	$3221(1)$	$6294(1)$	$25(1)$
$\mathrm{Br}(2)$	$3532(1)$	$3581(1)$	$-1120(1)$	$21(1)$
$\mathrm{O}(1)$	$3070(4)$	$5450(3)$	$1809(1)$	$19(1)$
$\mathrm{O}(2)$	$1516(5)$	$6548(3)$	$2496(1)$	$26(1)$
$\mathrm{N}(1)$	$5840(5)$	$4282(3)$	$2562(2)$	$19(1)$
$\mathrm{N}(2)$	$6068(5)$	$5455(4)$	$2731(2)$	$23(1)$
$\mathrm{N}(3)$	$6239(5)$	$5470(3)$	$3326(2)$	$21(1)$
$\mathrm{C}(1)$	$3546(6)$	$4187(4)$	$1698(2)$	$18(1)$
$\mathrm{C}(2)$	$2072(6)$	$3470(4)$	$2061(2)$	$22(1)$
$\mathrm{C}(3)$	$1444(7)$	$4348(4)$	$2556(2)$	$22(1)$
$\mathrm{C}(4)$	$1948(6)$	$5565(4)$	$2307(2)$	$19(1)$
$\mathrm{C}(5)$	$5561(6)$	$3982(4)$	$1919(2)$	$19(1)$
$\mathrm{C}(6)$	$5890(6)$	$3557(4)$	$3056(2)$	$20(1)$
$\mathrm{C}(7)$	$6148(5)$	$4324(4)$	$3542(2)$	$17(1)$
$\mathrm{C}(8)$	$6304(6)$	$4042(4)$	$4198(2)$	$18(1)$
$\mathrm{C}(9)$	$7070(5)$	$2967(4)$	$4406(2)$	$19(1)$
$\mathrm{C}(10)$	$7208(6)$	$2726(4)$	$5029(2)$	$20(1)$
$\mathrm{C}(11)$	$6522(6)$	$3566(4)$	$5446(2)$	$19(1)$
$\mathrm{C}(12)$	$5762(6)$	$4647(4)$	$5251(2)$	$20(1)$
$\mathrm{C}(13)$	$5660(6)$	$4886(4)$	$4629(2)$	$19(1)$
$\mathrm{C}(14)$	$3539(6)$	$4001(4)$	$1009(2)$	$17(1)$
$\mathrm{C}(15)$	$2885(6)$	$2952(4)$	$744(2)$	$19(1)$
$\mathrm{C}(16)$	$2884(6)$	$2812(4)$	$105(2)$	$19(1)$
$\mathrm{C}(17)$	$3586(6)$	$3731(4)$	$-255(2)$	$16(1)$
$\mathrm{C}(18)$	$4325(6)$	$4768(4)$	$0(2)$	$19(1)$
$\mathrm{C}(19)$	$4289(6)$	$4905(4)$	$633(2)$	$18(1)$

SI-Table 3. Bond lengths [\AA] and angles $\left.{ }^{\circ}\right]$ for compound 7 b .

$\mathrm{Br}(1)-\mathrm{C}(11)$	$1.895(4)$	$\mathrm{C}(2)-\mathrm{C}(3)$
$\mathrm{Br}(2)-\mathrm{C}(17)$	$1.898(4)$	$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$
$\mathrm{O}(1)-\mathrm{C}(4)$	$1.360(5)$	$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.461(5)$	$\mathrm{C}(3)-\mathrm{C}(4)$
$\mathrm{O}(2)-\mathrm{C}(4)$	$1.206(5)$	$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$
$\mathrm{N}(1)-\mathrm{C}(6)$	$1.346(6)$	$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$
$\mathrm{N}(1)-\mathrm{N}(2)$	$1.361(5)$	$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$
$\mathrm{N}(1)-\mathrm{C}(5)$	$1.457(5)$	$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$
$\mathrm{N}(2)-\mathrm{N}(3)$	$1.306(5)$	$\mathrm{C}(6)-\mathrm{C}(7)$
$\mathrm{N}(3)-\mathrm{C}(7)$	$1.357(6)$	$\mathrm{C}(6)-\mathrm{H}(6)$
$\mathrm{C}(1)-\mathrm{C}(14)$	$1.518(6)$	$\mathrm{C}(7)-\mathrm{C}(8)$
$\mathrm{C}(1)-\mathrm{C}(5)$	$1.543(6)$	$\mathrm{C}(8)-\mathrm{C}(9)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.543(6)$	$\mathrm{C}(8)-\mathrm{C}(13)$

$\mathrm{C}(9)-\mathrm{C}(10)$	1.390(6)	$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	108.9
$\mathrm{C}(9)-\mathrm{H}(9)$	0.9500	$\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	108.9
$\mathrm{C}(10)-\mathrm{C}(11)$	1.394(6)	$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	108.9
$\mathrm{C}(10)-\mathrm{H}(10)$	0.9500	$\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	108.9
$\mathrm{C}(11)-\mathrm{C}(12)$	1.383(6)	$\mathrm{H}(5 \mathrm{~A})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	107.7
$\mathrm{C}(12)-\mathrm{C}(13)$	1.387(6)	$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	104.7(4)
$\mathrm{C}(12)-\mathrm{H}(12)$	0.9500	$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{H}(6)$	127.7
$\mathrm{C}(13)-\mathrm{H}(13)$	0.9500	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)$	127.7
$\mathrm{C}(14)-\mathrm{C}(15)$	1.382(6)	$\mathrm{N}(3)-\mathrm{C}(7)-\mathrm{C}(6)$	108.6(4)
C(14)-C(19)	$1.404(6)$	$\mathrm{N}(3)-\mathrm{C}(7)-\mathrm{C}(8)$	122.3(4)
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.404(6)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	129.2(4)
$\mathrm{C}(15)-\mathrm{H}(15)$	0.9500	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(13)$	118.8(4)
C(16)-C(17)	1.381(6)	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	122.1(4)
$\mathrm{C}(16)-\mathrm{H}(16)$	0.9500	$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{C}(7)$	119.1(4)
C(17)-C(18)	1.383(6)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	120.9(4)
$\mathrm{C}(18)-\mathrm{C}(19)$	1.391(6)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	119.5
$\mathrm{C}(18)-\mathrm{H}(18)$	0.9500	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	119.5
$\mathrm{C}(19)-\mathrm{H}(19)$	0.9500	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	119.1(4)
		$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	120.4
$\mathrm{C}(4)-\mathrm{O}(1)-\mathrm{C}(1)$	111.2(3)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$	120.4
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{N}(2)$	110.5(4)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	121.1(4)
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(5)$	129.8(4)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{Br}(1)$	119.6(3)
$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(5)$	119.7(4)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{Br}(1)$	119.3(3)
$\mathrm{N}(3)-\mathrm{N}(2)-\mathrm{N}(1)$	107.0(4)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	119.3(4)
$\mathrm{N}(2)-\mathrm{N}(3)-\mathrm{C}(7)$	109.2(4)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12)$	120.4
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(14)$	107.1(3)	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12)$	120.4
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(5)$	108.0(3)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(8)$	120.8(4)
$\mathrm{C}(14)-\mathrm{C}(1)-\mathrm{C}(5)$	107.1(4)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13)$	119.6
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	104.3(3)	$\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{H}(13)$	119.6
$\mathrm{C}(14)-\mathrm{C}(1)-\mathrm{C}(2)$	115.9(4)	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(19)$	119.0(4)
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)$	114.0(3)	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(1)$	122.1(4)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	103.8(4)	$\mathrm{C}(19)-\mathrm{C}(14)-\mathrm{C}(1)$	118.9(4)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	111.0	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	120.7(4)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	111.0	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15)$	119.6
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	111.0	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15)$	119.6
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	111.0	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	118.9(4)
$\mathrm{H}(2 \mathrm{~A})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	109.0	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16)$	120.5
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	104.2(3)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16)$	120.5
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	110.9	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	121.6(4)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	110.9	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{Br}(2)$	119.6(3)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	110.9	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{Br}(2)$	118.8(3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	110.9	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	118.9(4)
$\mathrm{H}(3 \mathrm{~A})-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	108.9	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18)$	120.5
$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{O}(1)$	120.7(4)	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{H}(18)$	120.5
$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	128.8(4)	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(14)$	120.8(4)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	110.5(4)	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(19)$	119.6
$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(1)$	113.4(3)	$\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{H}(19)$	119.6

SI-Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for compound 7 b . The anisotropic displacement factor exponent takes the form: $-2 p^{2}\left[h^{2} a^{*} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{Br}(1)$	$27(1)$	$30(1)$	$19(1)$	$4(1)$	$-2(1)$	$-3(1)$
$\mathrm{Br}(2)$	$22(1)$	$26(1)$	$16(1)$	$-1(1)$	$-1(1)$	$3(1)$
$\mathrm{O}(1)$	$20(2)$	$17(2)$	$18(1)$	$-2(1)$	$4(1)$	$0(1)$
$\mathrm{O}(2)$	$31(2)$	$24(2)$	$22(1)$	$-2(1)$	$5(1)$	$4(2)$
$\mathrm{N}(1)$	$18(2)$	$19(2)$	$19(2)$	$0(1)$	$-1(1)$	$0(1)$
$\mathrm{N}(2)$	$23(2)$	$23(2)$	$24(2)$	$-2(2)$	$-3(1)$	$-5(1)$
$\mathrm{N}(3)$	$22(2)$	$21(2)$	$21(2)$	$3(1)$	$-4(1)$	$-6(1)$
$\mathrm{C}(1)$	$21(2)$	$15(2)$	$19(2)$	$0(1)$	$1(2)$	$2(2)$
$\mathrm{C}(2)$	$25(2)$	$22(2)$	$18(2)$	$1(2)$	$4(2)$	$-4(2)$
$\mathrm{C}(3)$	$22(2)$	$24(2)$	$21(2)$	$-1(2)$	$4(2)$	$-3(2)$
$\mathrm{C}(4)$	$18(2)$	$24(2)$	$16(2)$	$-1(2)$	$1(2)$	$1(2)$
$\mathrm{C}(5)$	$20(2)$	$22(2)$	$17(2)$	$-1(2)$	$1(2)$	$2(2)$
$\mathrm{C}(6)$	$19(2)$	$20(2)$	$21(2)$	$0(2)$	$-2(2)$	$-1(2)$
$\mathrm{C}(7)$	$12(2)$	$17(2)$	$21(2)$	$0(1)$	$-1(1)$	$1(1)$
$\mathrm{C}(8)$	$13(2)$	$21(2)$	$19(2)$	$-2(1)$	$-1(2)$	$-2(2)$
$\mathrm{C}(9)$	$15(2)$	$19(2)$	$22(2)$	$-5(2)$	$-1(1)$	$-1(1)$
$\mathrm{C}(10)$	$13(2)$	$20(2)$	$27(2)$	$1(2)$	$-4(2)$	$1(2)$
$\mathrm{C}(11)$	$17(2)$	$22(2)$	$17(2)$	$2(2)$	$-1(2)$	$-2(2)$
$\mathrm{C}(12)$	$17(2)$	$20(2)$	$21(2)$	$-4(2)$	$4(2)$	$1(2)$
$\mathrm{C}(13)$	$16(2)$	$19(2)$	$22(2)$	$0(2)$	$-1(2)$	$2(2)$
$\mathrm{C}(14)$	$16(2)$	$16(2)$	$18(2)$	$0(1)$	$-1(2)$	$2(2)$
$\mathrm{C}(15)$	$18(2)$	$17(2)$	$21(2)$	$1(2)$	$1(2)$	$-1(2)$
$\mathrm{C}(16)$	$22(2)$	$15(2)$	$21(2)$	$-2(2)$	$0(2)$	$-2(2)$
$\mathrm{C}(17)$	$14(2)$	$15(2)$	$19(2)$	$0(1)$	$1(2)$	$2(2)$
$\mathrm{C}(18)$	$18(2)$	$18(2)$	$20(2)$	$1(2)$	$2(2)$	$-1(2)$
$\mathrm{C}(19)$	$19(2)$	$16(2)$	$19(2)$	$0(2)$	$-1(2)$	$-3(2)$

SI-Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10\right.$ ${ }^{3}$) for compound 7b.

	x	y	z	U(eq)
$\mathrm{H}(2 \mathrm{~A})$	1016	3236	1795	26
H(2B)	2621	2734	2243	26
H(3A)	85	4286	2626	27
H(3B)	2101	4190	2946	27
H(5A)	5895	3125	1855	23
H(5B)	6413	4479	1668	23
H(6)	5772	2704	3066	24
H(9)	7506	2389	4119	23
H(10)	7763	1998	5168	24
H(12)	5316	5218	5540	23
H(13)	5148	5629	4492	23
H(15)	2432	2319	996	22
H(16)	2407	2098	-77	23
H(18)	4848	5376	-253	23
H(19)	4779	5618	812	21

$R Z-4-234-C$

HPLC traces for 8a:

Data File C:\CHEM32\1\DATA\MTP1 \NAOYUKI_LC 2014-12-05 10-43-13\RZ-4-234-RAC-.D Sample Name: RZ-4-234-RAC

Signal 1: DAD1 A, Sig=230,4 Ref=360,100

Data File C:\CHEM32\1\DATA\RONG \NAOYUKI_LC 2014-12-13 14-59-43\RZ-4-234.D
Sample Name: RZ-4-234
8a

Signal 1: DAD1 A, Sig=230,4 $\operatorname{Ref}=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	34.547		0.8546	3139.91797	61.23563	12.9514
2	36.943	MM	1.1830	2.11040 e 4	297.32425	87.0486
Total	s :			2.42439 e 4	358.55988	

8b
${ }^{1} \mathrm{H}$ NMR

HPLC traces for 8b:

Data File C: \CHEM32\1\DATA \RONG\NAOYUKI_LC 2014-12-09 09-03-14\RZ-4-240A-RAC.D Sample Name: RZ-4-240A-RAC

Signal 1: DAD1 A, Sig=230,4 $\operatorname{Ref}=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	33.986	MM	0.9849	353.79236	5.98674	50.6726
2	68.888	MM	2.1221	344.40015	2.70483	49.3274
Total	s :			698.19250	8.69158	

Data File C:\CHEM32\1\DATA\RONG\NAOYUKI_LC 2014-12-09 17-16-57\RZ-4-240A.D Sample Name: RZ-4-240A

Acq. Operator : RZ	Seq. Line : 1
Acq. Instrument : Instrument 1	Location : Vial 28
Injection Date : 12/9/2014 5:19:13 PM	Inj :
	Inj Volume : $1 \mu \mathrm{l}$
Different Inj Volume from Sequence !	Inj Volume : $10 \mu \mathrm{l}$

Acq. Method : C:\CHEM32\1\DATA \backslash RONG \backslash NAOYUKI_LC 2014-12-09 17-16-57

DAD1 A, Sig=230,4 Ref=360,100 (C:ICHEM32111DATAIRONGINAOYUKI_LC 2014-12-09 17-16-57IRZ-4-240A.D)

Signal 1: DAD1 A, Sig=230,4 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} s\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	34.999	MM	1.0348	881.74060	14.20121	11.1369
2	68.413	MM	2.9414	7035.52930	39.86550	88.8631
Total	s			7917.26990	54.06671	

$\mathrm{RZ}-4-240 \mathrm{~B}-\mathrm{H}$

8c
yWN H_{1}

HPLC traces for 8c:

Data File C:\CHEM32\1\DATA\RONG\NAOYUKI LC 2014-12-13 14-59-43\RZ-4-240B-RAC.D Sample Name: RZ-4-240B-RAC

racemic

Acq. Method : C:\CHEM32\1\DATA \backslash RONG \backslash NAOYUKI_LC 2014-12-13 14-59-43\RZ-SHUTDOWN.M

Signal 1: DAD1 A, Sig=230, 4 Ref $=360,100$

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{\mathrm{s}} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	50.566		1.6244	2360.01953	24.21427	49.8479
2	55.265		1.9716	2374.42505	20.07225	50.1521
Total	S :			4734.44458	44.28651	

Data File C: \CHEM32\1\DATA\RONG\NAOYUKI_LC 2014-12-13 14-59-43\RZ-4-240B.D Sample Name: RZ-4-240B

Acq. Instrument : Instrument 1
Injection Date : 12/13/2014 6:04:25 PM
:

Seq. Line : 3 Location : Vial 17

Inj : 1
Inj Volume : $1 \mu l$

8c Acq. Method : C:\CHEM32\1\DATA\RONG\NAOYUKI LC 2014-12-13 14-59-43\RZ-SHUTDOWN.M

DAD1 A, Sig=230,4 Ref=360,100 (C:ICHEM32111DATAIRONGINAOYUKI_LC 2014-12-13 14-59-43IRZ-4-240B.D)

Signal 1: DAD1 A, Sig=230,4 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{~A}^{2}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	51.597		1.5154	350.94086	3.85978	9.5121
2	55.487	MM	1.9667	3338.47388	28.29182	90.4879
Total				3689.41473	32.15160	

HPLC traces for 9a:

Data File C:\CHEM32\1\DATA\RONG\NAOYUKI_LC 2014-11-24 14-06-46\RZ-4-232B-RAC.D Sample Name: RZ-4-232B-RAC

Signal 1: DAD1 A, Sig=230,4 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	34.077	MM	1.1550	1952.64087	28.17696	50.1990
2	38.777	MM	1.2941	1937.16296	24.94906	49.8010
Total	s :			3889.80383	53.12602	

Data File C:\CHEM32\1\DATA\RONG\NAOYUKI_LC 2014-12-10 12-18-53\RZ-4-242A.D Sample Name: RZ-4-242A
$=====================================$
Acq. Operator : RZ
Acq. Instrument : Instrument 1

Seq. Line : 1
Acq. Instrument : Instrument 1
Location : Vial 18
Injection Date : 12/10/2014 12:21:12 PM
Inj : 1
Inj Volume : $1 \mu \mathrm{l}$
Different Inj Volume from Sequence ! Actual Inj Volume : 8 il
Acq. Method : C:\CHEM32\1\DATA \backslash RONG \backslash NAOYUKI_LC 2014-12-10 12-18-53\RZ-SHUTDOWN.M

Signal 1: DAD1 A, Sig=230,4 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	34.524		1.2181	4243.34570	58.05779	86.4013
2	39.469	MM	1.2756	667.85956	8.72598	13.5987
Total				4911.20526	66.78376	

웅
${ }^{1} \mathrm{H}$ NMR

HPLC traces for 9b:

Data File C:\CHEM32\1\DATA\RONG\NAOYUKI_LC 2014-12-10 17-59-20\RZ-4-242C-RAC.D Sample Name: RZ-4-242C-RAC
===
Acq. Operator : RZ
Acq. Instrument : Instrument 1
Injection Date : 12/10/2014 6:53:21 PM
Seq. Line : 2
Location : Vial 19

Injection Date : 12/10/2014 6:53:21 PM
Inj Volume : $1 \mu \mathrm{l}$

Different Inj Volume from Sequence ! Actual Inj Volume : 20 ul

Signal 1: DAD1 A, Sig=230,4 Ref=360,100

Peak \#	```RetTime [min]```	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	20.284		0.5581	2026.92505	52.77429	50.8526
2	29.073		0.6995	1958.96021	33.73444	49.1474
Total	s :			3985.88525	86.50873	

Data File C: \CHEM32\1\DATA\RONG\NAOYUKI_LC 2014-12-10 17-59-20\RZ-4-242C.D Sample Name: RZ-4-242C

Acq. Operator : R
$\begin{aligned} & \text { Seq. Line : } 1 \\ & \text { Location : Vial } 17\end{aligned}$
$\begin{array}{ll}\text { Acq. Instrument : Instrument } 1 & \text { Location : Vial } \\ \text { Injection Date : } 12 / 10 / 2014 \text { 6:01:47 PM } & \text { Inj : } 1\end{array}$
Inj Volume : $1 \mu \mathrm{l}$

Different Inj Volume from Sequence ! Actual Inj Volume : $10 \mu \mathrm{l}$

DAD1 A, Sig=230,4 Ref=360,100 (C:ICHEM32111DATAIRONGINAOYUKI_LC 2014-12-10 17-59-20IRZ-4-242C.D)

Signal 1: DAD1 A, Sig=230,4 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[m A U * s]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	20.264		0.6281	9169.38184	243.29703	85.5586
2	29.083	MM	0.9316	1547.69482	27.68975	14.4414
Total	s			1.07171 e 4	270.98678	

$\mathrm{RZ}-4-242 \mathrm{E}-\mathrm{H}$

9c
${ }^{1} \mathrm{H}$ NMR

HPLC traces for 9c:

Data File C:\CHEM32\1\DATA\RONG \NAOYUKI_LC 2014-11-24 14-06-46\RZ-4-232A-RAC-.D Sample Name: RZ-4-232A-RAC

Acq. Operator : RZ	Seq. Line : 10
Acq. Instrument : Instrument 1	Location : Vial 26
Injection Date : 11/24/2014 8:59:39 PM	Inj : 1
	Inj Volume : $1 \mu \mathrm{l}$
Different Inj Volume from Sequence !	Inj Volume : $15 \mu \mathrm{l}$

Different Inj Volume from Sequence ! Actual Inj Volume : $15 \mu \mathrm{l}$

DAD1 A, Sig=230,4 Ref=360,100 (C:ICHEM32\11DATAIRONGINAOYUKI_LC 2014-11-24 14-06-46IRZ-4-232A-RAC-D)

Signal 1: DAD1 A, Sig=230,4 Ref=360,100

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~S}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	30.552		0.7657	1511.29687	23.27001	49.9620
2	37.459		0.9065	1513.59387	19.78445	50.0380
Total	s :			3024.89075	43.05446	

Data File C:\CHEM32\1\DATA\RONG\NAOYUKI_LC 2014-12-12 20-03-53\RZ-4-242E.D Sample Name: RZ-4-242E

Signal 1: DAD1 A, Sig=230,4 $\operatorname{Ref}=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} s\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	30.285		1.1201	9369.51172	139.41949	87.8881
2	37.641		0.9050	1291.21948	16.83233	12.1119
Total	s			1.06607 e 4	156.25183	

$\mathrm{RZ}-4-242 \mathrm{~B}-\mathrm{H}$

$R Z-4-242 B-C$

HPLC traces for 9d:

Data File C: \CHEM32\1\DATA\RONG\NAOYUKI_LC 2014-12-14 08-09-11\RZ-4-242B-RAC.D Sample Name: RZ-4-242B-RAC

Acq. Operator	: RZ	Seq. Line : 1
Acq. Instrument	Instrument 1	Location : Vial 16
Injection Date	: 12/14/2014 8:11:37 AM	Inj

Injection Date : 12/14/2014 8:11:37 AM
Inj Volume : $1 \mu l$
Different Inj Volume from Sequence ! Actual Inj Volume : $3 \mu \mathrm{l}$

racemic
Acq. Method : C: \CHEM32\1\DATA $\backslash R O N G \backslash N A O Y U K I _L C \quad 2014-12-14$ 08-09-11\RZ-SHUTDOWN.M

Signal 3: DAD1 C, Sig=210,8 $\operatorname{Ref}=360,100$

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{\mathrm{s}}\right]} \end{gathered}$	Height [mAU]	Area \%
1	7.103	MM	0.2288	4155.41895	302.69006	49.8508
2	10.723		0.3872	4180.28613	179.91805	50.1492
Totals	S :			8335.70508	482.60811	

Data File C: \CHEM32\1\DATA\RONG\NAOYUKI_LC 2014-12-10 09-18-36\RZ-4-242B.D Sample Name: RZ-4-242B

Acq. Operator	: RZ	Seq. Line : 1
Acq. Instrument	: Instrument 1	Location : Vial 16
Injection Date	: 12/10/2014 9:20:55 AM	Inj : 1

9d

Different Inj Volume from Sequence ! Actual Inj Volume : $8 \mu \mathrm{l}$

DAD1 C, Sig=210,8 Ref=360,100 (C:ICHEM32111DATAIRONGWNAOYUKI_LC 2014-12-10 09-18-36【RZ-4-242B.D)

Signal 3: DAD1 C, Sig=210, 8 Ref $=360,100$

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~S}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	7.054		0.2347	8238.34180	543.82831	78.0320
2	10.599		0.3910	2319.30396	98.86506	21.9680
Total	s :			1.05576 e 4	642.69337	

HPLC traces for 13:

Data File C:\CHEM32\1\DATA \RONG Sample Name: RZ-4-235-P1-RAC
$===$
Acq. Operator : RZ
Acq. Instrument : Instrument

Acq. Instrument : Instrument 1
Location : Vial 18
Inj : 1
Inj Volume : $1 \mu \mathrm{l}$
racemic
Different Inj Volume from Sequence ! Actual Inj Volume : $10 \mu \mathrm{l}$
Acq. Method : C:\CHEM32\1\DATA\RONG\NAOYUKI_LC 2014-12-08 10-35-33\RZ-SHUTDOWN.M

DAD1 A, Sig=230,4 Ref=360,100 (C:ICHEM32111DATAIRONGINAOYUKI_LC 2014-12-08 10-35-33IRZ-4-235-P1-RAC.D)

Signal 1: DAD1 A, Sig=230,4 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	17.213		0.5263	5178.36182	145.83827	49.9535
2	32.749		0.8232	5187.99316	88.32819	50.0465
Total				1.03664 e 4	234.16647	

Data File C:\CHEM32\1\DATA \RONG\NAOYUKI_LC 2014-12-11 12-26-18\RZ-4-235P1-.D Sample Name: RZ-4-235P1

Acq. Operator : RZ
Acq. Instrument : Instrument 1
Injection Date : $12 / 11 / 2014$ 2:10:58 PM

Seq. Line : 3
Location : Vial 16
Inj : 1
Inj Volume : $1 \mu \mathrm{l}$
Different Inj Volume from Sequence ! Actual Inj Volume : 8 ul
Acq. Method : C:\CHEM32\1\DATA \backslash RONG \backslash NAOYUKI_LC 2014-12-11 12-26-18\RZ-SHUTDOWN.M
DAD1 A, Sig=230,4 Ref=360,100 (C:ICHEM32111DATAIRONGINAOYUKI_LC 2014-12-11 12-26-18IRZ-4-235P1-D)

Signal 1: DAD1 A, Sig=230,4 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area
1	16.776		0.5730	6496.78809	188.96053	82.4137
2	31.612		0.6725	1386.35205	24.48735	17.5863
Total				7883.14014	213.44787	

$\mathrm{RZ}-4-235 \mathrm{P} 2-\mathrm{H}$

HPLC traces for 14:

Data File C:\CHEM32\1\DATA \backslash RONG Sample Name: RZ-4-235-P2-RAC

Signal 1: DAD1 A, Sig=230,4 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	18.834		0.4962	2589.89990	76.26014	50.2433
2	20.257	VB	0.5213	2564.81323	70.02714	49.7567
Total	S :			5154.71313	146.28728	

 Sample Name: RZ-4-235P2

Signal 1: DAD1 A, Sig=230,4 Ref $=360,100$

Peak	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{2} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area
1	18.241		0.5151	939.22388	30.39110	16.8078
2	19.491		0.5848	4648.78662	132.48862	83.1922
Total	s :			5588.01050	162.87972	

$\mathrm{RZ}-4-239-\mathrm{H}$

15
${ }^{1} \mathrm{H}$ NMR

HPLC traces for 15:

Data File C: \CHEM32\2\DATA RONG \HPLC 2015-01-19 09-34-39\RZ-4-239-RAC.D Sample Name: RZ-4-239-RAC

Signal 4: DAD1 D, Sig=230,16 $\operatorname{Ref}=360,100$

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	11.225		0.2635	311.88034	18.60761	49.7788
2	14.654		0.3397	314.65201	13.91962	50.2212
Total	s :			626.53235	32.52723	

Data File C: \CHEM32\2\DATA \RONG\HPLC 2015-01-19 09-34-39\RZ-4-239-.D Sample Name: RZ-4-239-

Acq. Operator	RZ	Seq. Line : 1
Acq. Instrument	Instrument 2	Location : Vial 16
Injection Date	1/19/2015 9:36:52 AM	Inj : 1

Inj Volume : 5 u
Different Inj Volume from Sequence ! Actual Inj Volume : $8 \mu \mathrm{l}$

15
Acq. Method : C:\CHEM32\2\DATA\RONG\HPLC 2015-01-19 09-34-39\RZ-SHUTDOWN2013.M

DAD1 D, Sig=230,16 Ref=360,100 (C:ICHEM32L2IDATAIRONGIHPLC 2015-01-19 09-34-39IRZ-4-239-D)

Signal 4: DAD1 D, Sig=230,16 $\operatorname{Ref}=360,100$

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	11.322	BB	0.2515	253.43941	15.44407	19.8738
2	14.711	BB	0.3512	1021.80634	45.29997	80.1262
Total	5 :			1275.24574	60.74404	

