Supplemental Information

for

Leaving Group Effects on the Selectivity of the Silylation of Alcohols - the Reactivity-Selectivity Principle Revisited

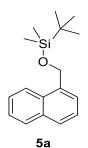
P. Patschinski and H. Zipse*

Table of Contents

Supplemental Information1
1) Synthesis and Reagents2
1.1 Naphthalene-1-ylmethanol (4a) 2
1.2 <i>tert</i> -Butyldimethyl(naphthalen-1-ylmethoxy)silane (5a)2
1.3 <i>tert</i> -Butyldimethyl(1-(naphthalen-1-yl)ethoxy)silane (5b)3
2) Competition experiments
2.1 Preparing the samples
2.2 Simulation of Chemoselectivities11
3) Direct Rate Measurements12
3.1 Sample preparation12
3.2 Measuring and processing12
2.3.1 Alternative options for calculating the conversion15
3.4 NMR shifts for reactants and products17
3.5 Experimental Details for Direct Rate Measurements
4) Direct Rate Measurements - Results
4.1 Time vs. conversion plots
4.1.1 Measurements with TBSCl (1a)22
4.1.2 Measurements with TBSOTf (1b)
4.1.3 Measurements with TBSCN (1c)47
4.1.4 Measurements with MTBSTFA (1e)59
4.1.5 Measurements with TBSImi (1d)62
4.2. Possible effects of autocatalysis65
5) Computational Methods
5.1 Methods and data sheets
5.2. Structures of all Systems75

1) Synthesis and Reagents

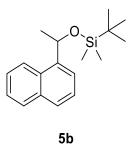
1.1 Naphthalene-1-ylmethanol (4a)



4a

15 mmol (0.567 g, 0.5 equivalents) of NaBH₄ are solved in 100 mL THF and cooled down to -10°C. 30 mmol (4.68 g, 4.07 mL, 1.0 equivalents) of 1-naphthaldehyde were dissolved in 50 mL THF and added dropwise to the solution. The reaction was allowed to stir 30 min at rt. The reaction process was monitored by TLC. The reaction was quenched by adding 2M HCl until no further H_2 evolved. The reaction mixture was extracted three times with DCM (20 mL) and washed with brine (20 mL). The combined organic phases were dried over MgSO₄ and the solvent removed under reduced pressure. A column chromatography on silica (*iso*-hexane:ethylacetate, 4:1) led to a white solid product **4a** in 95 % yield (4.50 g).

 $\begin{array}{l} \textbf{R_f} = 0.20 \ (ihexane/EtOAc, \ 4:1) . \\ ^{1}\textbf{H} \ \textbf{NMR} \ (300 \ \text{MHz}, \ \text{CDCl}_3): \ \delta = 2.67 \ (bs, \ 1\text{H}, \ \text{OH}), \ 5.05 \ (s, \ 2\text{H}, \ \text{CH}_2), \ 7.40 \ - \\ 7.61 \ (m, \ 4\text{H}), \ 7.81 \ - \ 7.87 \ (m, \ 1\text{H}), \ 7.88 \ - \ 7.96 \ (m, \ 1\text{H}), \ 8.03 \ - \ 8.14 \ (m, \ 1\text{H}) . \\ ^{13}\textbf{C} \ \textbf{NMR} \ (75 \ \text{MHz}, \ \text{CDCl}_3): \ \delta = 63.37, \ 123.69, \ 125.27, \ 125.88, \ 126.32, \ 128.48, \ 128.69, \ 131. \ 25,133.80, \ 136.33. \\ \textbf{MS} \ \textbf{(EI)} \ \textbf{m/z} \ (\%) \ = \ 158.1 \ ([\text{M}+\text{H}]^+, \ 83), \ 141.1 \ ([\text{M}-\text{OH}]^+, \ 20), \ 129.2 \ ([\text{M}-CH_2\text{OH}]^+, \ 100) . \\ \textbf{HRMS} \ \textbf{(EI)} \ C_{11}\text{H}_{10}\text{O} \ \text{requires} \ 158.0732 \ g/\text{mol}, \ found \ 158.0726 \ g/\text{mol}. \\ \end{array}$


1.2 tert-Butyldimethyl (naphthalen-1-ylmethoxy) silane (5a)

0.32 g (2 mmol) 4a and 0.36 g (2.4 mmol) TBSCl were dissolved in 15 mL DCM and 0.33 mL (0.24 g, 2.4 mmol) TEA was added. 0.010 g (0.08 mmol) DMAP (6) was added and the reaction stirred for 12 h at rt. The reaction mixture was quenched by adding NH₄Cl-solution and was extracted three times with 10 mL DCM. The combined organic phases were dried over MgSO₄ and the solvent removed under reduced pressure. Column chromatography on silica (*iso*-hexane:DCM, 4:1) led to **5a** as a colorless oil in 82 % yield (0.44 g).

¹H NMR (300 MHz, CDCl₃): $\delta = 0.14$ (s, 6H, Si(CH₂)₂), 0.97 (s, 9H, SitBu), 5.22 (s, 2H, CH₂), 7.59 - 7.47 (m, 3H), 7.59 - 7.61 (m, 1H), 7.79 (d, J = 8.1, 1H), 7.93 - 7.86 (m, 1H), 8.01 - 8.02 (m, 1H). ¹³C NMR (75 MHz, CDCl₃): $\delta = -5.22$, 18.45, 25.95, 63.38, 123.27, 123.76, 125.44, 125.51, 125.78, 127.53, 128.58, 130.78, 133.49. 29Si NMR (80 MHz, CDCl₃): δ = 20.58. MS (EI) m/z (%) = 272.17 (0.6, [M]), 215.09 (72, [M-tBu]⁺), 141.07 (100), [M-OTBDMS]⁺) 115.05 (13, [TBDMS]). HRMS (EI) C₁₇H₂₄OSi requires 272.1596 g/mol, found 271.1590 g/mol.

1.3 *tert*-Butyldimethyl(1-(naphthalen-1-yl)ethoxy)silane (**5b**)

0.35 g (2 mmol) 4b and 0.36 g (2.4 mmol) TBSCl were dissolved in 15 mL DCM and 0.33 mL (0.24 g 2.4 mmol) TEA was added. 0.010 g (0.08 mmol) DMAP (6) was added and the reaction stirred for 48 h at rt. The reaction mixture was quenched by adding NH₄Cl-solution and was extracted three times with 10 mL DCM. The combined organic phases were dried over MgSO₄ and the solvent removed under reduced pressure. Column chromatography on silica (*iso*hexan:DCM, 4:1) led to **5b** as a yellowish oil in 76 % yield (0.46 g).

¹H NMR (300 MHz, CDCl₃): $\delta = -0.10$ (s, 3H, SiCH₃-tBu), 0.10 (s, 3H, SiCH₃-tBu), 0.95 (s, 9H, (CH₃)₂Si-tBu), 1.60 (d, J = 6.4, 3H, CH₃CH-OR), 5.61 (q, J = 6.6, 1H, CH), 7.44 - 7.55 (m, 3H), 7.67 - 7.78 (m, 2H), 7.85 - 7.91 (m, 1H), 8.11 (d, J = 7.3, 1H). ¹³C NMR (75 MHz, CDCl₃): $\delta = -4.92$, -4.83, 18.30, 25.89, 26.62, 68.48, 122.67, 123.34, 125.15, 125.53, 125.57, 127.17, 128.82, 129.88. ²⁹Si NMR (80 MHz, CDCl₃): $\delta = 18.42$. HRMS (EI) C₁₈H₂₆OSi: requires 286.1753 g/mol, found: 286.1744 g/mol. MS (EI) m/z (%) = 215.16 (6), 155.17 (23, [M - C₆H₁₅OSi]), 141.15 (33), 115.14 (13, [C₆H₁₅Si]), 76.09 (27, [C₆H₄]), 75.09 (100, [C₆H₃]).

2.1 Preparing the samples

In order to achieve the needed accuracy three stock solutions have been prepared. This is necessary to guarantee the experimental reproducibility, however one should always try to minimize the number of stock solutions. The alcohols **4a** and **4b** were mixed in separate stock solutions (Stock A, B), while the silyl reagent was in a third stock solution (Stock C). Since no catalyst is needed for this reaction in DMF, no further stock solution was prepared. In Table S1 one can see the stock solutions for the silylation of **4a** and **4b**.

	substance	n [mmol]	M [g/mol]	m [mg]	c [M]
stock A (10 mL)	4a	6.6	158.20	1,044.10	0.66
stock B (10 mL)	4b	6.6	172.23	1,136.69	0.66
stock C (5 mL)	TBS-X	11.0			2.2

Table S1. Overview of stock solutions for competition experiment.

Dry DMF is stored in a glovebox over molecular sieves as well as freshly distilled Et_3N . All stock solutions have been prepared in a glovebox atmosphere in order to avoid water or other impurities in the reaction mixture for the reactions in DMF. Moreover, both alcohols have been dried by washing with dry toluene and removing the solvent afterwards for several times. For the reaction in CDCl₃ the stock solutions have been prepared under normal laboratory conditions.

3 mL of stock A and stock B were mixed in a 25 mL flask with a magnetic stir bar and sealed with a septum. Freshly distilled Et_3N was added in equimolar amounts as compared to the silyl reagent. Under steady mixing with a magnetic stirrer and temperature control with a water bath various amounts of stock C were added using a syringe pump within 15 min.

In contrast to the prior method for the reaction in chloroform DMAP ($\mathbf{6}$) was added as catalyst in various amounts based on the amount of silyl reagent. A sample of 0.05 mL was taken and diluted with 1 mL methylene chloride and analyzed by GC, 55(0)-5-150(0)-20-280(20).

Table S2. Retention	times of products,	reactants, and sid	de-products.
Substance	Retention time	Substance	Retention time
4a	15.914	TBSCl	5.015
4b	15.940	TBSOTÍ	
5a	16.921	TBSCN	7.481
5b	16.538	MTBSTFA	7.940
(TBS) ₂ O	9.340	TBS-Imi	
DMAP	13.218		

Table S2. Retention times of products, reactants, and side-products

The determination of the selectivity was performed by GC and ¹H NMR, if possible. The respective area factors were taken into account by measuring a calibration curve of **5a** and **5b** in different concentrations. These area factors will be used to calculate the exact ratio between both products (Figure S1, Equation **S1**).

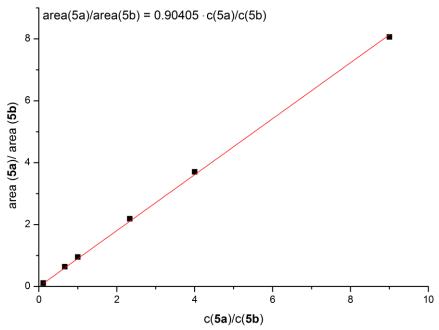


Figure S1. Calibration curve for GC analysis 5a and 5b.

The calibration curve provides equation S1, which can be easily transformed in equation S2. Using this equation one can derive the product ratio from the GC areas between 5a and 5b.

$$\frac{\text{area (5a)}}{\text{area (5b)}} = 0.90405 \cdot \frac{\text{c (5a)}}{\text{c (5b)}}$$
(S1)

$$\frac{\frac{\text{area (5a)}}{\text{area (5b)}}}{0.90405} = \frac{c (5a)}{c (5b)}$$
(S2)

The selectivity will be calculated using equation S3 by GC peak areas. For NMR measurements the concentration can be directly obtained by the integrals divided by the number of protons (S4).

$$S = \frac{[Product-1] - [Product-2]}{[Product-1] + [Product-2]}$$
(S3)

$$S = \frac{Int_{5a}/2 - Int_{5b}/3}{Int_{5a}/2 + Int_{5b}/3}$$
(S4)

Conversion can't be measured directly by GC measurements since 4a and 4b appear at almost the same retention time (Table S2). Therefore, the most accurate conversion can be obtained by NMR measurements using the signals of 4a, 4b, 5a, and 5b with equation S5.

Conversion =
$$\frac{\ln t_{5a}/2 + \ln t_{5b}/3}{\ln t_{5a}/2 + \ln t_{5b}/3 + \ln t_{4a}/2 + \ln t_{4b}/3} \cdot 100\%$$
(S5)

Since the conversion defined by experimental design is inaccurate, we obtained more accurate values by NMR measurements of the reaction mixtures. Figure S2 displays the importance of this step and the influence on the analysis of the data. We measured the relative rate of TBSCl (**1a**) with DMAP in ref. 7 separately (S=120), we take this as a value for the quality of the fit. Since it is known that the accuracy of NMR measurements when it comes to ratios of 1:100 lacks behind GC accuracy, the combination of NMR conversions and GC selectivites provides the best values for the purpose. All results for TBSCl, TBSCN, TBSOTf are listed in Table S3.

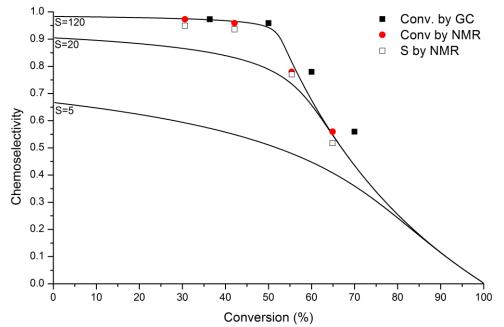
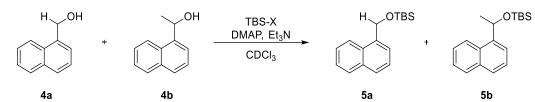



Figure S2. Selectivity vs conversion using various methods for data processing.

General procedure (I) for competition experiments reactions with **4a** and **4b** in various solvents: 3.0 mL of a 10 mL stock solution I (**4a**, 6.6 mmol, 1.04 g and 3, 0.165 mmol, 16.69 mg) was mixed with 3.0 mL of a 10 mL stock solution II (**4b**, 6.6 mmol, 1.14 g and **3b**, 0.165 mmol, 16.69 mg) in a dried flask and stirred at rt. Using a syringe pump 0.6 mL of a 5 mL stock solution III (**1a-1c**, 0.825 mmol) were added over 15 min and stirred for 20 min at rt.

Table S3.	Competition	experiment	data	obtained	by	GC	and NM	IR.
-----------	-------------	------------	------	----------	----	----	--------	-----

Reagent	Area (GC)	Area(GC)	Area	[5a] _{rel}	[5b] _{rel}	Conv.	Chemos.	Conv.	Chemos.	С
	(5a)	(5 b)	Factor (5a/5b)			(Exp.)	C(GC)	(NMR)	(NMR)	
TBSC1	3271130	49755	0.90405	72.72	1	36.4	0.9729	30.6	0.9486	
(1a)	3013782	46077		72.35	1		0.9727	30.5	0.9440	
	3110997	46078		74.68	1		0.9736	31.0	0.9491	
							0.9731	30.7	0.9472	
	3262945	73489	0.90405	49.11	1	50.0	0.9601	42.1	0.9356	
	5935767	141972		46.25	1		0.9577	41.9	0.9410	
	3127003	73155		47.28	1		0.9586	43.1	0.9351	
							0.9588	42.3	0.9372	
	10909491	1494539	0.90405	8.07	1	60.1	0.7796	55.4	0.7699	
	10372739	1429864		8.02	1		0.7784	55.5	0.7616	
	9319756	1266785		8.14	1		0.7811	55.6	0.7684	
							0.7797	55.5	0.7666	
	5639899	1623987	0.90405	3.84	1	70.0	0.5869	64.1	0.5167	
	11982143	3910565		3.39	1		0.5443	64.9	0.5267	
	8550272	2770864		3.41	1		0.5468	63.9	0.5186	
							0.5594	64.3	0.5207	
TBSCN	2420909	19909	0.90405	134.50	1	40.0	0.9852	30.9	0.9530	
(1c)	3955832	38963		112.30	1		0.9823	31.1	0.9541	
	3513931	34585		112.39	1		0.9824	32.0	0.9642	
							0.9833	31.4	0.9570	
	2723427	25828	0.90405	116.64	1	50.0	0.9830	39.6	0.9535	
	2682127	35539		83.48	1		0.9763	39.9	0.9526	
	4299545	57642		82.51	1		0.9760	39.9	0.9550	
							0.9785	39.8	0.9537	
	6864167	193285	0.90405	39.28	1	60.1	0.9504	44.3	0.9305	
	32129521	1081725		32.85	1		0.9409	47.0	0.9023	
	14415068	349263		45.65	1		0.9571	45.8	0.9150	
							0.9495	45.7	0.9159	
	4989709	266864	0.90405	20.68	1	70.0	0.9078	54.8	0.7562	
	10167793	737146		15.26	1		0.8770	54.4	0.7689	
	11312752	818258		15.29	1		0.8772	54.8	0.7564	
							0.8873	54.7	0.7605	

Reagent	Area (GC) (5a)	Area(GC) (5b)	Area Factor (5a/5b)	[5a] _{rel}	[5b] _{rel}	Conv. (Exp.)	Chemos. C(GC)	Conv. (NMR)	Chemos. ((NMR)
TBSOTf	3064483	1016373	0.90405	3.34	1	40	0.5387	31.2	0.5008
$(1b, CDCl_3)$	2205348	846208		2.88	1		0.4849	31.0	0.5311
(2136966	699012		3.38	1		0.5435	31.5	0.5114
					T		0.5224	31.2	0.5144
	2928638	1052831	0.90405	3.08	1	50	0.5094	38.9	0.5263
	5721449	2096360		3.02	1		0.5024	42.6	0.3070
	3877309	1310266		3.27	1		0.5320	38.0	0.2076
					±		0.5146	39.8	0.3470
	4516043	2111322	0.90405	2.37	1	60	0.4058	47.3	0.8499
	3334781	1433377		2.57	1		0.4403	50.4	0.1426
	3040793	1277113		2.63	1		0.4496	50.3	0.2095
					±		0.4319	49.3	0.4006
	3369721	1720945	0.90405	2.17	1	70	0.3683	63.3	0.3045
	4009721	1920945		2.31	1		0.3956	63.6	0.3305
	3379721	1760945		2.12	1		0.3596	63.4	0.3311
							0.3745	63.4	0.3221
TBSC1	1725017	131078	0.90405	14.56	1	30	0.8714	n.d.	n.d.
(1a, DMF)	1342632	97404		15.25	1		0.8769		
	1835639	159008		12.77	1		0.8548		
	1849493	157898		12.96	1		0.8567		
							0.8649		
	3337973	346086	0.90405	10.67	1	40	0.8286	n.d.	n.d.
	3514745	355260		10.94	1		0.8325		
	3106008	288116		11.92	1		0.8453		
							0.8355		
	3951097	498093	0.90405	8.77	1	50	0.7954	n.d.	n.d.
	3641637	444840		9.06	1		0.8011		
	4802772	639736		8.30	1		0.7850		
							0.7938		
	7864588	1410043	0.90405	6.17	1	60	0.7210	n.d.	n.d.
	4634963	815327		6.29	1		0.7256		
	5487605	1085751		5.59	1		0.6965		
							0.7144		
TBSOTf	3877309	1310266	0.90405	3.27	1	40	0.5320	33.7	0.5610
$(1b, CD_2Cl_2,$	2109572	610874		3.82	1		0.5851	33.7	0.5353
20 °C)	5721449	2096360		3.02	1		0.5024	34.0	0.5263
	-						0.5398	33.8	0.5409
	2821575	968452	0.90405	3.22	1	50	0.5264	42.1	0.3741
	2146066	835012		2.84	1		0.4797	42.8	0 2000
	2146966 2172964	781920		2.04 3.07	Ţ		0.5091	42.0	0.3699 0.3789

Reagent	Area (GC)	Area(GC)	Area	[5a] _{rel}	[5b] _{rel}	Conv.	Chemos.	Conv.	Chemos. C
	(5a)	(5b)	Factor (5a/5b)			(Exp.)	C(GC)	(NMR)	(NMR)
					1		0.5051	43.0	0.3743
	2226409	1042608	0.90405	2.36	1	60	0.4051	54.7	0.2934
	4503490	2014975		2.47	1		0.4240	53.7	0.2857
	3294765	1423378		2.56	1		0.4383	53.2	0.2914
							0.4225	53.9	0.2902
	3398191	1589807	0.90405	2.36	1	70	0.4055	61.2	0.3123
	2145548	1050455		2.26	1		0.3864	60.1	0.3003
	2300275	1005665		2.53	1		0.4334	60.3	0.3070
							0.4084	60.6	0.3066
TBSOTf	1968637	529002	0.90405	4.12	1	40	0.6091	33.71	0.246
$(1b, CD_2Cl_2,$	3414660	776490		4.86	1		0.6590	35.52	0.686
0 °C)	1971526	473710		4.60	1		0.6431	29.29	0.221
с с,							0.6370	32.84	0.384
	1571940	434591	0.90405	4.00	1	50	0.6001	43.20	0.486
	1489603	454630		3.62	1		0.5675	44.90	0.588
	1591084	536331		3.28	1		0.5329	43.78	0.454
							0.5668	43.96	0.509
	2618088	823791	0.90405	3.52	1	60	0.5571	52.90	0.392
	2530339	886079		3.16	1		0.5191	53.68	0.374
	2721691	833146		3.61	1		0.5665	53.69	0.385
							0.5475	53.43	0.384
	3040109	1101499	0.90405	3.05	1	70	0.5065	61.70	0.378
	3257844	1469260		2.45	1		0.4207	62.69	0.284
	3531648	1486161		2.63	1		0.4488	61.79	0.368
							0.4587	62.06	0.343
TBSOTf	1727894	194665	0.90405	9.82	1	40	0.8151	35.7	0.6681
$(1b, CD_2Cl_2,$	2598820	341024		8.43	1		0.7879	35.5	0.6858
-78 °C)	1180213	119161		10.96	1		0.8327	35.4	0.6551
							0.8119	35.5	0.6696
	3849275	566426	0.90405	7.52	1	50	0.7652	45.4	0.5809
	3750990	557297		7.45	1		0.7632	44.9	0.5876
	3172248	518087		6.77	1		0.7427	45.1	0.5715
							0.7570	45.1	0.5800
	2671220	469236	0.90405	6.30	1	60	0.7259	56.8	0.3523
	2930228	533476		6.08	1		0.7173	56.2	0.3698
	1897181	449518		4.67	1		0.6472	56.8	0.3487
							0.6968	56.6	0.3569
	4818607	1442983	0.90405	3.69	1	70	0.5739	62.8	0.2675
	4868159	1376218		3.91	1		0.5929	62.7	0.2845

Reagent	Area (GC) (5a)	Area(GC) (5b)	Area Factor (5a/5b)	[5a] _{rel}	[5b] _{rel}	Conv. (Exp.)	Chemos. C(GC)	Conv. (NMR)	Chemos. C (NMR)
	4778726	1467228		3.60	1		0.5655 0.5774	63.1 62.9	0.2697 0.2739

With the help of CoPaSi^[4] the S-values for the competition experiments have been simulated. Shown in Figure S3 are the used reactions, in which the k-values have been modified in order to achieve the S-values. The values k_1 , k_{-1} , and k_3 were used as constants, while k_{prim} and k_{sec} have been changed.

[CAT] + [TBSCI]	$\frac{k_1}{k_{-1}}$	[CAT-TBS] + [Cl ⁻]
[CAT-TBS] + [ROH]	k _{Prim} ►	[Product-1] + [CAT-H ⁺]
[CAT-TBS] + [ROH]	k _{Sec} ►	[Product-2] + [CAT-H ⁺]
[CAT-H ⁺] + [Base]		[CAT] + [BaseH⁺]

Figure S3 Reaction equations for the simulation with CoPaSi.

The conversion was calculated based on the used silyl reagent and the selectivity following equation (S31). Shown in Figure S4 are the selectivity curves for this generalized reaction scheme.

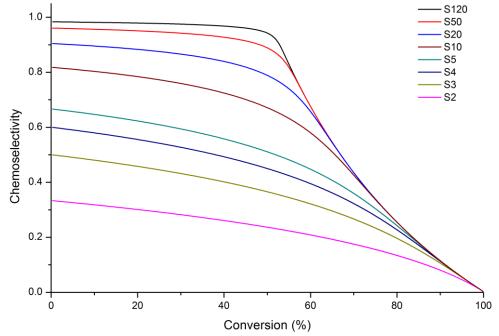


Figure S4 Selectivity curves a competition reaction.

3) Direct Rate Measurements

3.1 Sample preparation

Stock solutions of the relevant compounds have been prepared as shown in Table S4. For the NMR experiments three stock solutions have been prepared with freshly distilled CDCl₃. For the measurements in DMF-d₇ the stock solutions were prepared under glovebox conditions.

Table S4. Overview of stock solutions for kinetic measurements. The concentration of the catalyst can be changed if necessary.

	substance	n [mmol]	m[g]	Volume[mL]	c[M]	equiv.
stock A	TBS-X	3.6	0.542		0.72	1.2
	Dioxane	1.0	0.088	0.086	0.2	0.33
stock B	Et ₃ N	3.6	0.364	0.498	0.72	1.2
	4a	3.0	0.475		0.6	1.0
stock C	Cat	0.12	0.015		0.024	

CDCl₃ and Et₃N were freshly distilled under N₂ from CaH₂ before preparing the stock solutions. NMR tubes have been dried under vacuum using a special apparatus and flushed with N₂ three times to eliminate water. 200 µL of each stock solution are then transferred using a Hamilton syringe or a 200 µL Eppendorf pipette to the NMR tube, which is closed with a cap and sealed with parafilm. In case of long reaction times (t_{1/2} > 400 min) the tube is flame-sealed

3.2 Measuring and processing

The samples were sealed and have been measured at the same machine (200 MHz NMR) using 32 cycles at 23° C. For longer reaction times the samples have been constantly shaken mechanically. At least ten data points should be determined for an accurate time-conversion curve and were processed with the program MestReNova 9.1. First of all one compares the integrals of the reactant and the product in all measured NMR spectra. Furthermore, the reaction time at the point of measuring this specific NMR is recorded. For a better understanding a typical NMR spectrum for the silylation of **4a** with **1a** is depicted in Figure S5.

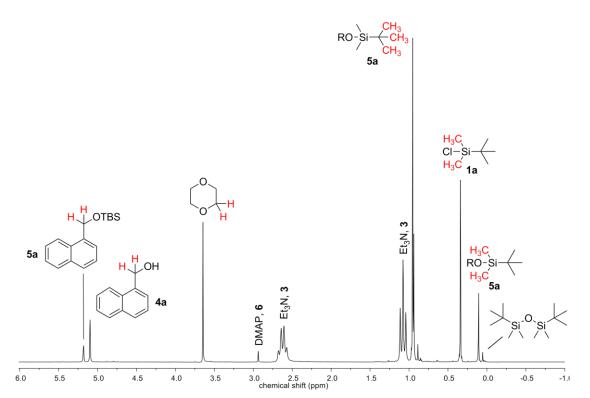


Figure S5 $^{1}\mathrm{H}$ NMR spectrum of the benchmark reaction in CDCl3 using the primary alcohol 4a,~3b as the auxiliary base, and DMAP as the catalyst.

All spectra were imported in MestReNova and the subsequent steps have been carried out: Apodization, exponential 0.1; Baseline Correction, Bernstein polynominal fit; Phase correction, Auto (Global Method). In order to calculate the conversion from the integrals, equation S1 was used. One has to multiply either with 100 % in case of the alcohol **5a** signals or with 120 % in case of the TBDMS signals. This set of data is based on TBDMS signals and is therefore multiplied with 120%.

conversion =
$$\frac{I_{\text{TBDMSOR}}}{\sum I_{\text{TBDMSOR}} + I_{\text{TBDMSCI}}} \cdot 120 \%$$
(S6)

The plots have been prepared with OriginPro 8. For the plot of conversion y versus reaction time one can easily fit different integrated rate laws. Before fitting the data one has to choose, which kinetic rate law is most suitable for this type of reaction. On the following pages several rate laws will be shown and the best one will be used for fitting.

The plots of conversion versus time were fitted with equation (S7), where y_0 is the conversion at infinite time of reaction, t_0 is the starting point of the reaction, and k_{eff} the rate of the reaction.

conversion =
$$y_0 \cdot \left[1 - \frac{0.2}{1.2 e^{k_{eff}(0.2)(t-t_0)} - 1} \right]$$
 (S7)

A half-life can be calculated with equation (S8):

$$t_{1/2} = \frac{\ln(1.166)}{0.2 \cdot k_{eff}}$$
(S8)

Previous equations are based on a modified second order rate law. The silylation of alcohol **5a** requires a silylating reagent (TBDMSCl, **1a**) as a reaction partner. By assuming that during the reaction the concentration of the catalyst is constant and that triethylamine (**2**) does not participate at all in the rate determining step, the following equation for the second-order reaction can be written:

ROH + TBDMSCI
$$\xrightarrow{\kappa_2}$$
 TBDMSOR (**S9**)

1.

The rate law for a second-order reaction is shown in equation ${\bf S9.}$

 $-\frac{d [\text{ROH}]}{d t} = k_2 \cdot [\text{ROH}] \cdot [\text{TBDMSCI}]$ (S10)

Since there is no one to one ratio in this reaction one has to take the actual ratio of reactants into account. The ratio at the beginning of the reaction between both reactants is important for the further proceeding and is expressed in equation **S11**.

$$\frac{[\text{TBDMSCI}]_0}{[\text{ROH}]_0} = n \qquad (n > 1)$$
(S11)

Furthermore, the concentrations of the alcohol can be expressed from the conversion and the initial concentration $[ROH]_0$. If the ratio of the initial concentrations of alcohol and TBDMSCl is assumed to be n (eq. **S11**), than the concentration of TBDMSCl can be expressed by equation **S13**.

$$[ROH] = [ROH]_0 \cdot (1-y)$$
(S12)

$$[\mathsf{TBDMSCI}] = [\mathsf{ROH}]_0 \cdot (\mathsf{n-y}) \tag{S13}$$

By taking equation $\mathbf{S12}$ and $\mathbf{S13}$ into account, the effective rate law can be written as:

$$- [ROH]_0 \frac{d(1-y)}{dt} = k_2 \cdot [ROH]_0^2 (1-y)(n-y)$$
(**\$14**)

Rearranging the variables under the condition that k_{eff} = $k_2[\text{ROH}]_0$ leads to equation S15.

$$\frac{d (1-y)}{(1-y)(n-y)} = -k_{\text{eff}} \cdot dt$$
(S15)

Integration and several transformations of equation ${f S15}$ leads to equation ${f S21}.$

$$\int_{0}^{y} \frac{d(1-y)}{(1-y)(n-y)} = -\int_{t_{0}}^{t} k_{eff} \cdot dt$$
 (S16)

$$\frac{1}{(1-y)(n-y)} = \left(\frac{1}{1-y} - \frac{1}{n-y}\right) / (n-1)$$

$$\ln \left(\frac{1}{1-y}\right) - \ln \left(\frac{n}{n-y}\right) = -(n-1) \cdot k_{eff} \cdot (t-t_0)$$
(S18)

$$\ln\left(\frac{n-y}{n\cdot(1-y)}\right) = -(n-1)\cdot k_{eff}\cdot(t-t_0)$$
(S19)

$$\frac{n-y}{n\cdot(1-y)} = e^{k_{eff}\cdot(n-1)\cdot(t-t_0)}$$
(S20)

$$y = 1 - \frac{n - 1}{n \cdot e^{k_{eff} \cdot (n - 1) \cdot (t - t_0)} - 1}$$
(S21)

Equation **S21** expresses the conversion for the ideal second-order reaction, but only works for n > 1. For kinetic measurements it is necessary to take errors of preparing and mixing the samples into account. This can be achieved by adding another variable y_0 , which acts as conversion axis rescaling parameter. The final equation is given below by equation **S22**:

$$y = y_0 \cdot \left(1 - \frac{n - 1}{n \cdot e^{k_{eff} \cdot (n - 1) \cdot (t - t_0)} - 1} \right)$$
(S22)

(S17)

For the silylation of an alcohol the silylation reagent (**1a**, TBSCl) is used in 1.2 equivalents which leads to equation **S7**. In order to get a half-life time from this results the general equation **S22** is used.

$$t_{1/2} = \frac{\ln \frac{2n-1}{n}}{(n-1) \cdot k_{eff}}$$
(522)

Since the ratio (n) between ROH and TBDMSCl is known to be 1.2, one can change this equation to equation ${\bf S8}.$

On the following pages all plots which are used for this publication are shown in the order of their appearance.

2.3.1 Alternative options for calculating the conversion

As shown before the conversion can be calculated by using the signals of TBDMSCl (1a) and the product. In addition the signal of the alcohol can be used in a similar way (S19).

conversion =
$$\frac{I_{\text{TBDMSOR}}}{\Sigma I_{\text{TBDMSOR}} + I_{\text{ROH}}} \cdot 100 \%$$
 (S24)

Another way is to use the specific ratios of TBDMSCl (**1a**) and alcohol to calculate the conversion. Moreover, the external standard dioxane can be used. The ratios are: TBDMSCl/ROH = 1.2, TBDMSCl/dioxane = 3.6, and S 15

TBDMSOR/Dioxane =3.0. By using these ratios and the concentrations and not only the integrals one can easily build up the following equations.

conversion =
$$\frac{[\text{ROH}]_0 - [\text{ROH}]}{[\text{ROH}]_0} \cdot 100 \%$$
(S25)

conversion =
$$\frac{[TBDMSCI]_0 - [TBDMSOR]}{[ROH]_0} \cdot 100\%$$
 (S26)

$$conversion = \frac{[TBDMSCI]_0 - [TBDMSOR]}{1/1.2 [TBDMSCI]_0} \cdot 100 \%$$
(S27)

conversion =
$$\begin{bmatrix} 1.2 - 1.2 \cdot \frac{[TBDMSOR] / [dioxane]_0}{[TBDMSCI]_0 / [dioxane]_0} \end{bmatrix} \cdot 100 \%$$
(S28)

By using the integrals and the amount of protons each signal has the equations $\mathbf{S29}$ and $\mathbf{S30}$ can be built for the decrease of the TBDMSCl or alcohol signal.

conversion =
$$\left[1.2 - 1.2 \cdot \frac{I_{\text{TBDMSCI}} / 6}{I_{\text{dioxane}} / 8} / 3.6\right] \cdot 100 \%$$
(S29)

conversion =
$$\left[1.2 - 1.2 \cdot \frac{I_{HOR} / 2}{I_{dioxane} / 8} / 3.0 \right] \cdot 100 \%$$
 (\$30)

The second alternative is to use the increasing signals of the product either the TBDMS- $(\mathbf{S31})$ or the alcohol-based $(\mathbf{S32})$ signals.

conversion =
$$\begin{bmatrix} I_{\text{TBDMSOR}} / 6 \\ I_{\text{dioxane}} / 8 \end{bmatrix} / 3.0 \end{bmatrix} \cdot 100 \%$$
(S31)

conversion =
$$\begin{bmatrix} I_{\text{ROTBDMS}} / 2 \\ I_{\text{dioxane}} / 8 \end{bmatrix} / 3.0 \end{bmatrix} \cdot 100 \%$$
(S32)

A very carefully comparison of all options came to the conclusion that using the integral ratios of TBDMS as defined in eq. (S6) is the best choice. The alcohol signals tend to overlap in some of the kinetics runs. The reproducibility of the results using the external standard is lower as compared to that for eq. (S6).

3.4 NMR shifts for reactants and products

For a better overview we here provide all spectroscopic data of reactants and products in Table S5.

Table S5. $^{1}\mathrm{H}$,	¹³ C, an	id ²⁹ Si	NMR chemical	shifts of	silicon-containing
reactants and	products	[ppm, in	CDCl ₃].		
Structures	²⁹ Si	¹ H		¹³ C	

Structures	²⁹ Si	¹ H	¹³ C
Si-CI	36.12	0.98 (s, 9H, tBu), 0.37 ^[1] (s, 6H, Si(CH ₃) ₂)	25.60, 19.06, -1.54
~ 0 $Si_0 S_0$ $Si_0 0$	43.84	1.00 (s, 9H, tBu), 0.45 ^[1] (s, 6H, Si(CH ₃) ₂)	118.57 (q, J=317.4), 24.80, 18.20, -4.23
	26.69	3.07 (s, 3H, CH ₃), 0.99 (s, 9H, Bu), 0.26 ^[1] (s, 6H,Si(CH ₃) ₂)	117.18 (q, J=277.9), 144.48 (q, J=37.6), 34.39, 27.04, 25.58, 18.71, -3.95
→ Si-N	17.26	7.54, 7.15, 6.92, 0.88 (s, 9H, tBu), 0.43 ^[1] (s, 6H, Si(CH ₃) ₂)	140.86, 130.48, 120.93, 25.66, 17.83, -5.38
	-1.52	1.01 (s, 9H, tBu), 0.29 ^[1] (s, 6H, Si(CH ₃) ₂)	126.11, 25.65, 16.31, -5.92,
	9.91	0.85 (s, 18H, tBu), 0.00(s, 12H, Si(CH ₃) ₂)	
	18.42	- 0.01 (s, 3H,Si(CH ₃)), 0.10 ^[1] (s, 3H, Si(CH ₃)), 0.95 (s, 9H,tBu), 1.60 (d, <i>J</i> =6.4, 3H, MeCH-OR), 5.61 (q, <i>J</i> = 6.6, 1H, CH), 7.44-7.55 (m, 3H), 7.67-7.78 (m, 2H), 7.85-7.91 (m, 1H), 8.11 (d, <i>J</i> = 7.3, 1H).	129.88, 128.82, 127.17, 125.57, 125.53, 125.15, 123.34, 122.67, 68.48, 26.62, 25.89, , 18.30, -4.83, -4.92
Si Si	20.58	0.14 ^[1] (s, 6H, Si(CH ₃) ₂), 0.97 (s, 9H, tBu), 5.22 (s, 2H, CH ₂), 7.47 -7.59 (m, 3H), 7.59 - 7.61 (m, 1H), 7.79 (d, J = 8.1, 1H), 7.86 - 7.93 (m, 1H), 8.00 - 8.05 (m, 1H).	128.57, 127.54,. 125.79, 125.51, 125.45, 123.77, 123.27, 63.39, 29.17, 25.98, 18.46, -5.22

^[1]Used for integration in NMR kinetic measurements.

3.5 Experimental Details for Direct Rate Measurements

All air and water sensitive manipulations were carried out under a nitrogen atmosphere using standard Schlenk techniques. Calibrated flasks for kinetic measurements were dried in the oven at 120 °C for at least 12 hours prior to use and then assembled quickly while still hot, cooled under a nitrogen stream and sealed with a rubber septum. Hygroscopic substances such as TBSOTF (**1b**) and DMF-d7 have been handled only in a glovebox. All commercial chemicals were of reagent grade and were used as received unless otherwise noted. CDCl₃ was refluxed for at least one hour over CaH_2 and subsequently

distilled. ¹H and ¹³C NMR spectra were recorded at room temperature. All 1H chemical shifts are reported in ppm (δ) relative to CDCl₃ (7.26); ¹³C chemical shifts are reported in ppm (δ) relative to CDCl₃ (77.16). 1H NMR kinetic data were measured on a 200 MHz spectrometer at 23 °C. HRMS spectra (ESI-MS or EI-MS) were measured using a FT instrument. All kinetic measurements with reaction times longer than 24 h were mechanically shaken at room temperature. For each reaction the rotation speed was set at 480 turns per minute. Analytical TLCs were determined using aluminium sheets silica gel Si 60 F254. All other chemicals were purchased from commercial suppliers at the highest available grade, stored over orange gel in an exsiccator and used without any further purification.

General procedure (I) for benchmark reactions of 4a with 2 mol% / 3 mol% / 4 mol% catalyst: 0.2 mL from 5.0 mL of stock solution I (TBS (3.6 mmol), dioxane (0.088 mg, 0.086 mL)), 0.2 mL from 5 mL of stock solution II 4a (475 mg, 3.0 mmol), Et₃N (3, 364 mg, 0.50 mL)) and 0.2 mL of 5 mL stock solution III (0.06 / 0.09 / 0.12 mmol of catalyst) were mixed in a NMR tube and sealed.

General procedure (II) for benchmark reactions of **4b** with 10 mol% / 20 mol% / 30 mol% catalyst: 0.2 mL from 5.0 mL of stock solution I (TBS (3.6 mmol), dioxane (0.088 mg, 0.086 mL)), 0.2 mL from 5 mL of stock solution II **4b** (517 mg, 3.0 mmol), Et₃N (3, 364 mg, 0.50 mL)) and 0.2 mL of 5 mL stock solution III (0.12 / 0.24 / 0.36 mmol of DMAP) were mixed in a NMR tube and sealed.

General procedure (III) for benchmark reactions of 4b in DMF-d₇ with 30 mol% catalyst and without: 0.2 mL from 1 mL of stock solution I (TBS-X, 0.72 mmol), 0.2 mL from 1 mL of stock solution II 4b (517 mg, 3.0 mmol), Et₃N (3, 364 mg, 0.10 mL)) and 0.2 mL of 1 mL stock solution III DMAP (0.18 mmol, 21.99 mg) were mixed in a NMR tube and sealed.

various solvents.					
System	Catalyst (mol%)	Alcohol	Solvent	k _{eff}	$t_{1/2}$ (min)
TBSCl (1a) Avg.	DMAP (4)	4b	CDC1 ₃	2.40E-04 2.45E-04 2.43E-04	3199.1 3132.8 3165.6
-	DMAP (10)	4b	CDC1 ₃	5.03E-04 5.08E-04 4.94E-04	1525.3 1512.0 1553.8
Avg.	DMAP (20)	4b	CDCl ₃	5.02E-04 1.04E-03 1.06E-03 1.07E-03	1530.2 738.4 724.4 717.7
Avg.	DMAP (30)	4b	CDC1 ₃	1.06E-03 1.60E-03 1.66E-03 1.69E-03	726.7 479.9 462.6 454.4
Avg.				1.63E-03	471.1

Table S6. Overview of direct rate measurement data for all silyl reagents in various solvents

System	Catalyst	Alcohol	Solvent	k _{eff}	<i>t_{1/2}</i> (min)
	(mol응)				
	DMAP (0)	4b	$DMF-d_7$	1.15E-01	6.7
				9.97E-02	7.7
7				9.59E-02 1.04E-01	8.0 7.4
Avg.	DMAP (30)	4b	DMF-d7	1.04 E-01 1.05E-01	7.3
	DMAP (30)	40	$DMF = O_7$	1.12E-01	6.9
Avg.				1.09E-01	7.1
AVY.	DMAP (0.5)	4a	CDC1 ₃	3.43E-03	223.9
			00013	3.47E-03	221.3
Avg.				3.45E-03	222.6
	DMAP (1)	4a	CDC1 ₃	6.20E-03	123.9
	(_)			6.20E-03	123.9
Avg.				6.20E-03	123.9
2	DMAP (2)	4a	CDC13	1.01E-02	76.4
				9.67E-03	79.4
				8.58E-03	89.5
Avg.				9.43E-03	81.4
	DMAP (3)	4a	CDC1 ₃	1.83E-02	42.0
				1.80E-02	42.6
				1.82E-02	42.2
Avg.				1.82E-02	42.3
	DMAP (4)	4a	CDC1 ₃	2.45E-02	31.3
				2.76E-02	27.9
				2.47E-02	31.1
_				2.47E-02	31.0
Avg.				2.54E-02	30.1
TBSOTÍ (1b)	DMAP (0)	4b	CDC1 ₃	2.98E+00	0.258
				5.35E+00	0.144
7				4.92E+00 4.42E+00	0.156
Avg.	DMAP (10)	4b	CDC13	4.42£700 5.49E+00	0.174 0 . 140
	DMAP (10)	-10	CDC13	5.10E+00	0.151
Avg.				5.30E+00	0.145
1109.	DMAP (20)	4b	CDC1 ₃	4.97E+00	0.154
	DIMI (20)		00013	4.85E+00	0.158
				6.31E+00	0.122
Avg.				5.38E+00	0.143
5	DMAP (30)	4b	CDC13	4.63E+00	0.166
				5.57E+00	0.138
Avg.				5.10E+00	0.151
	DMAP (0)	4b	$DMF-d_7$	5.08E+00	0.151
				4.68E+00	0.164
Avg.				4.88E+00	0.157
	DMAP (15)	4b	$DMF-d_7$	4.07E+00	0.189
_				3.21E+00	0.239
Avg.		41-		3.64E+00	0.211
	DMAP (30)	4b	$DMF-d_7$	6.10E+00	0.126
7				2.17E+00	0.353
Avg. TBSCN (1c)	DMAP (10)	4b	CDCl ₃	4.14E+00 2.28E-05	0.186 33634.8
TDOCH (IC)	DMAP (10)	ID.	CDCT3	2.28E-05 2.34E-05	32810.4
				2.24E-05	34212.9
Avg.				2.24E-03 2.29E-05	33542.8
77 v À •	DMAP (20)	4b	CDC1 ₃	5.10E-05	15055.0
			00013	5.45E-05	14098.8
Avg.				5.27E-05	14561.2
- ر					

System	Catalyst (mol%)	Alcohol	Solvent	k_{eff}	$t_{1/2}$ (min
	DMAP (30)	4b	CDC1 ₃	8.69E-05	8832.5
				8.65E-05	8878.4
Avg.				8.67E-05	8855.4
-	DMAP (0)	4b	$DMF-d_7$	3.62E-02	21.2
				3.80E-02	20.2
Avg.				3.71E-02	20.7
	DMAP (30)	4b	DMF-d7	3.38E-02	22.7
				4.52E-02	17.0
Avg.				3.95E-02	19.4
-	DMAP (1)	4a	CDC13	1.10E-03	698.1
				1.10E-03	698.1
				1.12E-03	685.6
Avg.				1.11E-03	693.9
-	DMAP (2)	4a	CDC13	1.56E-03	492.2
				1.57E-03	489.1
				1.58E-03	486.0
Avg.				1.57E-03	489.1
	DMAP (3)	4a	CDC1 ₃	1.28E-03	599.9
				1.20E-03	639.9
				1.20E-03	639.9
Avg.				1.23E-03	626.0
	DMAP (4)	4a	CDC13	1.86E-03	412.8
				1.92E-03	399.9
				1.99E-03	385.9
Avg.				1.92E-03	399.3
MTBSTFA (1e)	DMAP (30)	4b	CDC13	4.91E-05	15637.6
				4.88E-05	15727.2
Avg.				4.90E-05	15682.3
	DMAP (0)	4b	DMF-d7	9.35E-03	82.1
				2.18E-02	35.3
Avg.				1.06E-02	49.4
-	DMAP (30)	4b	$DMF-d_7$	7.81E-03	98.3
				1.33E-02	59.6
Avg.				1.43E-02	72.6

4) Direct Rate Measurements - Results

All results of the direct rate measurements will be shown on the following pages, sorted by the leaving group of the silyl compound. The data have been normalized with y_0 obtained from equation S7 and plotted in order to reach a conversion of 100%.

As mentioned in the manuscript a linear correlation between catalyst concentration and silyl reagent was obtained for primary alcohol (4a) for the transformation with TBSCl (1a) and TBSCN (1c) (Figure S6).

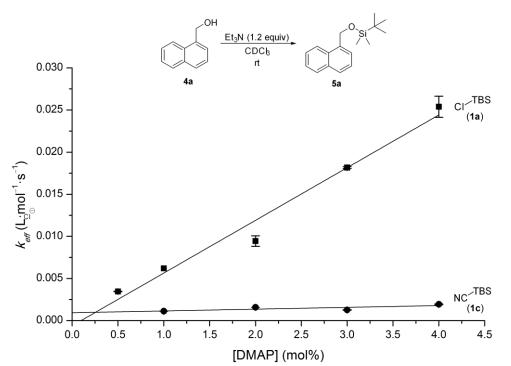


Figure S6. Influence of catalyst concentration on the silylation of primary alcohol 4a with various silylation reagents in CDCl₃.

4.1.1 Measurements with TBSCl (1a)

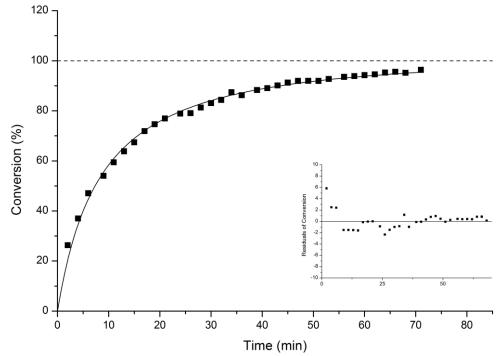
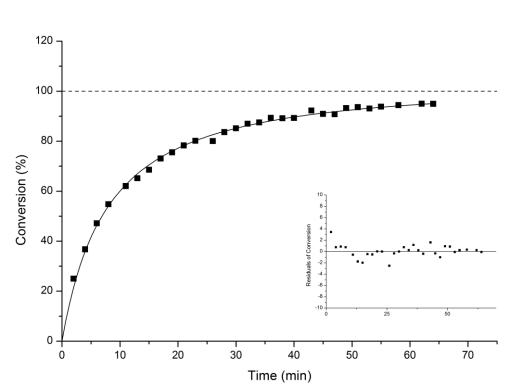



Figure S7 Conversion vs time plot of 4b with 1.2 equiv of TEA (3b), 1.2 equiv TBSCl (1a), and DMAP with 30 mol% catalyst loading in DMF-d₇.

 $k_{eff} = 0.10517$

Figure S8 Second conversion vs time plot of 4b with 1.2 equiv of TEA (3b), 1.2 equiv TBSCl (1a), and DMAP with 30 mol% catalyst loading in DMF-d₇.

 $R^2 = 0.9961$

 $R^2 = 0.9927$

 $k_{eff} = 0.11183$

 $t_{1/2} = 6.9 min$

 $t_{1/2} = 7.3 \text{ min}$

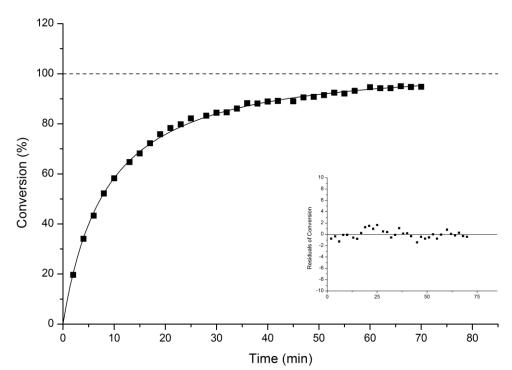


Figure S9 Conversion vs time plot of 4b with 1.2 equiv of Imidazole (3a), 1.2 equiv TBSCl (1a), and no catalyst loading in DMF-d₇.

 $R^2 = 0.99841$ $k_{eff} = 0.1048$ $t_{1/2} = 7.3$ min

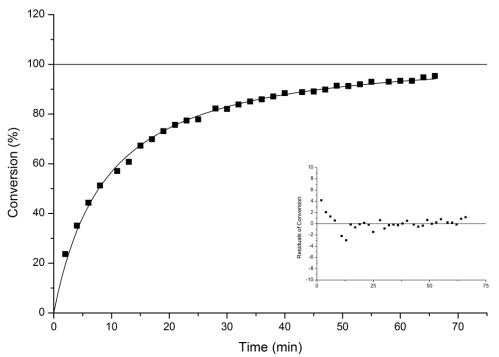


Figure S10 Second conversion vs time plot of **4b** with 1.2 equiv of Imidazole (**3a**), 1.2 equiv TBSCl (**1a**), and no catalyst loading in DMF-d7.

```
R^2 = 0.99551
```

$$k_{eff} = 0.09875$$

$$t_{1/2} = 7.8 \text{ min}$$

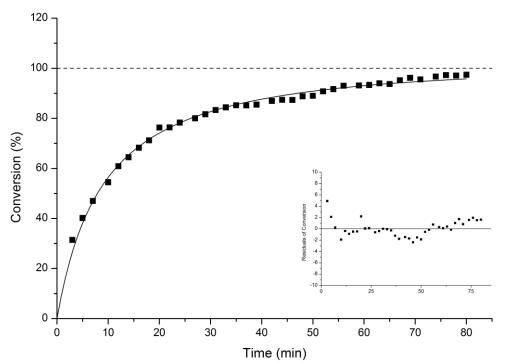
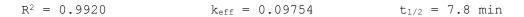



Figure S11 Conversion vs time plot of 4b with 1.8 equiv of Imidazole (3a), 1.2 equiv TBSCl (1a), and no catalyst loading in DMF-d₇.

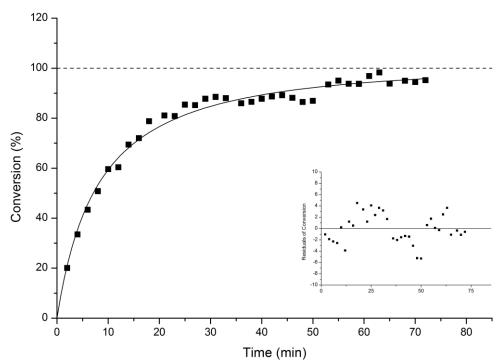


Figure S12 Second Conversion vs time plot of 4b with 1.8 equiv of Imidazole $(3a)\,,$ 1.2 equiv TBSCl $(1a)\,,$ and no catalyst loading in DMF-d7.

$R^2 = 0.98095$	$k_{eff} = 0.10913$	$t_{1/2} = 7.0 \text{ min}$
-----------------	---------------------	-----------------------------

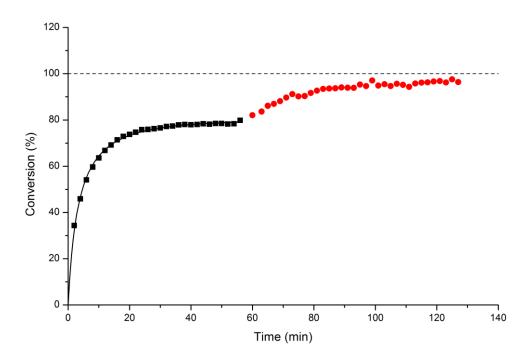


Figure S13 Conversion vs time plot of 4b with 1.2 equiv TBSCl (1a) in DMF-d7 (black) and addition of 1.2 equiv Et_3N (3b) (red).

 $R^2 = 0.9958$ $k_{eff} = 0.26426$ $t_{1/2} = 2.9 min$

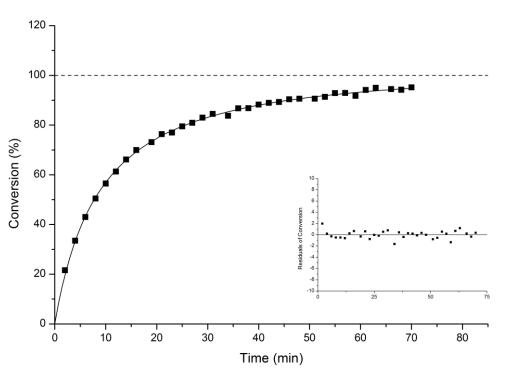


Figure S14 Conversion vs time plot of 4b with 1.2 equiv of Et₃N (3b) and 1.2 equiv TBSCl (1a) in DMF-d₇.

 $R^2 = 0.99857$

$$k_{eff} = 0.09868$$

 $t_{1/2} = 7.7 \text{ min}$

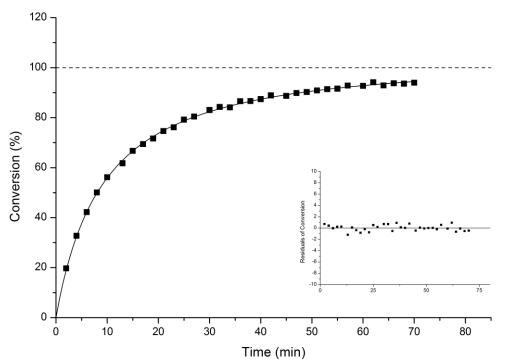


Figure S15 Second conversion vs time plot of 4b with 1.2 equiv of ${\rm Et_3N}$ $(3b)\,,$ and 1.2 equiv TBSCl (1a) in DMF-d7.

 $R^2 = 0.99919$ $k_{eff} = 0.09585$ $t_{1/2} = 8.0 \text{ min}$

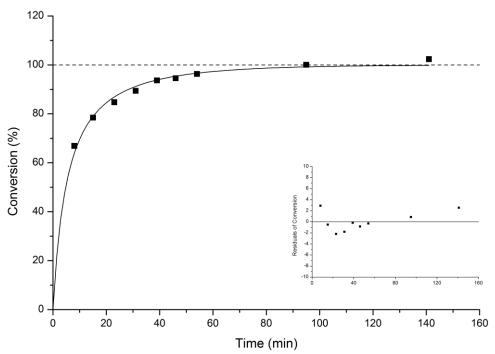


Figure S16 Third conversion vs time plot of 4b with 1.2 equiv of Et_{3}N $(3b)\,,$ and 1.2 equiv TBSCl (1a) in DMF-d7.

 $R^2 = 0.97232$ $k_{eff} = 0.16206$ $t_{1/2} = 6.7$ min

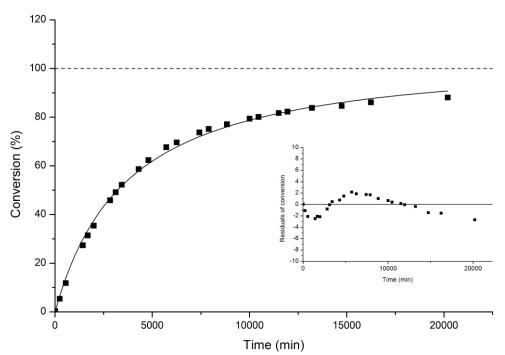


Figure S17 Conversion vs time plot of 4b with 1.2 equiv of Et_3N (3b), 1.2 equiv TBSCl (1a), and DMAP as catalyst with 4.0 mol% catalyst loading in CDCl₃.

 $R^2 = 0.99678 \qquad k_{\text{eff}} = 2.40 \times 10^{-4} \qquad t_{1/2} = 3199.1 \text{ min}$

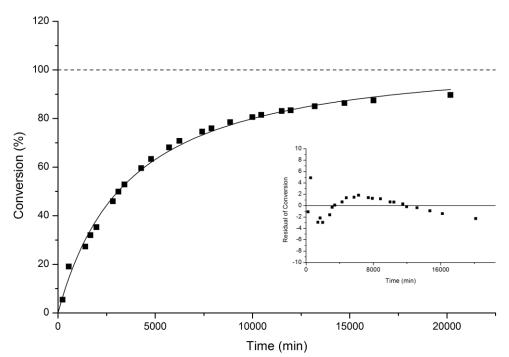


Figure S18. Second conversion vs time plot of 4b with 1.2 equiv of Et_3N (3b), 1.2 equiv TBSCl (1a), and DMAP as catalyst with 4.0 mol% catalyst loading in CDCl₃.

 $R^2 = 0.9943$ $k_{eff} = 2.451 \times 10^{-4}$

 $t_{1/2} = 3132.8 \text{ min}$

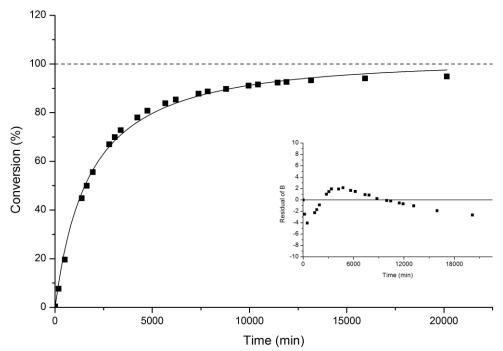


Figure S19. Conversion vs time plot of 4b with 1.2 equiv of ${\rm Et}_{3}{\rm N}$ $(3b)\,,$ 1.2 equiv TBSCl $(1a)\,,$ and DMAP as catalyst with 10.0 mol% catalyst loading in CDCl₃.

 $R^2 = 0.99614 \qquad k_{\text{eff}} = 5.034 \times 10^{-4} \qquad t_{1/2} = 1525.3 \text{ min}$

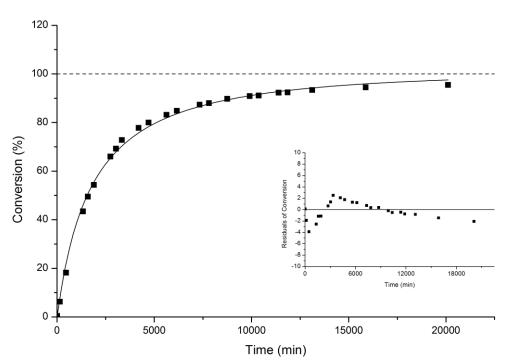


Figure S20. Second conversion vs time plot of 4b with 1.2 equiv of Et₃N (3b), 1.2 equiv TBSCl (1a), and DMAP as catalyst with 10.0 mol% catalyst loading in CDCl₃.

 $R^2 = 0.99658$

 $k_{eff} = 5.079 \times 10^{-4}$

 $t_{1/2} = 1512.0 \text{ min}$

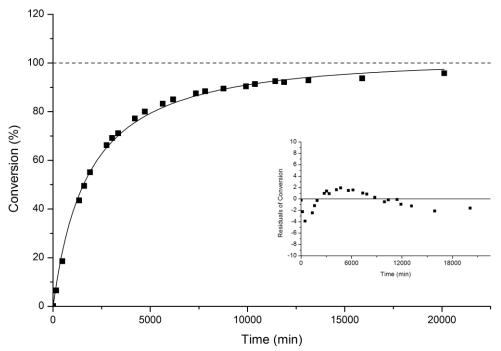


Figure S21. Third conversion vs time plot of 4b with 1.2 equiv of Et₃N (3b), 1.2 equiv TBSCl (1a), and DMAP as catalyst with 10.0 mol% catalyst loading in CDCl₃.

 $R^2 = 0.99678 \qquad k_{\text{eff}} = 4.94 \times 10^{-4} \qquad t_{1/2} = 1553.8 \text{ min}$

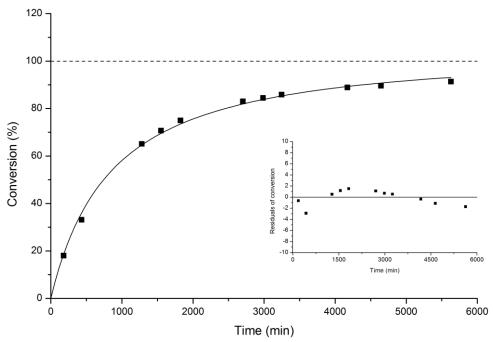


Figure S22. Conversion vs time plot of 4b with 1.2 equiv of ${\rm Et}_{3}{\rm N}$ (3b), 1.2 equiv TBSCl (1a), and DMAP as catalyst with 20.0 mol% catalyst loading in CDCl₃.

 $R^2 = 0.99638$ $k_{eff} = 1.04 \times 10^{-3}$ $t_{1/2} = 738.4$ min

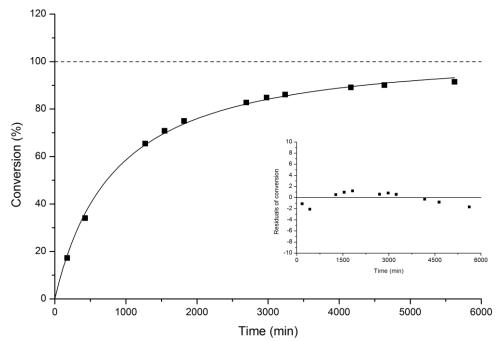
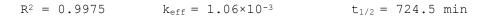



Figure S23. Second conversion vs time plot of 4b with 1.2 equiv of Et₃N (3b), 1.2 equiv TBSCl (1a), and DMAP as catalyst with 20.0 mol% catalyst loading in CDCl₃.

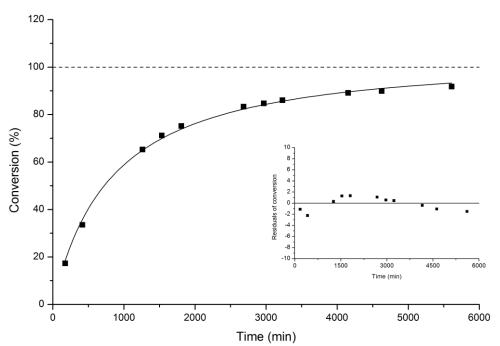


Figure S24. Third conversion vs time plot of 4b with 1.2 equiv of Et₃N (3b), 1.2 equiv TBSCl (1a), and DMAP as catalyst with 20.0 mol% catalyst loading in CDCl₃.

 $R^2 = 0.9972$ $k_{eff} = 1.07 \times 10^{-3}$ $t_{1/2} = 717.7$ min

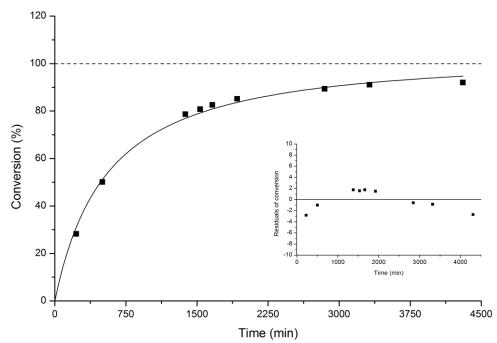


Figure S25. Conversion vs time plot of 4b with 1.2 equiv of ${\rm Et}_{3}{\rm N}$ (3b), 1.2 equiv TBSCl (1a), and DMAP as catalyst with 30.0 mol% catalyst loading.

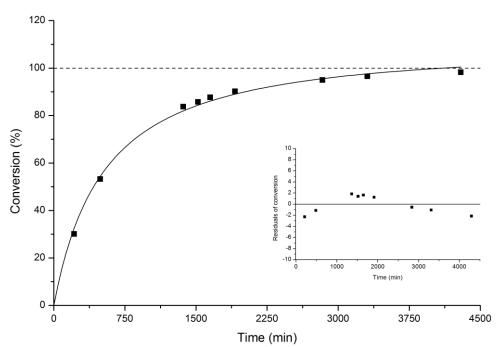


Figure S26. Second Conversion vs time plot of 4b with 1.2 equiv of Et₃N (3b), 1.2 equiv TBSCl (1a), and DMAP as catalyst with 30.0 mol% catalyst loading in CDCl₃.

 $R^2 = 0.99404$ $k_{eff} = 1.66 \times 10^{-3}$ $t_{1/2} = 462.6$ min

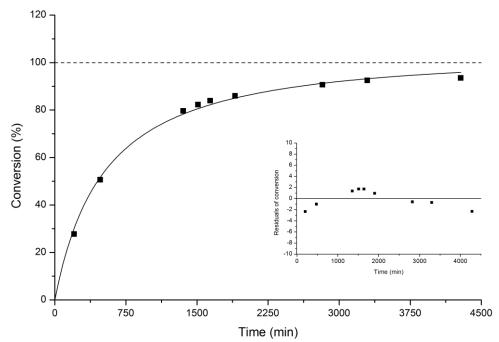


Figure S27. Third Conversion vs time plot of 4b with 1.2 equiv of Et_{3}N (3b), 1.2 equiv TBSCl (1a), and DMAP as catalyst with 30.0 mol% catalyst loading in CDCl₃.

 $R^2 = 0.9938$ $k_{eff} = 1.69 \times 10^{-3}$ $t_{1/2} = 454.4$ min

4.1.1.1 Primary Alcohol (4a)

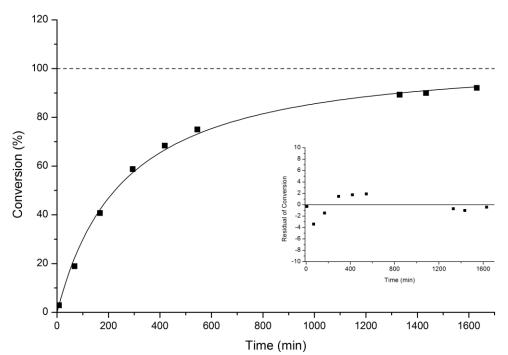


Figure S28. Conversion vs time plot of 4b with 1.2 equiv of ${\rm Et}_{3}{\rm N}$ (3b), 1.2 equiv TBSCl (1a), and DMAP as catalyst with 0.5 mol% catalyst loading in CDCl₃.

 $R^2 = 0.99672$ $k_{eff} = 3.43 \times 10^{-3}$ $t_{1/2} = 223.8$ min

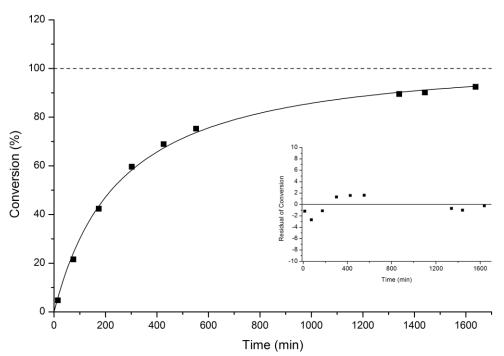


Figure S29. Second conversion vs time plot of 4b with 1.2 equiv of ${\rm Et_3N}$ (3b), 1.2 equiv TBSCl (1a), and DMAP as catalyst with 0.5 mol% catalyst loading in CDCl₃.

 $R^2 = 0.99739$ $k_{eff} = 3.47 \times 10^{-3}$ $t_{1/2} = 221.3$ min

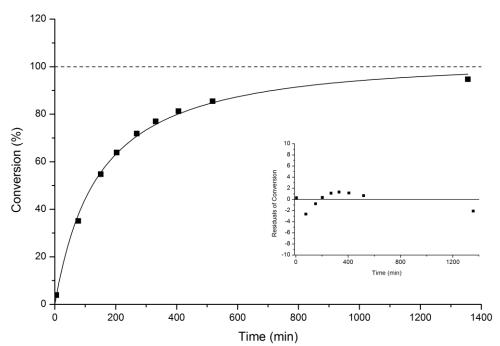


Figure S30. Conversion vs time plot of 4b with 1.2 equiv of Et₃N (3b), 1.2 equiv TBSCl (1a), and DMAP as catalyst with 1.0 mol% catalyst loading in CDCl₃.

 $R^2 = 0.99701$ $k_{eff} = 6.21 \times 10^{-3}$ $t_{1/2} = 123.9$ min

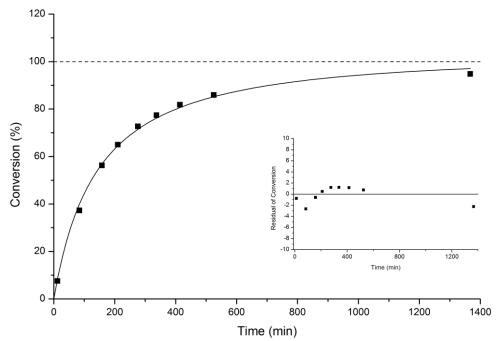
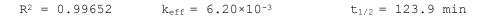



Figure S31. Second conversion vs time plot of 4b with 1.2 equiv of Et₃N (3b), 1.2 equiv TBSCl (1a), and DMAP as catalyst with 1.0 mol% catalyst loading in CDCl₃.

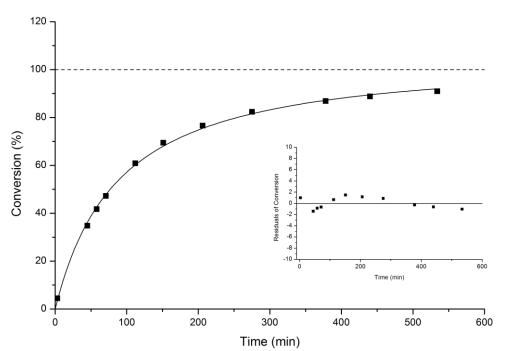


Figure S32. Conversion vs time plot of 4b with 1.2 equiv of Et₃N (3b), 1.2 equiv TBSCl (1a), and DMAP as catalyst with 2.0 mol% catalyst loading in CDCl₃.

 $R^2 = 0.99844$ $k_{eff} = 1.00 \times 10^{-2}$ $t_{1/2} = 76.4$ min

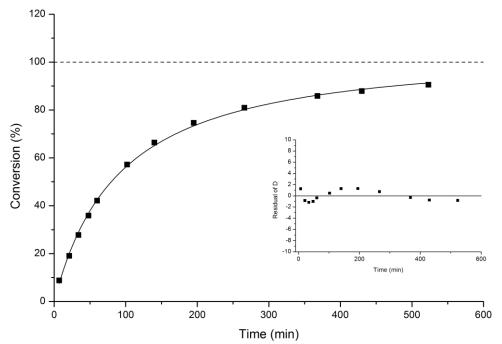
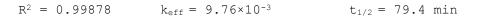



Figure S33. Second conversion vs time plot of 4b with 1.2 equiv of ${\rm Et_3N}$ (3b), 1.2 equiv TBSCl (1a), and DMAP as catalyst with 2.0 mol% catalyst loading in CDCl₃.

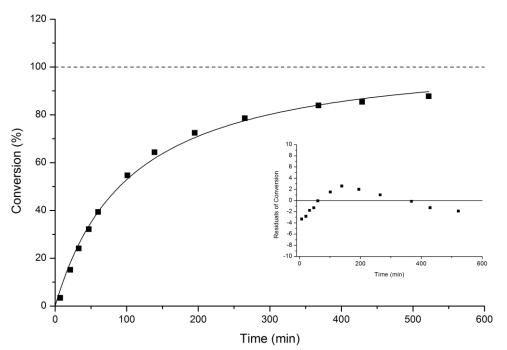


Figure S34. Third conversion vs time plot of 4b with 1.2 equiv of Et_{3}N (3b), 1.2 equiv TBSCl (1a), and DMAP as catalyst with 2.0 mol% catalyst loading in CDCl₃.

 $R^2 = 0.99511$ $k_{eff} = 8.58 \times 10^{-3}$ $t_{1/2} = 89.5$ min

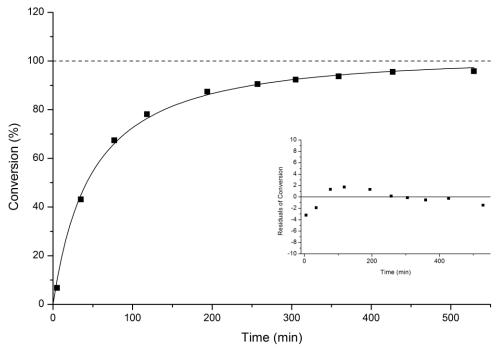


Figure S35. Conversion vs time plot of 4b with 1.2 equiv of $\texttt{Et}_3\texttt{N}$ (3b), 1.2 equiv TBSCl (1a), and DMAP as catalyst with 3.0 mol% catalyst loading in CDCl₃.

 $R^2 = 0.99662 \qquad k_{eff} = 1.828 \times 10^{-2} \qquad t_{1/2} = 42.0 \text{ min}$

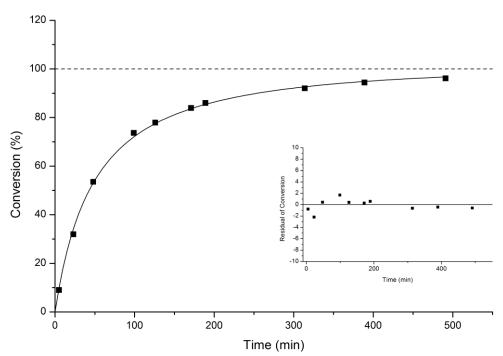


Figure S36. Second conversion vs time plot of 4b with 1.2 equiv of Et_3N (3b), 1.2 equiv TBSCl (1a), and DMAP as catalyst with 3.0 mol% catalyst loading in CDCl₃.

 $R^2 = 0.99855$

 $k_{eff} = 1.801 \times 10^{-2}$

 $t_{1/2} = 42.6 \text{ min}$

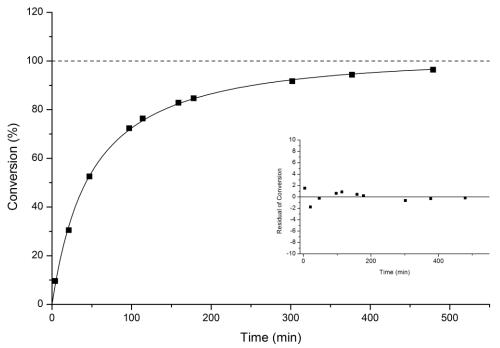


Figure S37. Third conversion vs time plot of 4b with 1.2 equiv of Et_3N (3b), 1.2 equiv TBSCl (1a), and DMAP as catalyst with 3.0 mol% catalyst loading in CDCl₃.

 $R^2 = 0.9989 \qquad k_{eff} = 1.818 \times 10^{-2} \qquad t_{1/2} = 42.2 \text{ min}$

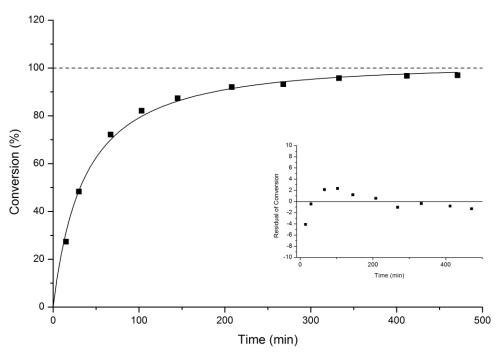


Figure S38. Conversion vs time plot of 4b with 1.2 equiv of Et₃N (3b), 1.2 equiv TBSCl (1a), and DMAP as catalyst with 4.0 mol% catalyst loading in CDCl₃.

 $R^2 = 0.9928$

 $k_{eff} = 2.45 \times 10^{-2}$

 $t_{1/2} = 31.3 \text{ min}$

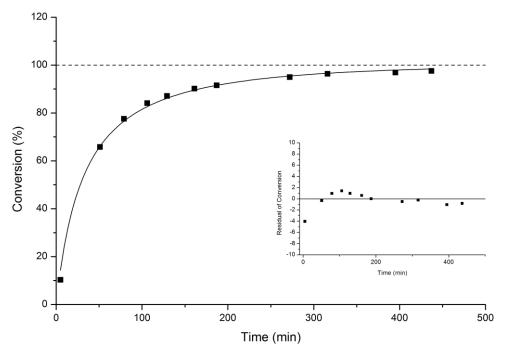
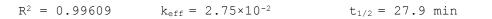



Figure S39. Second conversion vs time plot of 4b with 1.2 equiv of ${\rm Et_3N}$ (3b), 1.2 equiv TBSCl (1a), and DMAP as catalyst with 4.0 mol% catalyst loading in CDCl_3.

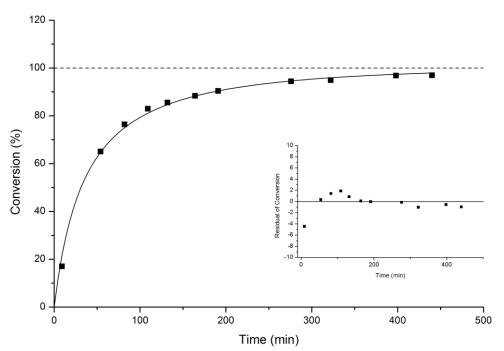


Figure S40. Third conversion vs time plot of 4b with 1.2 equiv of Et_{3}N (3b), 1.2 equiv TBSCl (1a), and DMAP as catalyst with 4.0 mol% catalyst loading in CDCl₃.

 $R^2 = 0.99416$ $k_{eff} = 2.473 \times 10^{-2}$ $t_{1/2} = 31.1$ min

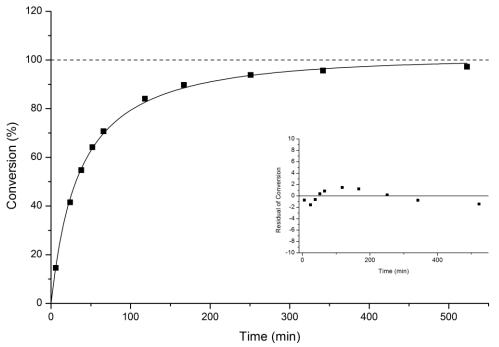


Figure S41. Forth conversion vs time plot of 4b with 1.2 equiv of Et₃N (3b), 1.2 equiv TBSCl (1a), and DMAP as catalyst with 4.0 mol% catalyst loading in CDCl₃.

 $R^2 = 0.99823 \qquad k_{eff} = 2.474 \times 10^{-2} \qquad t_{1/2} = 31.0 \text{ min}$

4.1.2 Measurements with TBSOTf (1b)

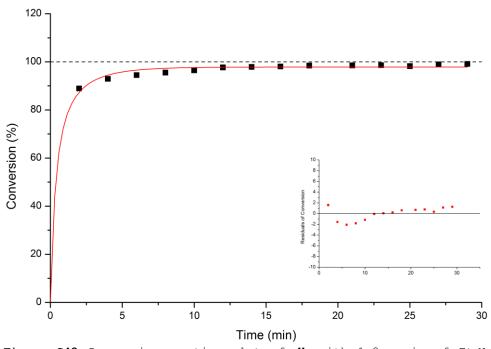


Figure S42 Conversion vs time plot of 4b with 1.2 equiv of Et_3N $(3b)\,,$ 1.2 equiv TBSOTf $(1b)\,,$ and 30 mol% DMAP as catalyst in DMF-d_7.

 $R^2 = 0.8343$ $k_{eff} = 2.137$ $t_{1/2} = 0.353$ min

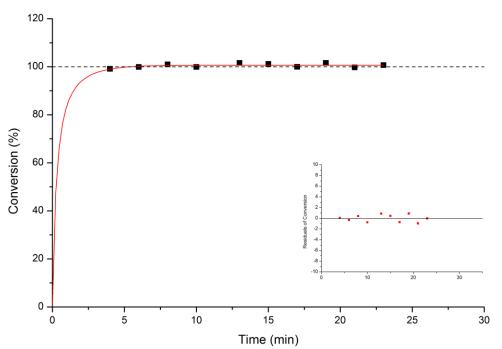


Figure S43 Second conversion vs time plot of 4b with 1.2 equiv of Et_3N (3b), 1.2 equiv TBSOTf (1b), and 30 mol% DMAP as catalyst in DMF-d7.

 $R^2 = 0.9215$ $k_{eff} = 2.9975$ $t_{1/2} = 0.256$ min

Figure S44 Conversion vs time plot of 4b with 1.2 equiv of Et₃N (3b), 1.2 equiv TBSOTF (1b), and 15 mol% DMAP as catalyst in DMF-d₇.

 $R^2 = 0.7241$ $k_{eff} = 4.065$ $t_{1/2} = 0.189$ min

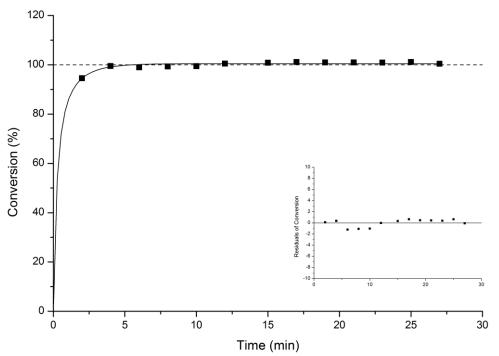


Figure S45 Second conversion vs time plot of 4b with 1.2 equiv of Et_3N (3b), 1.2 equiv TBSOTf (1b), and 15 mol% DMAP as catalyst in DMF-d7.

 $R^2 = 0.8465$ $k_{eff} = 3.214$ $t_{1/2} = 0.239$ min

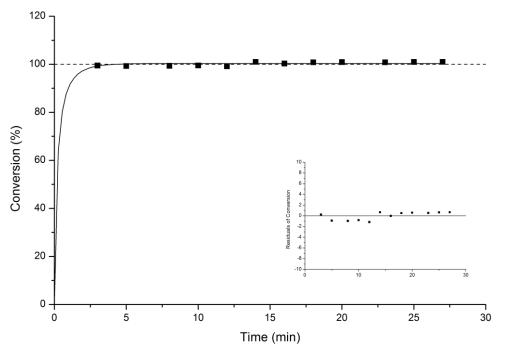


Figure S46 Conversion vs time plot of 4b with 1.2 equiv of Et_{3}N $(3b)\,,$ 1.2 equiv TBSOTf $(1b)\,,$ and no catalyst in DMF-d7.

 $R^2 = 0.9944$ $k_{eff} = 4.681$ $t_{1/2} = 0.164$ min

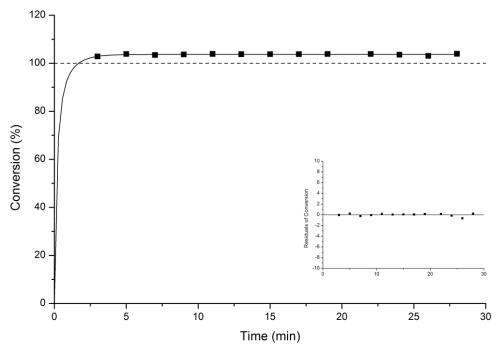


Figure 47 Second conversion vs time plot of 4b with 1.2 equiv of Et_3N (3b), 1.2 equiv TBSOTf (1b), and no catalyst in DMF-d7.

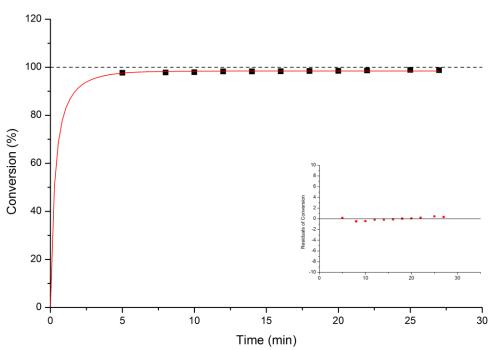


Figure S48 Conversion vs time plot of 4b with 1.2 equiv of Et_3N $(3b)\,,$ 1.2 equiv TBSOTf $(1b)\,,$ and no catalyst in CDCl_3.

 $R^2 = 0.3241$ $k_{eff} = 2.979$ $t_{1/2} = 0.258$ min

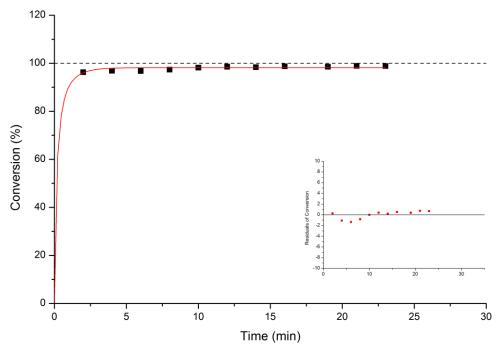
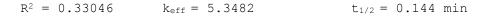



Figure S49 Second conversion vs time plot of 4b with 1.2 equiv of Et₃N (3b), 1.2 equiv TBSOTf (1b), and no catalyst in CDCl₃.

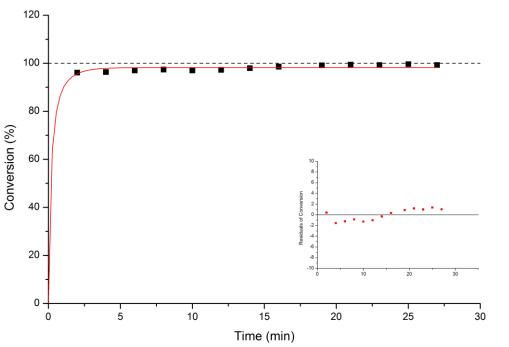


Figure S50 Third conversion vs time plot of 4b with 1.2 equiv of ${\rm Et_{3}N}$ (3b), 1.2 equiv TBSOTf (1b), and no catalyst in CDCl_3.

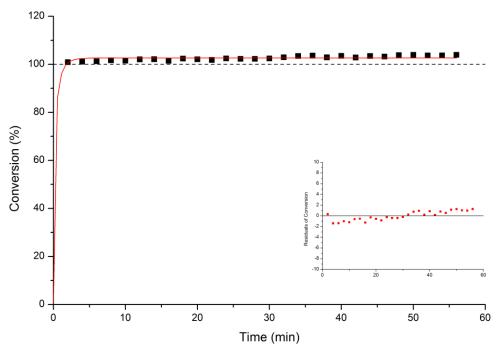


Figure S51 Conversion vs time plot of 4b with 1.2 equiv of Et₃N (3b), 1.2 equiv TBSOTF (1b), and 10 mol% DMAP as catalyst in CDCl₃.

 $R^2 = 0.11972$ $k_{eff} = 5.4947$ $t_{1/2} = 0.140$ min

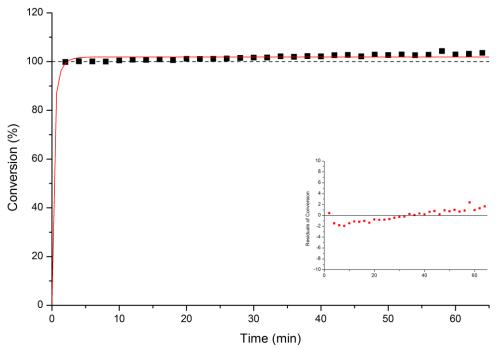


Figure S52 Second conversion vs time plot of 4b with 1.2 equiv of ${\rm Et_3N}$ (3b), 1.2 equiv TBSOTf (1b), and 10 mol% DMAP as catalyst in CDCl_3.

 $R^2 = 0.0862$

 $k_{eff} = 5.0958$

 $t_{1/2} = 0.151 \text{ min}$

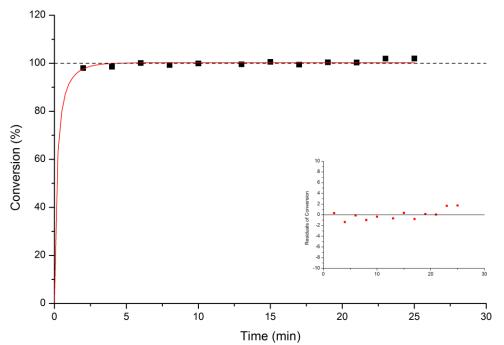


Figure S53 Conversion vs time plot of 4b with 1.2 equiv of ${\rm Et_{3}N}$ $(3b)\,,$ 1.2 equiv TBSOTf $(1b)\,,$ and 20 mol% DMAP as catalyst in CDCl_3.

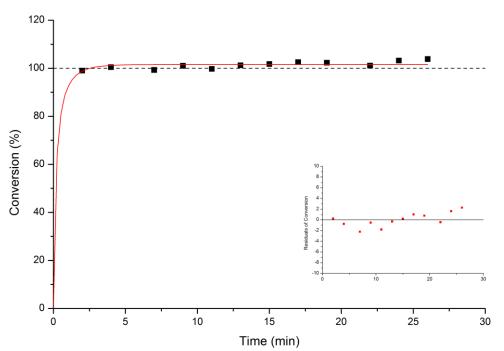


Figure S54 Second Conversion vs time plot of 4b with 1.2 equiv of ${\rm Et_{3}N}$ (3b), 1.2 equiv TBSOTf (1b), and 20 mol% DMAP as catalyst in CDCl_3.

 $R^2 = 0.1758$ $k_{eff} = 4.848$ $t_{1/2} = 0.158$ min

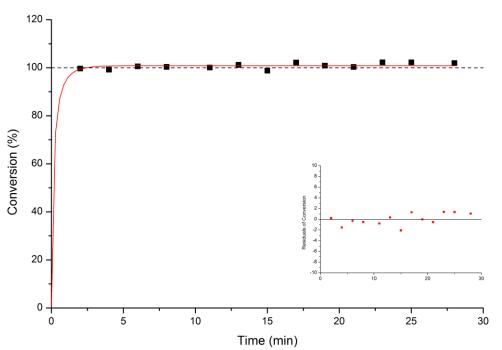


Figure S55 Third Conversion vs time plot of 4b with 1.2 equiv of Et_{3N} (3b), 1.2 equiv TBSOTf (1b), and 20 mol% DMAP as catalyst in CDCl₃.

 $R^2 = 0.0170$ $k_{eff} = 6.3133$ $t_{1/2} = 0.122$ min

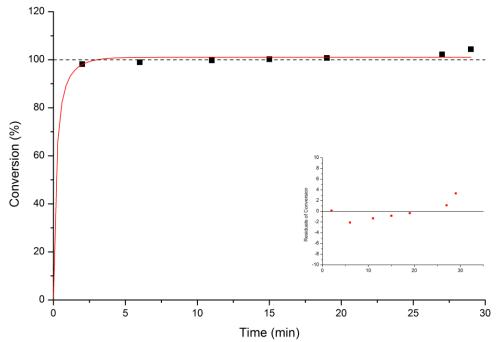


Figure S56 Conversion vs time plot of 4b with 1.2 equiv of Et₃N (3b), 1.2 equiv TBSOTF (1b), and 30 mol% DMAP as catalyst in CDCl₃.

 $R^2 = 0.1333$

 $k_{eff} = 4.629$

 $t_{1/2} = 0.166 \text{ min}$

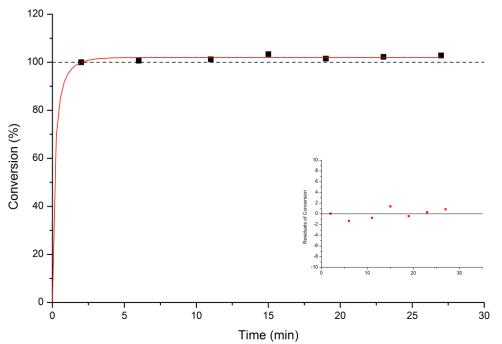


Figure S57 Second Conversion vs time plot of 4b with 1.2 equiv of ${\rm Et_{3}N}$ $(3b)\,,$ 1.2 equiv TBSOTf $(1b)\,,$ and 30 mol% DMAP as catalyst in CDCl_3.

 $R^2 = 0.2728$ $k_{eff} = 5.566$ $t_{1/2} = 0.138$ min

4.1.3 Measurements with TBSCN (1c)

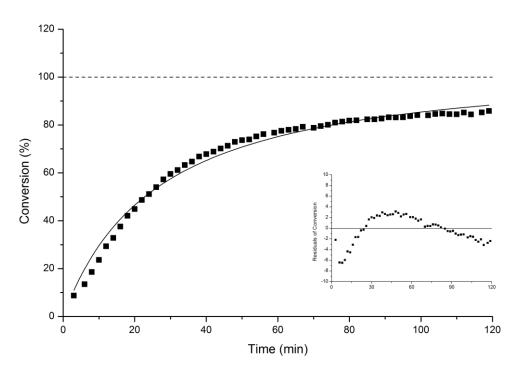


Figure S58 Conversion vs time plot of 4b with 1.2 equiv of $Et_{3}N$ $(3b)\,,$ 1.2 equiv TBSCN $(1c)\,,$ and 30 mol% DMAP as catalyst in DMF-d_7.

 $R^2 = 0.9960$ $k_{eff} = 0.0452$ $t_{1/2} = 17.0$ min

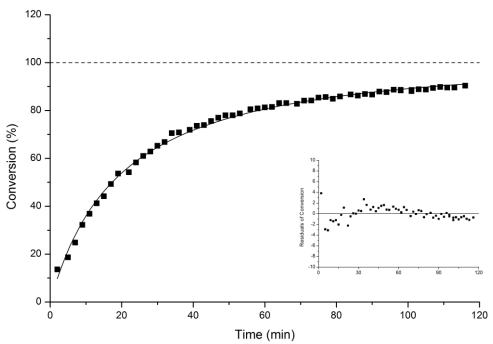


Figure S59 Second conversion vs time plot of 4b with 1.2 equiv of Et_3N (3b), 1.2 equiv TBSCN (1c), and 30 mol% DMAP as catalyst in DMF-d7.

 $R^2 = 0.9848$ $k_{eff} = 0.03377$ $t_{1/2} = 22.7$ min

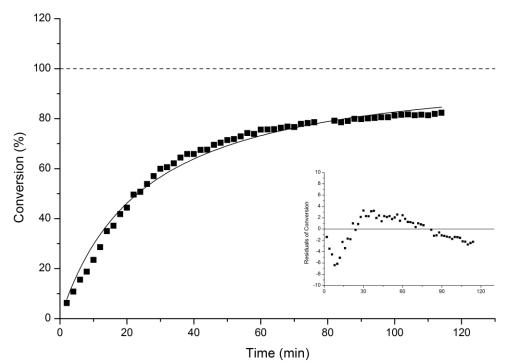


Figure S60 Conversion vs time plot of 4b with 1.2 equiv of Et_3N $(3b)\,,$ 1.2 equiv TBSCN $(1c)\,,$ and no catalyst in DMF-d7.

 $R^2 = 0.9861$ $k_{eff} = 3.619 \times 10^{-2}$

 $t_{1/2} = 21.2 \text{ min}$

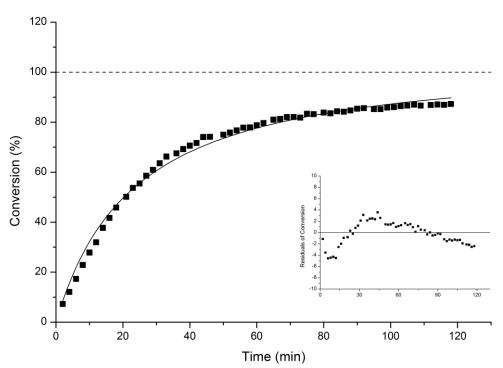


Figure S61 Second conversion vs time plot of 4b with 1.2 equiv of $Et_{3}N$ (3b), 1.2 equiv TBSCN (1c), and no catalyst in DMF-d7.

 $R^2 = 0.99096$ $k_{eff} = 3.802 \times 10^{-2}$ $t_{1/2} = 20.2$ min

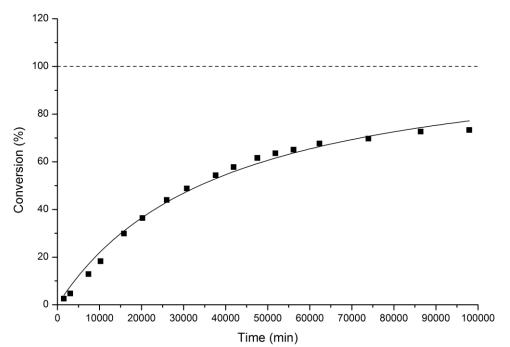


Figure S62 Conversion vs time plot of 4b with 1.2 equiv of Et_3N (3b), 1.2 equiv TBSCN (1c), and 10 mol% DMAP as catalyst in CDCl₃.

 $R^2 = 0.99029 \qquad k_{\text{eff}} = 2.283 \times 10^{-5} \qquad t_{1/2} = 33634.8 \text{ min}$

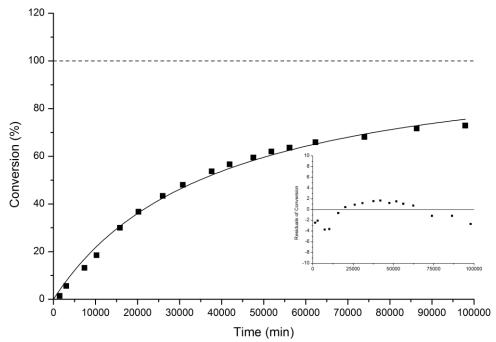
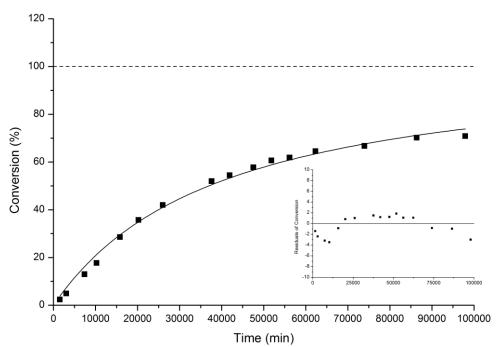
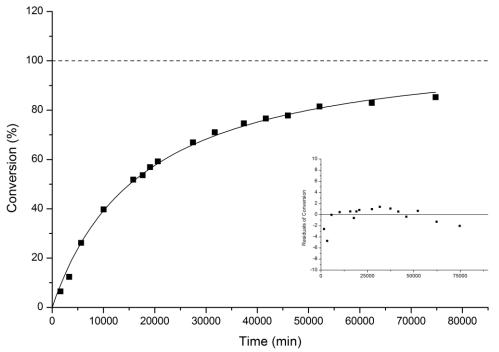
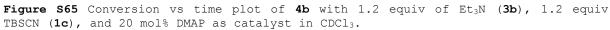


Figure S63 Second conversion vs time plot of 4b with 1.2 equiv of Et_3N (3b), 1.2 equiv TBSCN (1c), and 10 mol% DMAP as catalyst in CDCl₃.

 $R^2 = 0.99274$ $k_{eff} = 2.340 \times 10^{-5}$ $t_{1/2} = 32810.4$ min


Figure S64 Third conversion vs time plot of 4b with 1.2 equiv of $Et_{3}N$ (3b), 1.2 equiv TBSCN (1c), and 10 mol% DMAP as catalyst in CDCl3.

 $R^2 = 0.9932$

 $k_{eff} = 2.244 \times 10^{-5}$

 $t_{1/2} = 34212.9.0 \text{ min}$

 $R^2 = 0.99517$ $k_{eff} = 5.100 \times 10^{-5}$ $t_{1/2} = 15055.0$ min

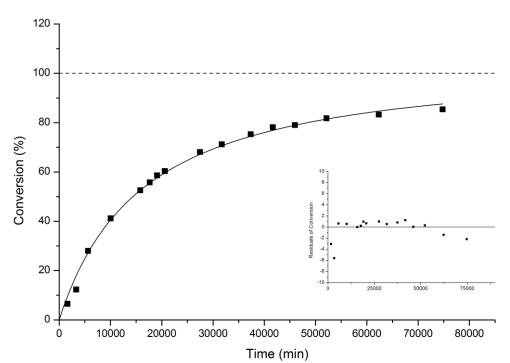


Figure S66 Second conversion vs time plot of 4b with 1.2 equiv of Et₃N (3b), 1.2 equiv TBSCN (1c), and 20 mol% DMAP as catalyst in CDCl₃.

 $R^2 = 0.9938$ $k_{eff} = 5.446 \times 10^{-5}$

 $t_{1/2} = 14098.8 \text{ min}$

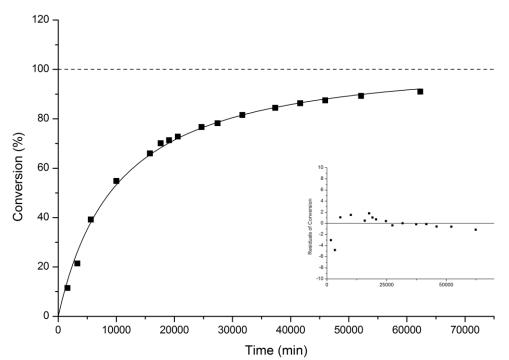
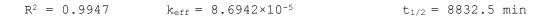



Figure S67 Conversion vs time plot of 4b with 1.2 equiv of Et₃N (3b), 1.2 equiv TBSCN (1c), and 30 mol% DMAP as catalyst in CDCl₃.

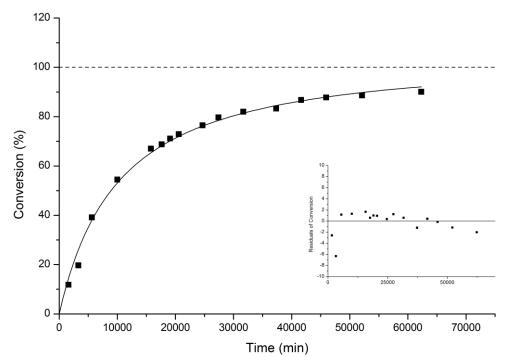


Figure S68 Second conversion vs time plot of 4b with 1.2 equiv of Et_3N (3b), 1.2 equiv TBSCN (1c), and 30 mol% DMAP as catalyst in CDCl_3.

 $R^2 = 0.9922$ $k_{eff} = 8.649 \times 10^{-5}$

 $t_{1/2} = 8878.4 \text{ min}$

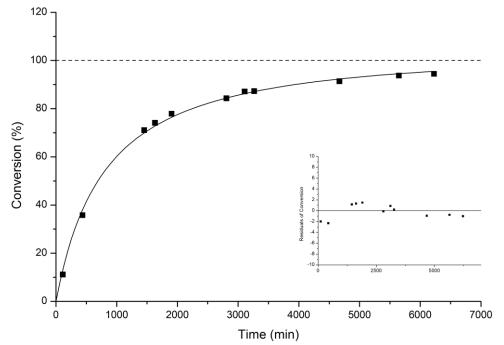


Figure S69 Conversion vs time plot of 4a with 1.2 equiv of Et_3N $(3b)\,,$ 1.2 equiv TBSCN $(1c)\,,$ and 1 mol% DMAP as catalyst in CDCl_3.

 $k_{eff} = 1.10 \times 10^{-3}$

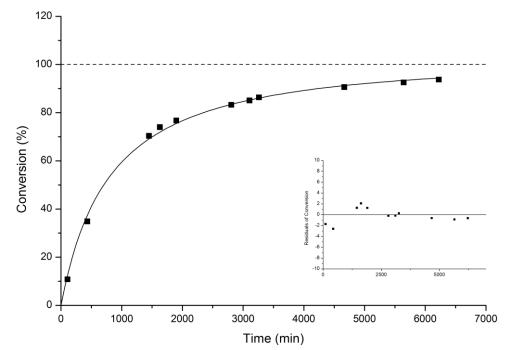


Figure S70 Second conversion vs time plot of 4a with 1.2 equiv of Et_{3}N (3b), 1.2 equiv TBSCN (1c), and 1 mol% DMAP as catalyst in CDCl3.

 $R^2 = 0.9969 \qquad k_{\text{eff}} = 1.10 \times 10^{-3} \qquad t_{1/2} = 698.1 \text{ min}$

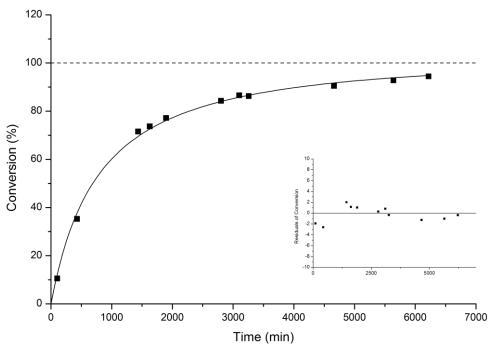


Figure S71 Third conversion vs time plot of 4a with 1.2 equiv of Et₃N (3b), 1.2 equiv TBSCN (1c), and 1 mol% DMAP as catalyst in CDCl₃.

 $R^2 = 0.9917 \qquad k_{\text{eff}} = 1.12 \times 10^{-3} \qquad t_{1/2} = 685.6 \text{ min}$

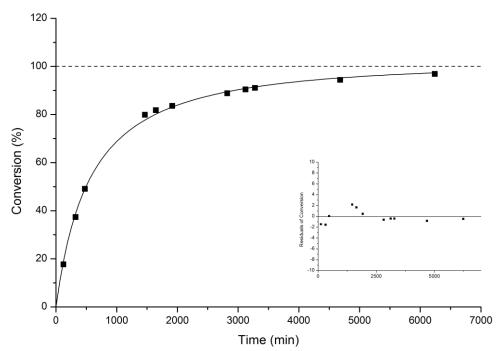


Figure S72 Conversion vs time plot of 4a with 1.2 equiv of Et₃N (3b), 1.2 equiv TBSCN (1c), and 2 mol% DMAP as catalyst in CDCl₃.

 $R^2 = 0.9978 \qquad k_{eff} = 1.56 \times 10^{-3} \qquad t_{1/2} = 492.2 \text{ min}$

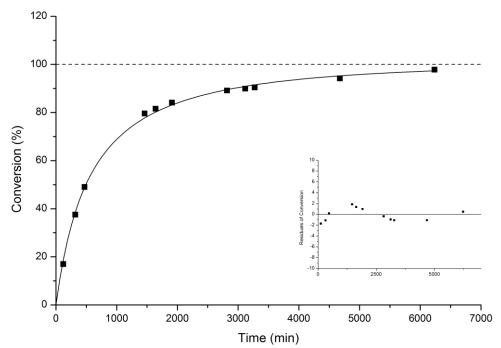


Figure S73 Second conversion vs time plot of 4a with 1.2 equiv of $Et_{3}N$ $(3b)\,,$ 1.2 equiv TBSCN $(1c)\,,$ and 2 mol% DMAP as catalyst in CDCl_3.

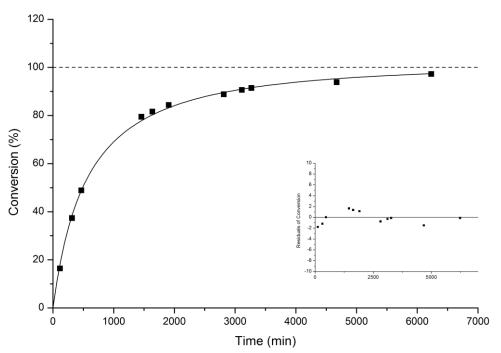


Figure S74 Third conversion vs time plot of 4a with 1.2 equiv of Et_3N (3b), 1.2 equiv TBSCN (1c), and 2 mol% DMAP as catalyst in $CDCl_3.$

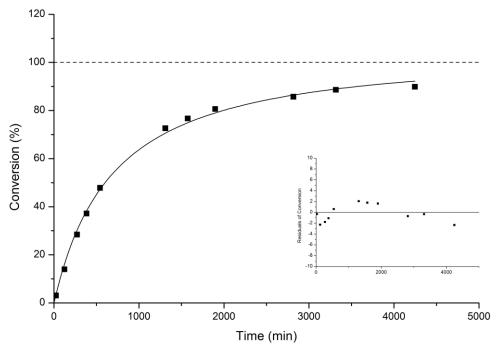



Figure S75 Conversion vs time plot of 4a with 1.2 equiv of $Et_{3}N$ $(3b)\,,$ 1.2 equiv TBSCN $(1c)\,,$ and 3 mol% DMAP as catalyst in CDCl_3.

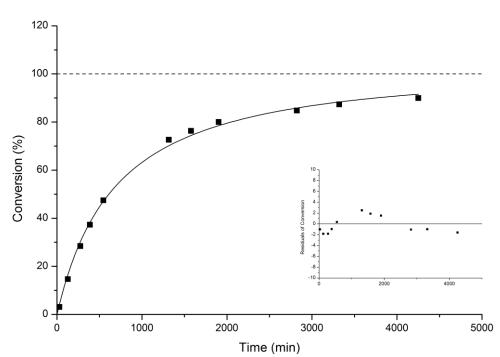


Figure S76 Second conversion vs time plot of 4a with 1.2 equiv of $Et_{3}N$ (3b), 1.2 equiv TBSCN (1c), and 3 mol% DMAP as catalyst in CDCl_3.

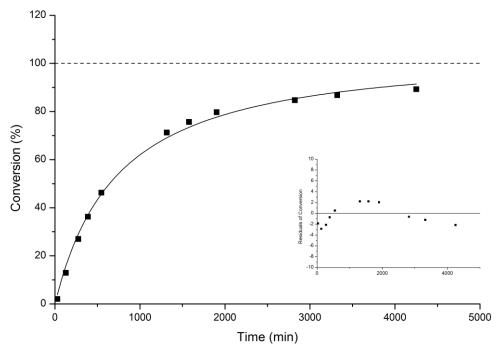
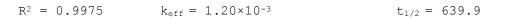



Figure S77 Third conversion vs time plot of 4a with 1.2 equiv of ${\rm Et}_{3}{\rm N}$ $(3b)\,,$ 1.2 equiv TBSCN $(1c)\,,$ and 3 mol% DMAP as catalyst in CDCl_3.

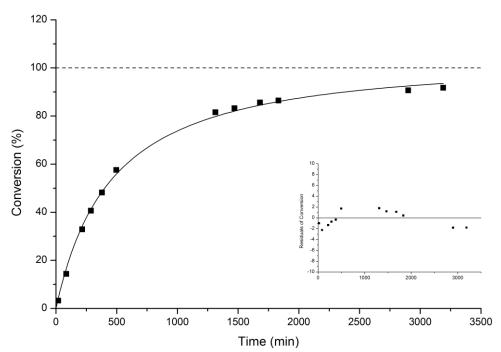


Figure S78 Conversion vs time plot of 4a with 1.2 equiv of Et₃N (3b), 1.2 equiv TBSCN (1c), and 4 mol% DMAP as catalyst in CDCl₃.

 $R^2 = 0.9975$ $k_{eff} = 1.92 \times 10^{-3}$

 $t_{1/2} = 399.9 \text{ min}$

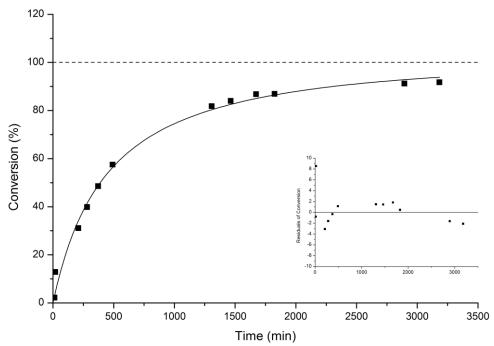


Figure S79 Second conversion vs time plot of 4a with 1.2 equiv of $Et_{3}N$ $(3b)\,,$ 1.2 equiv TBSCN $(1c)\,,$ and 4 mol% DMAP as catalyst in CDCl_3.

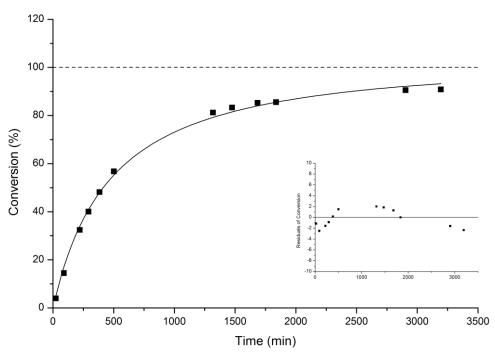


Figure S80 Third conversion vs time plot of 4a with 1.2 equiv of Et₃N (3b), 1.2 equiv TBSCN (1c), and 4 mol% DMAP as catalyst in CDCl₃.

 $R^2 = 0.9968$ $k_{eff} = 1.87 \times 10^{-3}$ $t_{1/2} = 410.6$ min

4.1.4 Measurements with MTBSTFA (1e)

Due to impurities in the reagent MTBSTFA (1e) in the region of the product in the NMR spectra at t=0, determined by a separate measurement in DMF-d7, the measured conversion is obtained too high (5 % yield enhancement) based on this impurity. Therefore, this amount was removed from the determined yield in order to correct this values. The yields with this reagent where obtained in a rather low area compared to the other reagents. This effect was only observed in DMF-d7 and was not found in CDCl₃.

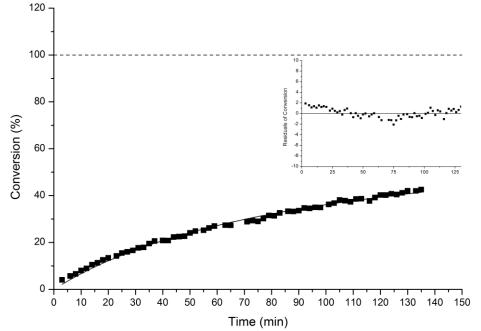


Figure S81 Conversion vs time plot of 4a with 1.2 equiv of Et₃N (3b), 1.2 equiv MTBSTFA (1e) and no catalyst in DMF-d₇.

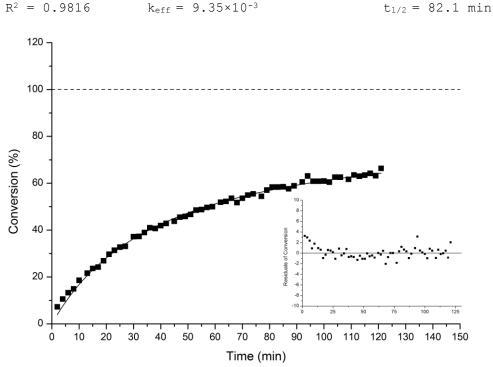


Figure S82 Second conversion vs time plot of 4a with 1.2 equiv of Et₃N (3b), 1.2 equiv MTBSTFA (1e), and no catalyst in DMF-d₇.

 $R^2 = 0.9778$ $k_{eff} = 2.177 \times 10^{-3}$

 $t_{1/2} = 35.3 \text{ min}$

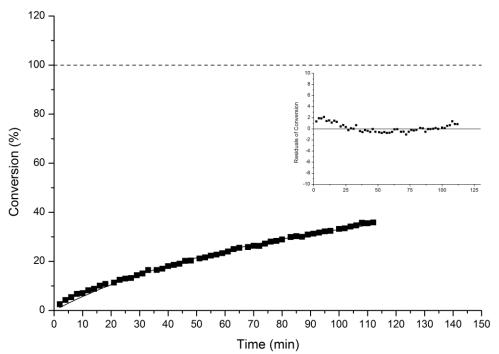


Figure S83 Conversion vs time plot of 4a with 1.2 equiv of Et₃N (3b), 1.2 equiv MTBSTFA (1e), and 30 mol% DMAP as catalyst in DMF-d₇.

 $R^2 = 0.9879$ $k_{eff} = 7.81 \times 10^{-3}$ $t_{1/2} = 98.3$ min

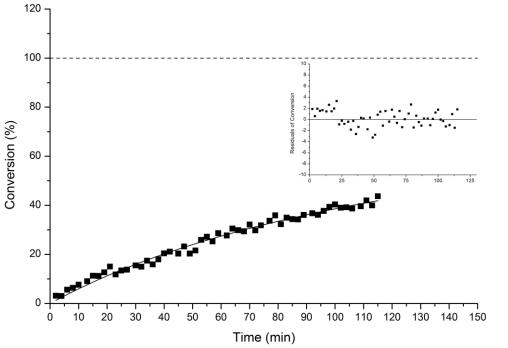


Figure S84 Second conversion vs time plot of 4a with 1.2 equiv of Et_3N (3), 1.2 equiv MTBSTFA (1e), and 30 mol% DMAP as catalyst in DMF-d7.

 $R^2 = 0.9804 \qquad k_{eff} = 1.337 \times 10^{-2} \qquad t_{1/2} = 57.4 \text{ min}$

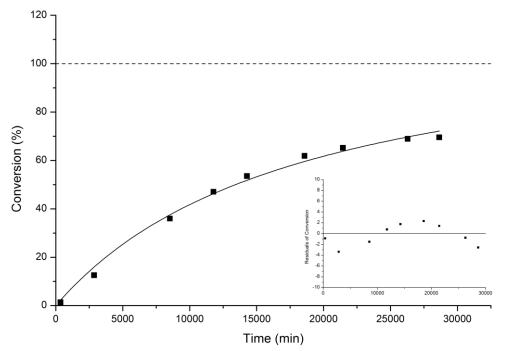
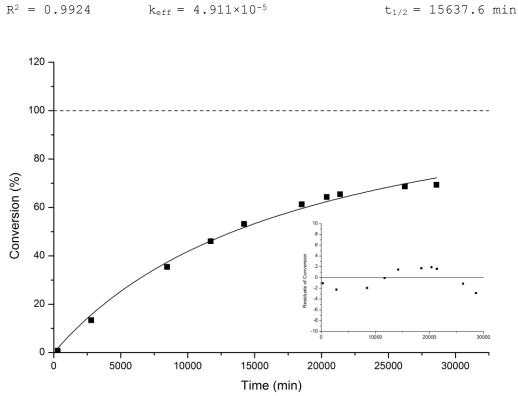



Figure S85 Conversion vs time plot of 4b with 1.2 equiv of Et_3N $(3b)\,,$ 1.2 equiv MTBSTFA $(1e)\,,$ and 30 mol% DMAP as catalyst in CDCl_3.

 $R^2 = 0.9924$

Figure S86 Second conversion vs time plot of 4b with 1.2 equiv of Et₃N (3b), 1.2 equiv MTBSTFA (1e), and 30 mol% DMAP as catalyst in CDCl₃.

 $R^2 = 0.9934$ $k_{eff} = 4.883 \times 10^{-5}$ $t_{1/2} = 15727.2 \text{ min}$ As already mentioned in the manuscript almost no conversion was observed with TBSImi (1d). Therefore the rates were estimated by comparing with the conversion for the slowest reagent (MTBSTFA, 1e).

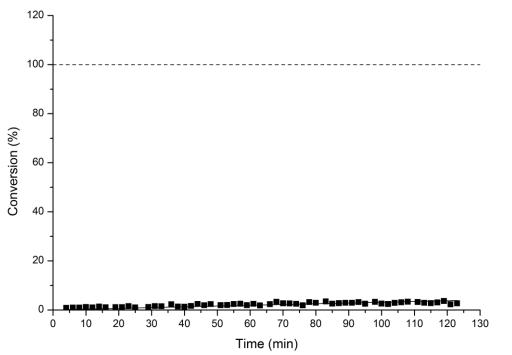


Figure S87 Conversion vs time plot of 4b with 1.2 equiv of Et_{3}N (3), 1.2 equiv TBSImi (1d), and no catalyst in DMF-d7.

Correlation with 1d leads to a rate of k_{eff} = $7.54 \times 10^{-4} \, \text{and} \, t_{1/2}$ = 1018.4.

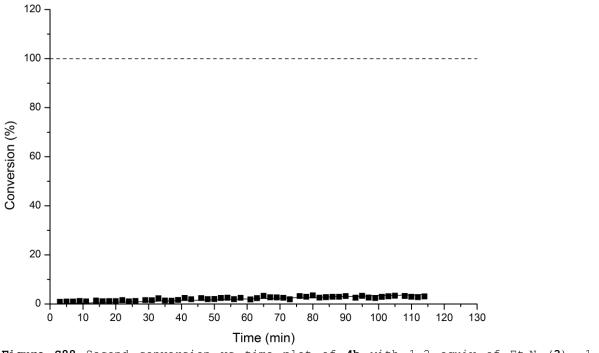


Figure S88 Second conversion vs time plot of 4b with 1.2 equiv of Et_3N $(3)\,,$ 1.2 equiv TBSImi $(1d)\,,$ and no catalyst in DMF-d7.

Correlation with 1d leads to a rate of $k_{\text{eff}}=7.79\times10^{-4}$ and $t_{1/2}=985.7.$

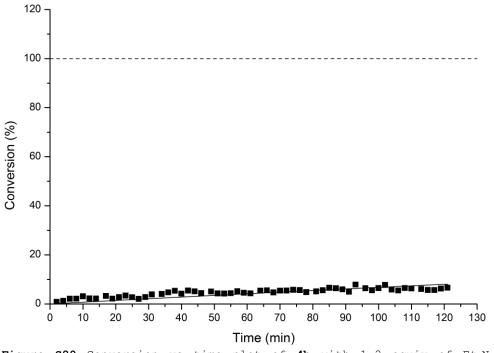


Figure S89 Conversion vs time plot of 4b with 1.2 equiv of Et₃N (3), 1.2 equiv TBSImi (1d), and 30 mol% DMAP as catalyst in DMF-d₇.

Correlation with 1d leads to a rate of k_{eff} = 9.03×10^{-4} and $t_{1/2}$ = 850.4.

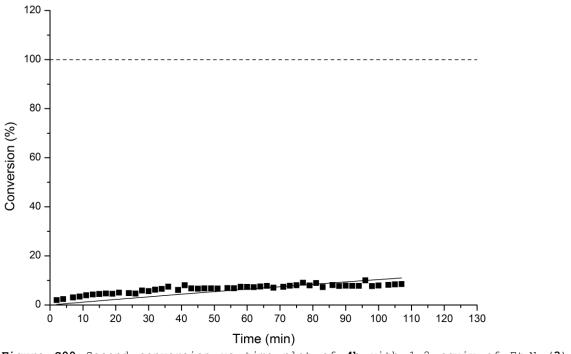


Figure S90 Second conversion vs time plot of 4b with 1.2 equiv of Et_{3}N (3), 1.2 equiv TBSImi (1d), and 30 mol% DMAP as catalyst in DMF-d7.

Correlation with 1d leads to a rate of k_{eff} = 1.19×10^{-3} and $t_{1/2}$ = 645.4.

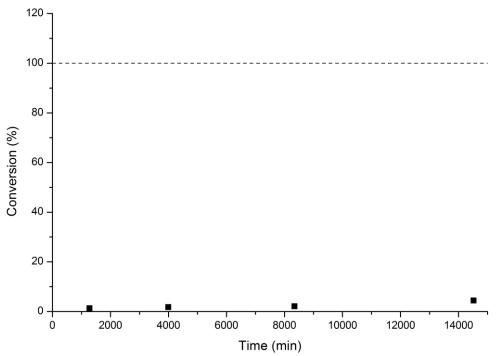


Figure S91 Conversion vs time plot of 4b with 1.2 equiv of Et₃N (3), 1.2 equiv TBSImi (1d), and 30 mol% DMAP as catalyst in CDCl₃.

Correlation with 1d leads to a rate of k_{eff} = 4.1×10^{-6} and $t_{1/2}$ = 1.84·10^{+6}.

4.2. Possible effects of autocatalysis

In order to understand the strong deviations of the plots for the measurement in DMF-d_7, an effort was made by using the tool CoPaSi to simulate the reaction rates. It became apparent that in polar solvents autocatalysis of the silyl reagent might be possible, which could explain the deviation of the fit for TBSCN, for instance. Using the reaction equations shown in Scheme ${f S1}$ for the example of TBSCN in DMF (Figure S59) leads to strong improvement of the fit.

[CAT] + [TBS-X]	$\frac{k_1}{k_{-1}}$	[CAT-TBS] + [X ⁻]
[CAT-TBS] + [ROH]		[Product] + [CAT-H ⁺]
[TBS-X] + [ROH] + [X ⁻]	k'₂ ►	[Product] + [HX] + [X ⁻]

[CAT-H⁺] + [Base] [CAT] + [BaseH⁺] Scheme S1. Equations used to describe the reaction mechanism for the silylation reaction.

k₃

For all simulations k_3 was chosen as a fixed value (k_3 = 100) and the starting values were chosen randomly by the program for all remaining rates $(k_1, k_{-1}, k_2 \text{ and } k'_2)$. All settings and initial concentration for CoPaSi are displayed in Table S7.

System	Initial Value
CAT (DMF)	12.9 M
ROH	0.20 M
TBS-X	0.24 M
Base	0.24 M
Volume	0.6 mL

The simulations for the obtained experimental data show a similar deviation as for the fitting function (S7). By adding the autocatalysis option with k'_2 the fit can be significantly improved as shown in Figure S91. Even though we know that an additional variable will improve any fit we still think that this is an option to describe the observed experimental data better.

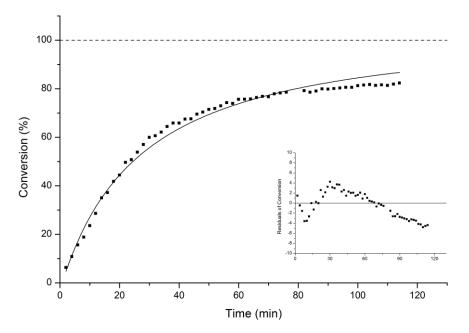


Figure S92 Simulation of TBSCN in DMF-d7 with CoPaSi.

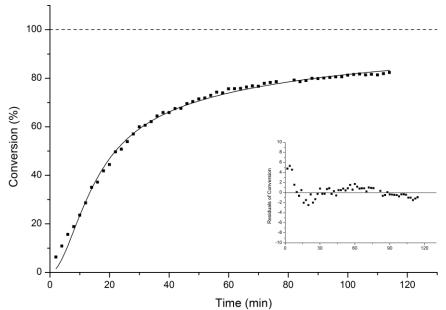
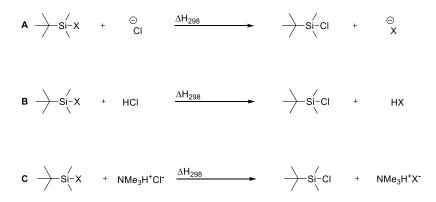


Figure S93 Simulation of TBSCN in DMF-d7 with CoPaSi and an autocatalysis option.

Furthermore, one can obtain the amount of autocatalysis based on the experimental data in this reaction. All other reagents were evaluated under the same conditions and lead to the results in Table S8. It seems that only cyanide has a quite large amount of autocatalysis present during the reaction.


Table S8. Simulated k-values by CoPaSi for the reaction of alcohol 4b with TBSCN (1c).

System	k1	k-1	k ₂	k ₂ ′
CN	9.962E-02	7.344E-02	1.649E-01	n.d.
CN-Auto	1.811E-03	2.266E-01	2.780E-06	5.994

5) Computational Methods

5.1 Methods and data sheets

The energies have been calculated as the reaction enthalpy at 298.15 K and 1 atm pressure for the exchange reaction for the counterion shown in Figure S91. We focused on the most common TBS group as the system of choice.

X = OTf, OCIO₃, MeNCOCF₃, N₃, CN, Imi

Figure S94. Counterion transfer reaction show for A) Counterion only, B) Corresponding acid, and C) auxiliary base added.

All geometry optimizations and vibrational frequency calculations have been performed using the MPW1K hybrid functional in combination with the 6-31+G(d) basis set. Thermochemical corrections to 298.15 K have been calculated for all minima from unscaled vibrational frequencies obtained at this same level. The thermochemical corrections have been combined with single point energies calculated at the MP2(FC)/G3MP2large// MPW1K/6-31+G(d) level to yield enthalpies H₂₉₈ at 298.15 K. In conformationally flexible systems enthalpies have been calculated as Boltzmann-averaged values over all available conformers. All quantum mechanical calculations have been performed with Gaussian 09.^[1]

Table S6. Stabilization energies for silylation reagents in various reactions relative to TBSCl (gas phase data).

Reagent		A	В	С	Δ H _{Rxn}
	1d	+33.44	-30.83	-9.18	+74.20
TBS-CN	1c	+28.75	-51.73	-21.87	+54.35
TBS-N ₃	1f	+5.47	-7.62	+10.90	+33.89
TBS-CI	1a	0.00	0.00	0.00	0.00
	1e	-6.35	-60.61	-26.66	+37.86
TBS O=CI=O Ö	1g	-108.17	+20.62	-35.38	-65.32
TBS O=S=O CF ₃	1b	-136.26	+29.93	-38.98	-54.33

In Table S7 the raw data for the silyl compounds (_sil) with various leavings groups will be shown, as well as, all counterions (_-) and protonated species (_H). The counterion in combination with the auxiliary base will be marked aux_f for frontside. If more than one conformer was obtained the energy was Boltzmann averaged.

MPW1K/6-31+G(d)		MP2(FC)/G3MP2large// MPW1K/6-31+G(d)			
System	Etot	H ₂₉₈	Etot	H ₂₉₈	<h<sub>298></h<sub>
C1					
sil_01	-987.420180	-987.202751	-985.934319	-985.716891	
_	-460.276187	-460.273826	-459.770535	-459.768174	
_H	-460.802892	-460.792585	-460.302699	-460.292391	
_aux_f	-635.265133	-635.118645	-634.397798	-634.251311	
OTf					
sil_01	-1488.456837	-1488.203145	-1486.496515	-1486.242823	-1486.242562
sil_02	-1488.455451	-1488.201786	-1486.495424	-1486.241759	
	-961.381927	-961.346825	-960.380846	-960.345744	
_H	-961.840083	-961.790878	-960.855869	-960.806663	
_aux_f	-1136.321386	-1136.136398	-1134.976816	-1134.791828	
0C103	1007 005000	1007 567004	1000 110407	1005 001570	-1285.881346
sil 01 sil 02	-1287.805800	-1287.567884 -1287.565218	-1286.119487 -1286.117697	-1285.881572 -1285.879693	-1285.881346
	-760.710805	-760.689910	-759.994724	-759.973830	
H	-761.190301	-761.156741	-760.482554	-760.448993	
aux f	-935.673252	-935.503926	-934.598569	-934.429243	
MeNCOCF3	555.075252	555.505520	554.550505	551.125215	
sil 01	-1072.662903	-1072.367468	-1071.029448	-1070.734012	-1070.733885
sil 02	-1072.658548	-1072.362809	-1071.026837	-1070.731098	
- 01	-545.522667	-545.446119	-544.864137	-544.787589	-544.787589
- 02	-545.505921	-545.429693	-544.848974	-544.772746	
Н 01	-546.086672	-545.995938	-545.423208	-545.332474	
н 02	-546.079856	-545.988150	-545.416836	-545.325129	-545.3324712
aux f	-720.527281	-720.302403	-719.503338	-719.278459	
N3					
sil 01	-691.314247	-691.082779	-690.133221	-689.901753	-689.9018287
sil 02	-691.314104	-691.082487	-690.133512	-689.901894	
	-164.160981	-164.145990	-163.966021	-163.951030	
	-164.712883	-164.686394	-164.506718	-164.480230	
aux f	-339.160846	-339.000931	-338.592011	-338.432096	
	559.100040	559.000951	330.392011	550.452090	
sil 01	-752.743078	-752.460834	-751.379385	-751.097142	-751.0971401
sil 02	-752.743077	-752.460830	-751.379386	-751.097138	/01/00/1101
	-225.582617	-225.518414	-225.199891	-225.135689	
H	-226.153471	-226.074914	-225.762941	-225.684384	
_ aux f	-400.599879	-400.387971	-399.846963	-399.635055	
CN					
sil 01	-619.977791	-619.752387	-618.857927	-618.632524	
	-92.817228	-92.808869	-92.681217	-92.672858	
_	-93.384897	-93.364434	-93.248191	-93.227728	
_H	-267.830402	-267.677139	-267.328534	-267.175272	
_aux_f	-207.030402	-207.077139	-207.320334	-207.173272	520 2516667
4b					-538.3516667
_01	-539.599653	-539.372802	-538.579167	-538.352316	
_02	-539.598979	-539.372055	-538.578495	-538.351571	
_03	-539.598168	-539.371234	-538.577429	-538.350495	
_04	-539.597667	-539.370947	-538.577029	-538.350309	
05	-539.596649	-539.369859	-538.575661	-538.348871	
06	-539.595512	-539.368823	-538.576732	-538.350044	
07	-539.595179	-539.368411	-538.575238	-538.348470	
					-1063.779233

Table S9 Data for various silyl compounds with different leaving groups and their anion and protonated adducts (gas phase data).

	MPW1K/6-31+G(G(d) MP2(FC)/G3MP2large// MPW1K/6-31+G(d)			
System	Etot	H ₂₉₈	Etot	H ₂₉₈	<h<sub>298></h<sub>
01	-1066.202182	-1065.771607	-1064.209301	-1063.778726	
02	-1066.201693	-1065.770970	-1064.210703	-1063.779979	
03	-1066.201319	-1065.770848	-1064.208978	-1063.778507	
04	-1066.201216	-1065.770565	-1064.209273	-1063.778622	
05	-1066.200263	-1065.769619	-1064.208587	-1063.777943	
06	-1066.199730	-1065.769097	-1064.208500	-1063.777867	
_07	-1066.197458	-1065.766864	-1064.205506	-1063.774912	
Me ₃ N					
_01	-174.433383	-174.302577	-174.067320	-173.936515	

Table S10 Counterion transfer (in kJ/mol) for various groups relative to chloride (gas phase data).

	(MPW1K/6-31+G(d))		(MP2(FC)/G3MP2large// MPW1K/6-31+G(d))	
System	Etot	H ₂₉₈	$\mathbf{E}_{\mathtt{tot}}$	H ₂₉₈
OTf	-181.38	-190.62	-126.33	-136.26
OC103	-128.64	-133.77	-102.45	-108.17
MeNCOCF3	-9.86	-19.89	+4.01	-6.35
Chloride	0.00	0.00	0.00	0.00
N3	+24.35	+20.65	+8.97	+5.47
CN	+43.50	+38.31	+33.94	+28.75
Imi	+43.24	+35.43	+41.25	+33.44

Table S11 Counterion transfer of protonated adducts (in kJ/mol) for various groups relative to chloride (gas phase data).

	(MPW1K/6-3	(MPW1K/6-31+G(d))		(MP2(FC)/G3MP2large// MPW1K/6-31+G(d))	
System	Etot	H ₂₉₈	Etot	H 298	
MeNCOCF3	-107.79	-101.44	-66.64	-60.61	
CN	-64.04	-58.32	-57.46	-51.73	
Imi	-72.68	-63.66	-39.85	-30.83	
N3	-41.80	-36.18	-13.44	-7.62	
Chloride	0.00	0.00	0.00	0.00	
OC103	-4.70	+2.57	+13.95	+20.62	
OTf	-1.40	+5.52	+23.70	+29.93	

Table S12 Counterion transfer of protonated adducts with auxiliary base (frontside) for various groups relative to chloride (gas phase data).

	(MPW1K/6-31+G(d))		(MP2(FC)/G3MP2large// MPW1K/6-31+G(d))	
System	Etot	H ₂₉₈	Etot	H ₂₉₈
OTf	-51.45	-45.58	-44.17	-38.98
OC103	-59.07	-52.90	-40.96	-35.38
MeNCOCF3	-51.00	-49.99	-27.34	-26.66
CN	-20.11	-23.26	-18.72	-21.87
Imi	-31.11	-29.52	-10.76	-9.18
Chloride	0.00	0.00	0.00	0.00
N3	-4.32	-5.93	+12.31	+10.90

	MP2(FC)/G3MP2large //MPW1K/6-31+G(d)	$ \Delta H_{298} (MP2(FC)/G3MP2large//MPW1K/6-31+G(d)) + \Delta G_{sol} \\ (SMD/MPW1K/6-31+G(d)) $				
System	H ₂₉₈	ΔG_{solv}	Δ H ₂₉₈ (Solv)	<h298> (Solv)</h298>		
C1						
sil 01	-985.716891	-0.008920	-985.725811	-985.725811		
_	-459.768174	-0.086198	-459.854372			
H	-460.292391	-0.005357	-460.297748			
aux f	-634.251311	-0.029104	-634.280414			
OTf						
sil 01	-1486.242823	-0.008960	-1486.251783	-1486.251526		
	-1486.241759	-0.009027	-1486.250786			
_	-960.345744	-0.061979	-960.407723			
H	-960.806663	-0.006630	-960.813293			
_aux_f	-1134.791828	-0.025090	-1134.816918			
0C103						
_sil_01	-1285.881572	-0.008845	-1285.890417	-1285.890204		
02	-1285.879693	-0.008707	-1285.888400			
_	-759.973830	-0.067365	-760.041195			
H	-760.448993	-0.006532	-760.455525			
_aux_f	-934.429243	-0.028361	-934.457603			
MeNCOCF3						
_sil_01	-1070.734012	-0.010640	-1070.744652	-1070.744429		
_sil_02	-1070.731098	-0.011651	-1070.742749			
01	-544.787589	-0.069708	-544.857297	-544.8572966		
02	-544.772746	-0.072107	-544.844852			
_H_01	-545.332474	-0.009110	-545.341584	-545.3415801		
_H_02	-545.325129	-0.009329	-545.334459			
_aux_f	-719.278459	-0.010000	-719.288459			
N3						
_sil_01	-689.901753	-0.004158	-689.905911	-689.905873		
_sil_02	-689.901894	-0.003938	-689.905832			
_	-163.951030	-0.075854	-164.026884			
_H	-164.480230	-0.000498	-164.480728			
_aux_f	-338.432096	-0.004678	-338.436774			
Imi						
_sil_01	-751.097142	-0.018229	-751.115371	-751.1153694		
_sil_02	-751.097138	-0.018229	-751.115368			
anion	-225.135689	-0.083254	-225.218943			
Н	-225.684384	-0.016972	-225.701356			
_aux_f	-399.635055	-0.020082	-399.655137			
CN						
_sil_01	-618.632524	-0.008615	-618.641138			
	-92.672858	-0.084393	-92.757251			
_H	-93.227728	-0.004940	-93.232668			
_aux_f	-267.175272	-0.007549	-267.182821			
4b				-538.3704566		
_01	-538.352316	-0.018952	-538.371267			
_02	-538.351571	-0.018269	-538.369840			
_03	-538.350495	-0.018890	-538.369385			
04	-538.350309	-0.018851	-538.369160			
_05	-538.348871	-0.019947	-538.368818			
06	-538.350044	-0.019521	-538.369565			
07	-538.348470	-0.020320	-538.368790			

 ${\bf Table~S13}$ Data for ${\it N}-{\rm heterocycles}$ and their TBS adducts. Gas phase calculation with additional SMD values in ${\rm CHCl}_3$

	MP2(FC)/G3MP2large //MPW1K/6-31+G(d)	$ \Delta H_{298} (MP2(FC)/G3MP2large//MPW1K/6-31+G(d)) + \Delta G_{solv} \\ (SMD/MPW1K/6-31+G(d)) $			
System	H ₂₉₈	ΔG_{solv}	Δ H ₂₉₈ (Solv)	<h298> (Solv)</h298>	
5Ъ				-1063.798615	
01	-1063.778726	-0.020040	-1063.798766		
02	-1063.779979	-0.019165	-1063.799144		
03	-1063.778507	-0.019898	-1063.798405		
04	-1063.778622	-0.019782	-1063.798404		
05	-1063.777943	-0.019520	-1063.797463		
06	-1063.777867	-0.019199	-1063.797066		
_07	-1063.774912	-0.020758	-1063.795670		
 Me3N					
01	-173.936515	-0.006626	-173.943141		

$$\rightarrow$$
 sí-x + $\stackrel{\odot}{cl}$ $\xrightarrow{\Delta H_{298}}$ \rightarrow sí-cl + $\stackrel{\odot}{x}$

Table S14 Counterion transfer (in kJ/mol) for various groups relative to chloride (gas and solution phase data).

	MP2(FC)/G3MP2large// MPW1K/6-31+G(d)	$ \begin{array}{l} \Delta H_{298} & (MP2(FC)/G3MP2large//MPW1K/6-31+G(d)) \\ + \Delta G_{solv} & (SMD/MPW1K/6-31+G(d)) \end{array} $
System	ΔH_{298} (Gas)	ΔH ₂₉₈ (Sol)
OTf	-136.26	-72.56
OC103	-108.17	-58.89
MeNCOCF ₃	-6.35	+41.20
Chloride	0.00	0.00
N ₃	+5.47	+19.83
CN	+28.75	+32.68
Imi	+33.44	+65.61

$$\rightarrow$$
 S(-X + HCI $\xrightarrow{\Delta H_{298}}$ \rightarrow \rightarrow S(-CI + HX

Table S15 Counterion transfer of protonated adducts (in kJ/mol) for various groups relative to chloride (gas and solution phase data).

	MP2(FC)/G3MP2large// MPW1K/6-31+G(d)	$ \Delta H_{298} (MP2(FC)/G3MP2large//MPW1K/6-31+G(d)) + \Delta G_{\text{solv}} (SMD/MPW1K/6-31+G(d)) $
System	ΔH ₂₉₈ (Gas)	ΔH ₂₉₈ (Sol)
MeNCOCF3	-60.61	-66.20
CN	-51.73	-51.44
Imi	-30.83	-36.89
N ₃	-7.62	-7.66
Chloride	0.00	0.00
OC103	+20.62	+17.37
OTf	+29.93	+26.70

 $NMe_3H^+C\Gamma \xrightarrow{\Delta H_{298}} Si^-CI + NMe_3H^+X^-$

Table S16 Counterion transfer of protonated adducts with auxiliary base (frontside) for various groups relative to chloride (gas and solution phase data).

	MP2(FC)/G3MP2large// MPW1K/6-31+G(d)	$ \begin{array}{l} \Delta H_{298} (MP2(FC)/G3MP2large//MPW1K/6-31+G(d)) \\ + \Delta G_{\text{solv}} (SMD/MPW1K/6-31+G(d)) \end{array} $		
System	ΔH ₂₉₈ (Gas)	ΔH ₂₉₈ (Sol)		
OTf	-38.98	-28.33		
OC103	-35.38	-33.59		
MeNCOCF ₃	-26.66	+27.76		
CN	-21.87	+33.92		
Imi	-9.18	+38.95		
Chloride	0.00	0.00		
N ₃	+10.90	+62.23		

In addition we calculated the effect of the leaving group for the reaction enthalpy for alcohol 4b. The data in Table S14 show that the reaction of TBSCl (1a) is slightly exothermic under these conditions. However, the addition of SMD solvation energies leads to an almost thermoneutral reaction for TBSCl (1a). This data shows that a reaction with any catalyst or auxiliary base is not possible for the chloride. In Table S15 trimethylamine was added as auxiliary base and changed the driving force of the reaction in the matter that for all reagents the reaction should be exothermic. For TBSCl (1a) this reaction yielded in -66.88 kJ mol⁻¹ for the gas phase and -104.02 kJ mol⁻¹ with SMD correction. The data is consistent for the other reagents in terms that faster reagents have a better stabilization than TBSCl (1a). For instance TBSOTf (1b) led to -132.35 kJ mol⁻¹, while TBSCN (1c) was found at -70.10 kJ mol⁻¹ which in accordance to the experimental data. However, these calculation show a good number of -65.07 kJ mol⁻¹ for TBS-Imi (1d), which was not reacting in the experiments at all. Even though one needs to admit that the number cannot directly be correlated to the experimental data, the general trend and the order of appearance is good.

Table S17 Reaction enthalpies for the silylation of alcohol 4b with various silyl reagents. (gas and solution phase data).

	(MPW1K/6	(MPW1K/6-31+G(d))		(MP2(FC)/G3MP2large// MPW1K/6-31+G(d))	
System	$\mathbf{E}_{\mathtt{tot}}$	H ₂₉₈	Etot	H ₂₉₈ (Gas)	H ₂₉₈ (Sol)
MeNCOCF3	-69.04	-71.61	-62.73	-68.66	-66.45
CN	-25.29	-28.49	-53.55	-59.78	-51.69
Imi	-33.93	-33.83	-35.94	-38.88	-37.14
N3	-3.05	-6.35	-9.53	-15.67	-7.91
Cl	+38.75	+29.83	+3.91	-8.05	-0.25
OC103	+34.05	+32.39	+17.85	+12.57	+17.12
OTf	+37.35	+35.34	+27.60	+21.88	+26.45

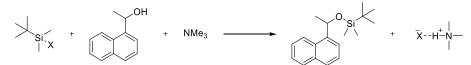


Table S18 Reaction enthalpies for the silylation of alcohol 4b with various silyl reagents and auxiliary base trimethylamine (gas and solution phase data).

	(MPW1K/6-3	81+G(d))	(MP2(FC)/G3		SMD
O and the set	+		MPW1K/6-31+G(d))		
System	Etot	H ₂₉₈	\mathbf{E}_{tot}	H ₂₉₈ (Gas)	H ₂₉₈ (Sol)
OTf	-88.47	-77.40	-113.20	-105.85	-132.35
OC103	-96.09	-84.72	-109.99	-102.26	-137.62
MeNCOCF ₃	-88.02	-81.82	-96.36	-93.54	-76.26
CN	-57.12	-55.08	-87.74	-88.74	-70.10
Imi	-68.12	-61.34	-79.79	-76.05	-65.07
Cl	-37.02	-31.83	-69.03	-66.88	-104.02
N ₃	-41.34	-37.75	-56.72	-55.97	-41.79

		(MP2(FC)/G3MP2large// MPW1K/6-31+G(d)) + SMD	
System	No Me ₃ N	With Me ₃ N	
OTf	+26.45	-132.35	
OClO ₃	+17.12	-137.62	n.d.
MeNCOCF ₃	-66.45	-76.26	
CN	-51.69	-70.10	
Imi	-37.14	-65.07	
Cl	-0.25	-104.02	
N ₃	-7.91	-41.79	n.d.

The influence of the auxiliary base in form of trimethylamine is depicted in the following two figures (S95, S96), where the negative driving forces through a free proton is compensated with Me_3N . This effect can be observed for silyl triflate (**1b**) very strongly.

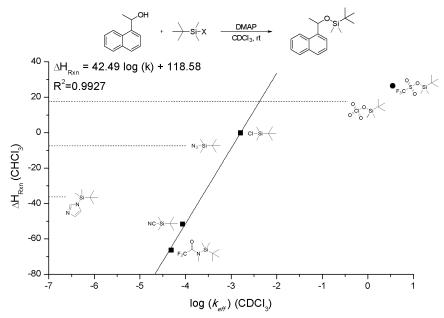


Figure S95. Correlation of silyl compounds with ΔH_{RXN} (CDCl_3) without any auxiliary base.

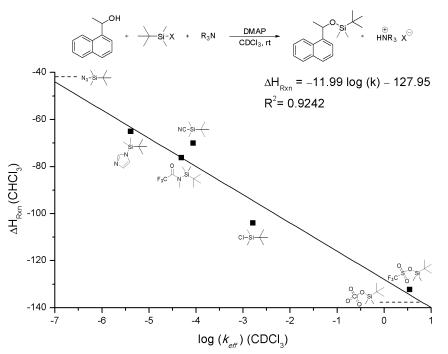


Figure S96. Correlation between reaction rate and ΔH_{RXN} with an auxiliary base.

Finally, we display the obtained NPA- and Mulliken-charges for the silyl groups, which do not help to find a better correlation between calculations and experiment (Table S20).

	Si-X	NPA-Charges		Mulliken Charges	
TBS-X		Si	TBS-Group	Si	TBS-Group
Cl (1a)	2.0891	1.76864	0.41479	0.74936	0.17595
CN (1c)	1.8740	1.72526	0.47288	1.35259	0.68226
MTBSTFA (1d)	1.8099	2.00038	0.63221	0.89480	0.37368
IMI (1e)	1.7869	2.00954	0.65118	0.92245	0.43839
N ₃ (1f)	1.7719	1.94482	0.58885	1.16686	0.41839
OClO ₃ (1g)	1.7621	2.05146	0.69920	1.15282	0.47807
OTf (1b)	1.7502	2.06406	0.70114	1.04969	0.44573

Table S20. Charge of silicon and TBS-groups (Best conformer).

5.2. Structures of all Systems

(Optimized at MPW1K/6-31+G(d) level)

Chloride (Cl)

_sil_01

1\1\GINC-PHOENIX\SP\RMP2-FC\GTMP2large\C6H15Cl1Si1\PASCAL\25-Jun-2014\ 0\\#p MP2(FC)/GTMP2large scf=tight int=finegrid geom=check guess=read\ \Title Card Required\\0,1\Si,0,-0.6356079766,-0.1199224582,-0.00346922 14\C,0,0.0099138692,0.6802903914,1.5572887953\H,0,-0.3211036688,1.7163 487686,1.6376186982\H,0,-0.3579384483,0.1459339022,2.4329261043\H,0,1. 0981307189,0.667795426,1.5964740091\C,0,0.0385256166,0.6988376812,-1.5 742822082\C,0,-2.5025066275,-0.2050557452,0.0176599657\H,0,-2.89160355 41,-0.738946366,-0.8480626305\H,0,-2.8443032533,-0.7294591068,0.909721 6912\H,0,-2.9446685239,0.7918407027,0.0290043256\C,0,-0.4493189519,2.1 488713629,-1.6117494745\H,0,-0.0731211693,2.644472103,-2.5103085783\H, 0,-1.5375035348,2.2172435101,-1.6391751089\H,0,-0.096109756,2.72500392 47,-0.7556635397\C,0,-0.4686488142,-0.0344334584,-2.8148285795\H,0,-0. 0742636496,0.4414583712,-3.7164782342\H,0,-0.1516866928,-1.0768894383, -2.8277066068\H,0,-1.5564783687,-0.0130757954,-2.8877083206\C,0,1.5661 469962,0.6823005819,-1.5680033317\H,0,1.9606925709,-0.3328228405,-1.53 32074461\H,0,1.9478311764,1.1535626712,-2.4775159857\H,0,1.9787041613, 1.2323375795,-0.7216064093\Cl,0,0.0440284901,-2.0951755179,0.023264465 9\\Version=AM64L-G09RevC.01\State=1-A\HF=-984.568189\MP2=-985.9343194\ RMSD=5.075e-09\PG=C01 [X(C6H15Cl1Si1)]\\@

_-_01

 $\label{eq:log_large_la$

_H_01

1\1\GINC-EVGENIX\SP\RMP2-FC\GTMP2large\Cl1H1\ROOT\24-Jun-2014\0\\#p MP 2(FC)/GTMP2large scf=tight int=finegrid geom=check guess=read\\Title C ard Required\\0,1\Cl,0,-0.8418776634,-0.20300752,0.\H,0,-2.1172952166, -0.20300752,0.\\Version=AM64L-G09RevC.01\State=1-SG\HF=-460.1012637\MP 2=-460.3026985\RMSD=2.674e-09\PG=C*V [C*(H1Cl1)]\\@

_aux_f

1\1\GINC-PHOBOS\SP\RMP2-FC\GTMP2large\C3H10Cl1N1\ROOT\21-Jun-2014\0\\#
p MP2(FC)/GTMP2large scf=tight int=finegrid\\Title Card Required\\0,1\
H,0,0.411315,0.002109,-0.001309\C,0,-1.132629,0.999086,0.986829\H,0,-0
.722022,1.961903,0.699921\H,0,-2.218527,1.055283,1.039423\H,0,-0.72560
9,0.722759,1.954189\C,0,-1.130999,-1.354579,0.372131\H,0,-2.216885,-1.
430084,0.39117\H,0,-0.72061,-2.053857,-0.349289\H,0,-0.723194,-1.58675
5,1.350742\C,0,-1.133611,0.354741,-1.358398\H,0,-0.723027,1.328997,-1.
603519\H,0,-0.726997,-0.377136,-2.048935\H,0,-2.219541,0.37622,-1.4316
11\N,0,-0.721027,-0.000233,0.000166\C1,0,2.118571,0.000394,-0.000313\\
Version=AM64L-G09RevC.01\State=1-A\HF=-633.4461649\MP2=-634.3977981\RM
SD=2.235e-09\PG=C01 [X(C3H10C11N1)]\\@

_aux_b

1\1\GINC-PHOBOS\SP\RMP2-FC\GTMP2large\C3H10Cl1N1\ROOT\21-Jun-2014\0\\#
p MP2(FC)/GTMP2large scf=tight int=finegrid\\Title Card Required\\0,1\
H,0,-2.387146,-0.000068,-0.000983\C,0,-0.915938,-0.142535,-1.407968\H,
0,-1.298712,0.695645,-1.981672\H,0,0.176683,-0.141238,-1.385534\H,0,-1
.300522,-1.077642,-1.802735\C,0,-0.917288,-1.148274,0.827221\H,0,0.175
327,-1.130783,0.814699\H,0,-1.301656,-1.022112,1.83445\H,0,-1.30141,-2
.06363,0.388208\C,0,-0.917451,1.290733,0.580464\H,0,-1.301011,2.099528
,-0.033453\H,0,-1.302264,1.369003,1.59237\H,0,0.175116,1.271155,0.5724
01\N,0,-1.373003,-0.000057,-0.00027\C1,0,2.104746,0.000058,0.000343\\V
ersion=AM64L-G09RevC.01\State=1-A\HF=-633.4218933\MP2=-634.368122\RMSD

=1.892e-09\PG=C01 [X(C3H10Cl1N1)]\\@

Trifalte (OTf)

_sil_01

1\1\GINC-BORIX\SP\RMP2-FC\GTMP2large\C7H15F303S1Si1\ROOT\27-Jun-2014\0 \\#p MP2(FC)/GTMP2large scf=tight int=finegrid\\Title Card Required\\0 ,1\si,0,1.366922,0.565152,0.386091\0,0,-0.09273,0.065084,-0.440142\C,0 ,1.056276,0.411171,2.213825\H,0,1.940549,0.713223,2.776348\H,0,0.23432 2,1.058713,2.515517\H,0,0.807151,-0.608181,2.504454\C,0,1.697118,2.323 317,-0.12603\H,0,2.646528,2.672298,0.281823\H,0,1.738783,2.429992,-1.2 09188\H,0,0.914645,2.98268,0.247664\C,0,2.613611,-0.678691,-0.285414\C ,0,2.755304,-0.514941,-1.79846\H,0,3.120053,0.475937,-2.069875\H,0,3.4 74044,-1.241692,-2.185107\H,0,1.810853,-0.679463,-2.316231\C,0,3.96514 7,-0.417287,0.383335\H,0,3.920406,-0.543209,1.465894\H,0,4.708093,-1.1 24623,0.007191\H,0,4.342563,0.584764,0.174734\C,0,2.160267,-2.10383,0. 030251\H,0,1.199587,-2.335268,-0.428448\H,0,2.890005,-2.819335,-0.3568 16\H,0,2.073739,-2.279883,1.102841\S,0,-1.506965,0.697469,-0.445799\O, 0,-1.944325,0.921688,-1.789406\0,0,-1.608357,1.723059,0.55668\C,0,-2.4 51845,-0.75129,0.179689\F,0,-2.007971,-1.096584,1.374293\F,0,-3.72396, -0.424349,0.267862\F,0,-2.319043,-1.773171,-0.640324\\Version=AM64L-G0 9RevC.01\State=1-A\HF=-1483.5356709\MP2=-1486.4965148\RMSD=7.342e-09\P G=C01 [X(C7H15F3O3S1Si1)]\\@

_sil_02

1\1\GINC-BORIX\SP\RMP2-FC\GTMP2large\C7H15F303S1Si1\ROOT\27-Jun-2014\0 \\#p MP2(FC)/GTMP2large scf=tight int=finegrid\\Title Card Required\\0 ,1\si,0,-1.323524,0.814512,0.07137\0,0,0.171296,0.120579,-0.507587\C,0 *,*−1.074475,1.395226,1.820606*H*,0,−1.950034,1.954802,2.152838*H*,0,−0.90 6797,0.574299,2.513513\H,0,-0.215565,2.06267,1.885702\C,0,-2.648412,-0 .513146,-0.122833\s,0,1.249214,-0.803525,0.106857\0,0,1.447338,-1.9488 27,-0.728607\0,0,1.072073,-0.937177,1.525628\C,0,2.703502,0.293544,-0. 144588\F,0,2.516411,1.43889,0.486899\F,0,3.773831,-0.298867,0.341658\F ,0,2.881481,0.533885,-1.426635\C,0,-1.517753,2.242516,-1.106982\H,0,-2 .45225,2.775638,-0.930306\H,0,-0.70299,2.95432,-0.975525\H,0,-1.508004 ,1.914614,-2.145168\C,0,-2.749936,-0.942042,-1.586555\H,0,-3.518168,-1 .711482,-1.695118\H,0,-3.027823,-0.113766,-2.238659\H,0,-1.813537,-1.3 61393,-1.953842\C,0,-3.984605,0.085701,0.325879\H,0,-4.267122,0.9597,-0.26295\H,0,-4.780042,-0.653338,0.204185\H,0,-3.974042,0.375167,1.3774 51\C,0,-2.332225,-1.734567,0.739637\H,0,-1.419264,-2.23784,0.423747\H, 0,-2.226739,-1.483274,1.794738\H,0,-3.143461,-2.462048,0.65675\\Versio n=AM64L-G09RevC.01\State=1-A\HF=-1483.5344697\MP2=-1486.495424\RMSD=1. 801e-09\PG=C01 [X(C7H15F3O3S1Si1)]\\@

_-_01

1\1\GINC-STEAK\SP\RMP2-FC\GTMP2large\C1F303S1(1-)\ROOT\26-Jun-2014\0\\
#p MP2(FC)/GTMP2large scf=tight int=finegrid geom=check guess=read\\Ti
tle Card Required\\-1,1\0,0,2.0160338004,0.7415411506,0.6374862742\S,0
,1.6168286449,-0.575347112,0.1593462258\0,0,2.2793246477,-1.0040554643
,-1.0647588599\0,0,-0.2586596442,-0.1637666477,-0.7227408683\C,0,-1.25
95820229,0.1515703534,-0.0225118894\F,0,-1.5013399025,1.4941177894,0.0
849759742\F,0,-2.4437276443,-0.3520788623,-0.4967210814\F,0,-1.2194723
291,-0.277128447,1.2814681648\\Version=AM64L-G09RevC.01\State=1-A\HF=
958.5704982\MP2=-960.3808465\RMSD=5.268e-09\PG=C01 [X(C1F303S1)]\@

_H_01

1\1\GINC-BORIX\SP\RMP2-FC\GTMP2large\C1H1F303S1\ROOT\22-Jun-2014\0\\#p
MP2(FC)/GTMP2large scf=tight int=finegrid geom=check guess=read\\Titl
e Card Required\\0,1\\$,0,-1.4378532967,-2.3927193446,0.9542060886\0,0,
-1.4598515509,-3.6152972185,0.2234477867\0,0,-2.0156303576,-1.16820322
73,0.4854921145\C,0,-2.1671732947,-2.728114821,2.6115092205\F,0,-1.963
963654,-1.6817226642,3.3907413244\F,0,-3.4585208124,-2.9292732616,2.47

48024308\F,0,-1.6068051656,-3.7870161556,3.1486563553\0,0,0.0653614243 ,-2.1204806875,1.3930632619\H,0,0.2045745776,-1.1722593497,1.516919237 4\\Version=AM64L-G09RevC.01\State=1-A\HF=-959.0596646\MP2=-960.8558686 \RMSD=4.218e-09\PG=C01 [X(C1H1F303S1)]\\@

_aux_f

1\1\GINC-IBLIS\SP\RMP2-FC\GTMP2large\C4H10F3N103S1\LOCAL\26-Jun-2014\0
\\#p MP2(FC)/GTMP2large scf=tight int=finegrid\\Title Card Required\\0
,1\H,0,1.526302,-0.055863,0.475578\C,0,2.267584,1.277467,-0.90228\H,0,
1.856373,2.132548,-0.375873\H,0,3.218869,1.541541,-1.357544\H,0,1.5573
52,0.940307,-1.648803\C,0,2.96406,-1.037297,-0.608805\H,0,3.934682,-0.
838143,-1.0561\H,0,3.048929,-1.830175,0.127329\H,0,2.23805,-1.322717,1.362174\C,0,3.341576,0.584038,1.177073\H,0,2.904895,1.447332,1.668313
\H,0,3.40781,-0.234631,1.885983\H,0,4.330973,0.831744,0.801392\N,0,2.4
75753,0.181294,0.060145\0,0,0.15353,-0.43127,1.133686\S,0,-0.781726,-0
.825218,0.046101\0,0,-1.600698,-1.974955,0.32947\0,0,-0.116803,-0.7627
67,-1.254332\C,0,-1.941527,0.59884,0.01043\F,0,-2.833287,0.453952,-0.9
53232\F,0,-2.577994,0.722329,1.161538\F,0,-1.269306,1.727735,-0.213399
\\Version=AM64L-G09RevC.01\State=1-A\HF=-1132.43056\MP2=-1134.9768164\
RMSD=9.703e-09\PG=C01 [X(C4H10F3N103S1)]\\@

_aux_b

1\1\GINC-SOLARIS\SP\RMP2-FC\GTMP2large\C4H10F3N103S1\PASCAL\26-Jun-201 4\0\\#p MP2(FC)/GTMP2large scf=tight int=finegrid\\Title Card Required \\0,1\H,0,4.129068,-0.639361,-0.144588\C,0,2.439685,-1.426348,0.677667 \H,0,2.931587,-1.588539,1.631682\H,0,1.418108,-1.087757,0.832572\H,0,2 .470295,-2.331523,0.080284\C,0,2.617611,-0.159265,-1.419522\H,0,1.5799 2,0.172895,-1.353634\H,0,3.218638,0.590066,-1.925007\H,0,2.680776,-1.1 05035,-1.948249\C,0,3.143761,0.918444,0.723801\H,0,3.642352,0.751236,1 .673411\H,0,3.666143,1.679925,0.154199\H,0,2.102916,1.188872,0.886909\ N,0,3.160967,-0.350218,-0.049455\0,0,0.134086,0.533431,1.049062\S,0,-0 .861246,0.867309,0.014178\0,0,-1.76357,1.9471,0.33633\0,0,-0.279442,0. 873117,-1.32942\C,0,-1.913724,-0.640435,0.000832\F,0,-2.84821,-0.56919 1,-0.931363\F,0,-1.164371,-1.71848,-0.252447\F,0,-2.502887,-0.827857,1 .171291\\Version=AM64L-G09RevC.01\State=1-A\HF=-1132.4087999\MP2=-1134 .9510373\RMSD=8.549e-09\PG=C01 [X(C4H10F3N103S1)]\\@

Perchlorate (OC103)

sil 01

1\1\GINC-STEAK\SP\RMP2-FC\GTMP2large\C6H15Cl104Si1\ROOT\21-Jun-2014\0\ \#p MP2(FC)/GTMP2large scf=tight int=finegrid\\Title Card Required\\0, 1\C,0,-2.165183,-0.511479,-0.033192\C,0,-2.048909,-1.586758,1.046068\H ,0,-2.914252,-2.252535,1.000218\H,0,-1.156661,-2.19785,0.915857\H,0,-2 .022053,-1.160889,2.049244\C,0,-2.261812,-1.17655,-1.406159\H,0,-3.134 997,-1.832833,-1.437971\H,0,-2.376804,-0.447167,-2.208289\H,0,-1.38496 6,-1.784118,-1.626358\C,0,-3.42385,0.324458,0.213862\H,0,-4.305743,-0. 319839,0.18428\H,0,-3.414385,0.809249,1.191112\H,0,-3.564065,1.095287, -0.544993\C,0,-0.330525,1.347225,1.72091\H,0,0.565061,1.966879,1.71295 6\H,0,-1.163148,1.979034,2.033284\H,0,-0.193208,0.571953,2.472008\C,0, -0.658447,1.94182,-1.294804\H,0,-1.473875,2.651164,-1.149481\H,0,0.276 473,2.499259,-1.270919\H,0,-0.76352,1.50722,-2.287765\Si,0,-0.673757,0 .640672,0.034495\0,0,0.606814,-0.505511,-0.354627\Cl,0,2.152681,-0.275 966,-0.045235\0,0,2.409699,1.110125,-0.340987\0,0,2.81087,-1.187068,-0 .927267\0,0,2.322055,-0.591931,1.344479\\Version=AM64L-G09RevC.01\Stat e=1-A\HF=-1283.7620504\MP2=-1286.1194875\RMSD=6.950e-09\PG=C01 [X(C6H1 5Cl104Si1)]\\@

_sil_02

1\1\GINC-ANGIE\SP\RMP2-FC\GTMP2large\C6H15Cl104Si1\PASCAL\21-Jun-2014\
0\\#p MP2(FC)/GTMP2large scf=tight int=finegrid\\Title Card Required\\
0,1\C,0,1.749084,-0.781102,0.015227\C,0,1.40934,2.026247,-1.330643\H,0

,2.418549,2.372047,-1.10602\H,0,1.419576,1.565971,-2.317011\H,0,0.7617 51,2.900949,-1.378905\Si,0,0.803644,0.851682,-0.018521\0,0,-0.81698,0. 611348,-0.671434\Cl,0,-2.026361,-0.206701,-0.038983\0,0,-1.905425,-1.5 38356,-0.561114\0,0,-3.183785,0.488051,-0.507546\0,0,-1.848583,-0.1437 51,1.387926\C,0,0.660518,1.688323,1.637006\H,0,0.004799,2.555916,1.568 496\H,0,0.264643,1.032221,2.407881\H,0,1.641558,2.041956,1.957106\C,0, 3.213978,-0.429715,0.302327\H,0,3.808683,-1.345419,0.337906\H,0,3.6488 74,0.205544,-0.47007\H,0,3.340383,0.070061,1.264063\C,0,1.656073,-1.48 1229,-1.3405\H,0,2.041973,-0.862069,-2.150754\H,0,2.251179,-2.39758,-1 .323474\H,0,0.632659,-1.76024,-1.585983\C,0,1.246386,-1.721815,1.11041 7\H,0,1.29374,-1.266285,2.099378\H,0,0.222658,-2.047763,0.938792\H,0,1 .87202,-2.617544,1.134942\Version=AM64L-G09RevC.01\State=1-A\HF=-1283 .7592625\MP2=-1286.1176966\RMSD=7.310e-09\PG=C01 [X(C6H15C1104Si1)]\\@

_-_01

1\1\GINC-IBLIS\SP\RMP2-FC\GTMP2large\Cl104(1-)\LOCAL\26-Jun-2014\0\\#p
MP2(FC)/GTMP2large scf=tight int=finegrid geom=check guess=read\\Titl
e Card Required\\-1,1\0,0,0.0874214694,1.1962381348,-0.372831854\Cl,0,
0.0973292627,2.4876501082,0.323994492\0,0,-0.2895610668,2.2902891354,1
.7255268298\0,0,-0.8535902271,3.3994373827,-0.3220120595\0,0,1.4450484
458,3.0648404648,0.2654054965\\Version=AM64L-G09RevC.01\HF=-758.805698
5\MP2=-759.9947243\RMSD=6.209e-09\PG=C03V [C3(Cl101),3SGV(01)]\\@

_H_01

1\1\GINC-LIEBIG\SP\RMP2-FC\GTMP2large\Cl1H104\PASCAL\19-Jun-2014\0\\#p
MP2(FC)/GTMP2large scf=tight int=finegrid geom=check guess=read\\Titl
e Card Required\\0,1\Cl,0,0.1046197867,2.5762029366,0.3796302197\0,0,0.2732171309,2.2532844207,1.7229033237\0,0,-0.849367143,3.3389998594,0.3490546187\0,0,1.4592656336,3.0268866142,0.2645711556\0,0,0.06012332
43,1.1506170754,-0.4294623376\H,0,0.6937247634,0.5635212855,0.01181228
82\\Version=AM64L-G09RevC.01\State=1-A'\HF=-759.2888662\MP2=-760.48255
36\RMSD=6.511e-09\PG=CS [SG(C11H102),X(02)]\\@

_aux_f

1\1\GINC-ANGIE\SP\RMP2-FC\GTMP2large\C3H10Cl1N104\PASCAL\11-Jul-2014\0
\\#p MP2(FC)/GTMP2large scf=tight int=finegrid\\Title Card Required\\0
,1\C,0,2.044524,1.255316,0.701895\H,0,1.300686,1.29239,1.489228\H,0,3.
050765,1.284565,1.112022\H,0,1.892171,2.091388,0.027256\C,0,1.983666,1.179631,0.825257\H,0,2.988262,-1.217861,1.238564\H,0,1.240935,-1.0991
14,1.610476\H,0,1.787276,-2.070706,0.238047\0,0,-0.552906,-0.010642,-1
.138734\C1,0,-1.578063,0.000419,-0.038358\0,0,-0.812662,0.142398,1.212
972\0,0,-2.292026,-1.256984,-0.054513\0,0,-2.458404,1.129353,-0.23002\
C,0,2.754463,-0.08061,-1.213523\H,0,3.788566,-0.088605,-0.879556\H,0,2
.534548,-0.989292,-1.763992\H,0,2.577699,0.776784,-1.854415\N,0,1.8607
26,0.00073,-0.048502\H,0,0.873136,0.004756,-0.425442\\Version=AM64L-G0
9RevC.01\State=1-A\HF=-932.664148\MP2=-934.5985687\RMSD=3.808e-09\PG=C
01 [X(C3H10C11N104)]\\@

aux b

1\1\GINC-IBLIS\SP\RMP2-FC\GTMP2large\C3H10Cl1N104\LoCAL\11-Jul-2014\0\
\#p MP2(FC)/GTMP2large scf=tight int=finegrid\\Title Card Required\\0,
1\C,0,-1.976089,-0.645184,-1.265284\H,0,-2.288653,-1.68393,-1.249839\H
,0,-2.44176,-0.12238,-2.094646\H,0,-0.895045,-0.570415,-1.33667\C,0,-1
.976305,-0.773394,1.191401\H,0,-2.447175,-1.750633,1.155621\H,0,-0.895
844,-0.878513,1.158872\H,0,-2.283336,-0.238236,2.083689\0,0,0.981855,0
.83166,1.096723\Cl,0,1.508046,-0.000101,0.000003\0,0,0.976352,-1.36383
6,0.171494\0,0,2.951946,-0.003509,-0.001014\0,0,0.979478,0.534931,-1.2
67186\C,0,-1.973719,1.41881,0.073846\H,0,-2.440953,1.876528,0.939989\H
,0,-0.892923,1.441848,0.177038\H,0,-2.283399,1.924587,-0.834503\H,0,-3
.428944,0.002148,0.000073\N,0,-2.414158,0.000765,0.000056\\Version=AM6
4L-G09RevC.01\State=1-A\HF=-932.6467063\MP2=-934.5781965\RMSD=3.467e-0
9\PG=C01 [X(C3H10C11N104)]\\@

MeNCOCF3

_sil_01

1\1\GINC-Q1\SP\RMP2-FC\GTMP2large\C9H18F3N1O1Si1\ROOT\21-Nov-2014\0\\# p MP2(FC)/GTMP2large scf=tight int=finegrid\\Title Card Required\\0,1\ N,0,-0.440511,0.603486,-0.146653\C,0,-0.841444,1.65309,-1.075396\H,0,0 .009944,1.922836,-1.691359\H,0,-1.625483,1.318514,-1.744756\H,0,-1.183 089,2.544557,-0.552279\C,0,2.285754,-0.70605,-0.484151\C,0,2.241315,-0 .382485,-1.977227\H,0,2.840487,-1.106832,-2.535363\H,0,1.226306,-0.431 751,-2.373408\H,0,2.646087,0.605683,-2.199631\C,0,1.780112,-2.131811,-0.271637\H,0,2.429664,-2.834326,-0.801497\H,0,1.774258,-2.415085,0.779 832\H,0,0.767971,-2.268273,-0.647128\C,0,1.912333,2.296369,0.192984\H, 0,1.238975,3.045841,0.610225\H,0,2.866737,2.405629,0.709232\H,0,2.0817 05,2.545544,-0.853396\C,0,1.263437,0.26407,2.332318\H,0,1.050942,-0.76 9302,2.590452\H,0,2.236007,0.53734,2.744484\H,0,0.514424,0.886457,2.82 2639\c,0,-1.295291,-0.319492,0.328132\si,0,1.258387,0.559598,0.488008\ 0,0,-0.977957,-1.231326,1.058662\C,0,-2.785918,-0.22678,-0.071041\F,0, -3.502941,-1.087398,0.6173\F,0,-3.284501,0.991552,0.154054\F,0,-2.9558 4,-0.500702,-1.369037\C,0,3.733343,-0.615735,0.00516\H,0,4.356304,-1.3 27323,-0.54306\H,0,4.163681,0.37454,-0.149874\H,0,3.822602,-0.860334,1 .064351\\Version=AM64L-G09RevC.01\State=1-A\HF=-1068.1988012\MP2=-1071 .0294477\RMSD=3.066e-09\PG=C01 [X(C9H18F3N101Si1)]\\@

_sil_02

1\1\GINC-TOFU\SP\RMP2-FC\GTMP2large\C9H18F3N101si1\ROOT\21-Jun-2014\0\ \#p MP2(FC)/GTMP2large scf=tight int=finegrid\\Title Card Required\\0, 1\N,0,0.414653,1.072328,0.026584\C,0,0.084174,2.466279,0.335412\H,0,-0 .98201,2.625633,0.233469\H,0,0.381662,2.704172,1.353124\H,0,0.611734,3 .143429,-0.333545\C,0,-2.131861,-0.455286,0.672631\C,0,-2.572845,0.704 615,1.564758\H,0,-3.29184,0.347598,2.306848\H,0,-1.737535,1.141644,2.1 11195\H,0,-3.065041,1.498801,1.001757\C,0,-1.488224,-1.527017,1.549891 \H,0,-2.20552,-1.870781,2.299966\H,0,-1.176503,-2.399243,0.976017\H,0, -0.616121,-1.149855,2.081934\C,0,-1.813204,1.334951,-1.850222\H,0,-1.0 86487,1.898507,-2.436237\H,0,-2.426636,0.772469,-2.554928\H,0,-2.46742 7,2.051151,-1.356067\C,0,-0.400226,-1.289879,-1.786985\H,0,0.048908,-2 .130459,-1.26888\H,0,-1.292119,-1.653657,-2.300214\H,0,0.294148,-0.953 544,-2.555027\C,0,1.718259,0.829673,0.289566\si,0,-0.948055,0.126687,-0.697652\0,0,2.496181,1.663896,0.6922\C,0,2.286233,-0.582827,0.069465\ F,0,3.439859,-0.714454,0.689539\F,0,1.472563,-1.53506,0.532681\F,0,2.4 9235,-0.816245,-1.227616\C,0,-3.370831,-1.048239,-0.005474\H,0,-4.0811 54,-1.386251,0.753404\H,0,-3.889519,-0.319949,-0.63003\H,0,-3.129585,-1.912532,-0.625039\\Version=AM64L-G09RevC.01\State=1-A\HF=-1068.193599 2\MP2=-1071.0268371\RMSD=2.069e-09\PG=C01 [X(C9H18F3N101si1)]\\@

_-_01

1\1\GINC-Q1\SP\RMP2-FC\GTMP2large\C3H3F3N101(1-)\ROOT\21-Nov-2014\0\\#
p MP2(FC)/GTMP2large scf=tight int=finegrid\\Title Card Required\\-1,1
\N,0,-1.361959,-0.722481,0.000104\C,0,-2.741718,-0.325716,-0.000075\H,
0,-3.376901,-1.214629,-0.000458\H,0,-3.005734,0.281764,0.875239\H,0,-3
.005407,0.282361,-0.875073\C,0,-0.551169,0.28826,0.000078\0,0,-0.75212
5,1.520925,0.000045\C,0,0.933952,-0.104778,0.000059\F,0,1.575173,0.396
532,-1.07415\F,0,1.57532,0.396738,1.073906\F,0,1.193102,-1.416172,0.00
0115\\Version=AM64L-G09RevC.01\State=1-A\HF=-543.1971966\MP2=-544.8641
372\RMSD=7.057e-09\PG=C01 [X(C3H3F3N101)]\\@

_-_02

1\1\GINC-Q1\SP\RMP2-FC\GTMP2large\C3H3F3N101(1-)\ROOT\21-Nov-2014\0\\#
p MP2(FC)/GTMP2large scf=tight int=finegrid\\Title Card Required\\-1,1
\N,0,-1.619031,0.669351,0.007464\C,0,-2.139515,-0.665319,-0.003796\H,0
,-3.141263,-0.649616,0.435538\H,0,-2.259217,-1.063468,-1.02088\H,0,-1.
568652,-1.413341,0.560091\C,0,-0.348217,0.926376,-0.006596\0,0,0.21139
8,2.036265,-0.009232\C,0,0.676017,-0.257704,-0.002123\F,0,1.937536,0.1
34042,-0.179221\F,0,0.669747,-0.946243,1.161987\F,0,0.446212,-1.173274
,-0.969217\\Version=AM64L-G09RevC.01\State=1-A\HF=-543.1791177\MP2=-54
4.8489738\RMSD=6.641e-09\PG=C01 [X(C3H3F3N101)]\\@

_H_01

1\1\GINC-Q1\SP\RMP2-FC\GTMP2large\C3H4F3N101\ROOT\21-Nov-2014\0\\#p MP 2(FC)/GTMP2large scf=tight int=finegrid geom=check guess=read\\Title C ard Required\\0,1\C,0,-2.1189079766,-0.7353318049,0.1238053513\H,0,-2. 9522340662,-0.7566775402,0.8188722976\H,0,-2.4521914144,-1.0922884431, -0.8496611934\H,0,-1.3342826,-1.3941454484,0.4819506433\C,0,-0.3462058 426,0.8473588942,-0.3356293478\0,0,0.4797320108,0.0153972639,-0.619123 3524\C,0,0.0471853998,2.3330296747,-0.3761198486\F,0,0.9779813436,2.58 6925664,0.5307691844\F,0,0.5226941492,2.6529557992,-1.5673564113\F,0,-0.9932000605,3.1402325152,-0.1241359248\N,0,-1.6060895617,0.6094114474 ,0.0430863979\H,0,-2.2192687815,1.385096518,0.2076779039\\Version=AM64 L-G09RevC.01\State=1-A\HF=-543.7715037\MP2=-545.4232078\RMSD=9.069e-09 \PG=C01 [X(C3H4F3N101)]\\@

_н_02

1\1\GINC-ANGIE\SP\RMP2-FC\GTMP2large\C3H4F3N101\PASCAL\18-Jun-2014\0\\
#p MP2(FC)/GTMP2large scf=tight int=finegrid geom=check guess=read\\Ti
tle Card Required\\0,1\C,0,0.2335211141,-0.8918672972,-2.1844722588\H,
0,-0.280638806,-1.125664727,-3.1117061711\H,0,1.3025762102,-0.82772575
74,-2.3803067098\H,0,0.0493335946,-1.7045718313,-1.4912849534\C,0,-0.3
049743134,0.8325931703,-0.4246447188\0,0,-0.7090696151,1.9254992825,-0
.1139517299\C,0,0.2283678752,-0.1101646449,0.6722609085\F,0,0.25324116
32,0.496210368,1.8361511432\F,0,-0.5422383866,-1.1956020857,0.78378435
41\F,0,1.4671365396,-0.5247339632,0.3919129403\N,0,-0.2988868608,0.353
157989,-1.6782520114\H,0,-0.6324546049,1.024748487,-2.3479060428\\Vers
ion=AM64L-G09RevC.01\State=1-A\HF=-543.7645837\MP2=-545.4168355\RMSD=8
.251e-09\PG=C01 [X(C3H4F3N101)]\\@

_aux_f

1\1\GINC-IBLIS\SP\RMP2-FC\GTMP2large\C6H13F3N2O1\LOCAL\26-Jun-2014\0\\ #p MP2(FC)/GTMP2large scf=tight int=finegrid\\Title Card Required\\0,1 \N,0,0.094314,0.705627,-0.031601\C,0,0.50861,2.088331,0.006614\H,0,-0. 306549,2.688798,-0.386755\H,0,0.726765,2.422838,1.019926\H,0,1.380126, 2.265306,-0.615331\C,0,0.853417,-0.389941,-0.00227\0,0,0.431133,-1.526 456,0.007552\C,0,2.381536,-0.179441,0.001962\F,0,3.014897,-1.323216,0. 139274\F,0,2.791417,0.383585,-1.139691\F,0,2.760912,0.623417,1.001263\ H,0,-0.916803,0.510266,-0.016979\C,0,-2.833406,-0.86067,-1.183876\H,0, -3.795935,-1.386689,-1.23944\H,0,-2.729315,-0.244397,-2.075385\H,0,-2. 032042,-1.595887,-1.177872\C,0,-3.741054,1.006366,-0.002779\H,0,-4.761 073,0.598243,0.010656\H,0,-3.619435,1.642787,0.872219\H,0,-3.635467,1. 623774,-0.893333\C,0,-2.816252,-0.838647,1.198817\H,0,-2.014052,-1.572 975,1.19531\H,0,-2.701054,-0.205678,2.077241\H,0,-3.777356,-1.3643,1.2 77343\N,0,-2.735602,-0.031411,-0.000746\\Version=AM64L-G09RevC.01\Stat e=1-A\HF=-717.1009332\MP2=-719.5033379\RMSD=3.414e-09\PG=C01 [X(C6H13F 3N2O1)]\\@

_aux_b

\#p MP2(FC)/GTMP2large scf=tight int=finegrid\\Title Card Required\\0, 1\N,0,0.340993,1.218351,0.026299\C,0,1.305946,2.286806,0.003352\H,0,0. 830584,3.171304,-0.422488\H,0,1.634812,2.557429,1.010271\H,0,2.200268, 2.089857,-0.590657\c,0,0.67003,-0.028916,0.036399\0,0,-0.135596,-0.995 708,0.058481\C,0,2.156302,-0.462279,-0.000244\F,0,2.312852,-1.764338,0 .190074\F,0,2.721939,-0.173972,-1.184717\F,0,2.890853,0.153257,0.93854 \C,0,-2.802586,-0.805862,-1.227571\H,0,-3.272476,-1.784772,-1.239539\H ,0,-3.091611,-0.239252,-2.106942\H,0,-1.718932,-0.90439,-1.139033\C,0, -2.769601,1.324357,-0.013536\H,0,-1.667083,1.31449,0.010251\H,0,-3.129 721,1.816378,-0.91242\C,0,-2.861396,-0.794201,1.216277\H,0,-1.774184,-0.887015,1.183831\H,0,-3.198173,-0.222491,2.075145\H,0,-3.326086,-1.77 5647,1.21192\N,0,-3.266279,-0.075795,-0.019496\H,0,-3.16871,1.822556,0 .865262\H,0,-4.279884,-0.044629,-0.044203\\Version=AM64L-G09RevC.01\St ate=1-A\HF=-717.0363719\MP2=-719.4470663\RMSD=2.958e-09\PG=C01 [X(C6H1 3F3N2O1)]\\@

Azide (N3) sil 01

1\1\GINC-LIEBIG\SP\RMP2-FC\GTMP2large\C6H15N3Si1\PASCAL\25-Jun-2014\0\ \#p MP2(FC)/GTMP2large scf=tight int=finegrid\\Title Card Required\\0, 1\N,0,2.529316,-0.743796,-0.00194\N,0,3.655346,-0.720287,0.000263\N,0, 1.324941,-0.857628,-0.003601\C,0,0.458974,1.522729,-1.530322\H,0,0.351 736,0.938668,-2.443462\H,0,-0.240977,2.357512,-1.580802\H,0,1.464629,1 .945239,-1.525169\C,0,-1.515733,-0.374514,-0.000041\Si,0,0.166694,0.48 3277,0.000202\C,0,0.461661,1.516659,1.534309\H,0,-0.236976,2.352343,1. 588129\H,0,0.354024,0.929591,2.445474\H,0,1.467943,1.937691,1.530131\C ,0,-1.651623,-1.247448,-1.247015\H,0,-0.873514,-2.008929,-1.292099\H,0 ,-2.617485,-1.759675,-1.241112\H,0,-1.603099,-0.661086,-2.165228\C,0,-2.622902,0.680333,0.003281\H,0,-3.601989,0.19453,0.003058\H,0,-2.58155 9,1.318556,0.887115\H,0,-2.583188,1.322583,-0.877702\C,0,-1.649463,-1. 252889,1.243329\H,0,-1.599546,-0.670508,2.163996\H,0,-2.615265,-1.7652 12,1.236743\H,0,-0.87116,-2.014418,1.283812\\Version=AM64L-G09RevC.01\ State=1-A\HF=-688.3546652\MP2=-690.133221\RMSD=2.527e-09\PG=C01 [X(C6H 15N3Si1)]\\@

_sil_02

1\1\GINC-TOFU\SP\RMP2-FC\GTMP2large\C6H15N3Si1\ROOT\21-Jun-2014\0\\#p MP2(FC)/GTMP2large scf=tight int=finegrid\\Title Card Required\\0,1\N, 0,2.407316,-0.523925,-0.357136\N,0,3.310347,-1.081211,0.020795\N,0,1.4 76247,0.07393,-0.844692\C,0,-1.280078,-0.61495,0.003113\C,0,-0.770893, -1.888254,0.677523\H,0,-1.549181,-2.655919,0.666521\H,0,0.09641,-2.303 333,0.163127\H,0,-0.497614,-1.723109,1.720434\C,0,-1.665058,-0.934595, -1.440916\H,0,-2.42244,-1.722905,-1.461182\H,0,-2.086208,-0.069122,-1. 953297\H,0,-0.81038,-1.283534,-2.020585\C,0,-2.511167,-0.105755,0.7540 14\H,0,-3.303067,-0.858997,0.729737\H,0,-2.297423,0.101268,1.803442\H, 0,-2.919484,0.802812,0.309034\C,0,0.604213,1.147895,1.768729\H,0,1.393 685,1.899696,1.751217\H,0,-0.227101,1.561609,2.340377\H,0,0.982687,0.2 85336,2.316966\C,0,-0.411511,2.235023,-0.936956\H,0,-1.322955,2.688475 ,-0.547221\H,0,0.380557,2.981806,-0.884847\H,0,-0.57315,2.002325,-1.98 8688\Si,0,0.071805,0.712561,0.026368\\Version=AM64L-G09RevC.01\State=1 -A\HF=-688.3544353\MP2=-690.1335115\RMSD=1.507e-09\PG=C01 [X(C6H15N3Si 1)]\\@

___01

1\1\GINC-SOLARIS\SP\RMP2-FC\GTMP2large\N3(1-)\PASCAL\25-Jun-2014\0\\#p
MP2(FC)/GTMP2large scf=tight int=finegrid geom=check guess=read\\Titl
e Card Required\\-1,1\N,0,0.6565192335,-0.125,0.\N,0,-0.51594447,-0.12
5,0.\N,0,-1.6884081735,-0.125,0.\Version=AM64L-G09RevC.01\State=1-SGG
\HF=-163.3337122\MP2=-163.9660209\RMSD=5.935e-10\PG=D*H [O(N1),C*(N1.N
1)]\\@

_H_01

1\1\GINC-EDDY\SP\RMP2-FC\GTMP2large\H1N3\PASCAL\24-Nov-2013\0\\#p MP2(FC)/GTMP2large scf=tight int=finegrid geom=check guess=read\\Title Car d Required\\0,1\N,0,-0.6102646995,0.0785865681,0.21734702\H,0,-1.34571 68493,0.5857284804,-0.2596134301\N,0,0.4767314527,0.6146521245,0.01171 80082\N,0,1.5277804869,0.9927952886,-0.0878141688\\Version=AM64L-G09Re vC.01\State=1-A'\HF=-163.9015365\MP2=-164.5067185\RMSD=9.050e-09\PG=CS [SG(H1N3)]\\@

_aux_f

1\1\GINC-ANGIE\SP\RMP2-FC\GTMP2large\C3H10N4\PASCAL\26-Jun-2014\0\\#p
MP2(FC)/GTMP2large scf=tight int=finegrid\\Title Card Required\\0,1\H,
0,-0.587561,0.570382,0.006643\C,0,1.917927,1.180063,-0.131662\H,0,1.70
2017,1.846529,0.700766\H,0,2.997567,0.981886,-0.148288\H,0,1.64659,1.6
90554,-1.053365\C,0,1.352729,-0.915645,-1.127412\H,0,2.398478,-1.23933
8,-1.211498\H,0,0.728145,-1.801093,-1.026661\H,0,1.07621,-0.406062,-2.
048236\C,0,1.427875,-0.703928,1.25182\H,0,1.207867,-0.037776,2.083524\
H,0,0.801453,-1.588497,1.348732\H,0,2.478195,-1.015008,1.325075\N,0,1.
142983,-0.035133,0.001121\N,0,-1.541863,0.992507,0.005341\N,0,-2.40774

4,0.134352,0.002777\N,0,-3.284825,-0.572371,0.000307\\Version=AM64L-G0 9RevC.01\State=1-A\HF=-337.2358024\MP2=-338.5920111\RMSD=8.309e-09\PG= C01 [X(C3H10N4)]\@

_aux_b

1\1\GINC-STEAK\SP\RMP2-FC\GTMP2large\C3H10N4\ROOT\26-Jun-2014\0\\#p MP 2(FC)/GTMP2large scf=tight int=finegrid\\Title Card Required\\0,1\H,0, -2.835354,-0.030655,0.006672\C,0,-1.352489,-0.894325,-1.099075\H,0,-1. 74733,-0.514297,-2.036126\H,0,-0.260437,-0.858822,-1.081318\H,0,-1.720 548,-1.899287,-0.91738\C,0,-1.349859,-0.513546,1.321221\H,0,-0.257787, -0.48462,1.291048\H,0,-1.74354,0.135585,2.09719\H,0,-1.717097,-1.52596 6,1.457479\C,0,-1.388388,1.391781,-0.218343\H,0,-1.783061,1.727994,-1. 172091\H,0,-1.781582,2.004803,0.586681\H,0,-0.295887,1.385036,-0.21827 6\N,0,-1.820886,-0.013297,0.002878\N,0,1.274416,0.044241,-0.010248\N,0 ,3.611462,-0.02021,0.004755\N,0,2.461728,0.01166,-0.002628\\Version=AM 64L-G09RevC.01\State=1-A\HF=-337.1824193\MP2=-338.5541368\RMSD=3.977e-09\PG=C01 [X(C3H10N4)]\\@

Imidazole (Imi)

_sil_01

1\1\GINC-ANGIE\SP\RMP2-FC\GTMP2large\C9H18N2Si1\PASCAL\25-Jun-2014\0\\ #p MP2(FC)/GTMP2large scf=tight int=finegrid\\Title Card Required\\0,1 \c,0,-2.032652,0.043984,1.064159\c,0,-3.189005,-0.633561,-0.570612\c,0 ,-1.989676,-0.25012,-1.085922\N,0,-1.229563,0.194802,-0.026439\H,0,-1. 707482,0.31739,2.053151\H,0,-4.041877,-1.029138,-1.093407\H,0,-1.62021 7,-0.245204,-2.094991\si,0,0.466087,0.75731,-0.065487\N,0,-3.205515,-0 .444267,0.781555\C,0,0.668606,1.91932,1.385404\H,0,0.545833,1.42332,2. 347277\H,0,1.662485,2.367559,1.37574\H,0,-0.057229,2.730657,1.332925\C ,0,0.679754,1.676834,-1.679914\H,0,1.666122,2.138813,-1.730797\H,0,0.5 77593,1.030863,-2.551168\H,0,-0.061023,2.471538,-1.766799\C,0,1.616595 ,-0.744038,0.061334\C,0,1.358549,-1.705868,-1.09784\H,0,2.025296,-2.56 9002,-1.023273\H,0,0.336047,-2.08359,-1.092967\H,0,1.543042,-1.240651, -2.06702\C,0,1.372972,-1.478365,1.379355\H,0,0.346269,-1.835241,1.4641 18\H,0,2.027275,-2.35141,1.447919\H,0,1.585064,-0.85015,2.245269\C,0,3 .069983,-0.270181,0.0095\H,0,3.746002,-1.125502,0.088012\H,0,3.303882, 0.239482,-0.926161\H,0,3.312487,0.40615,0.830394\\Version=AM64L-G09Rev C.01\State=1-A\HF=-749.3351614\MP2=-751.3793855\RMSD=5.175e-09\PG=C01 [X(C9H18N2Si1)]\\@

sil_02

1\1\GINC-STEAK\SP\RMP2-FC\GTMP2large\C9H18N2Si1\ROOT\25-Jun-2014\0\\#p MP2(FC)/GTMP2large scf=tight int=finegrid\\Title Card Required\\0,1\C ,0,2.032918,-0.045492,-1.063972\C,0,3.188872,0.634416,0.570096\C,0,1.9 89396,0.251768,1.085661\N,0,1.22954,-0.194661,0.02663\H,0,1.707983,-0. 320366,-2.052637\H,0,4.041629,1.030703,1.09254\H,0,1.619665,0.248457,2 .094637\Si,0,-0.466071,-0.757244,0.066138\N,0,3.205739,0.443095,-0.781 776\c,0,-1.616592,0.743961,-0.061991\c,0,-0.679775,-1.675512,1.681262\ H, 0, -1.666409, -2.136847, 1.732787\H, 0, 0.060555, -2.4706, 1.768442\H, 0, -0. 576923,-1.029015,2.552042\C,0,-0.668589,-1.920515,-1.383749\H,0,0.0576 55, -2.731466, -1.330939\H,0, -1.662244, -2.369234, -1.373191\H,0, -0.54655, -1.425262,-2.3461\C,0,-1.359386,1.706298,1.096953\H,0,-0.336844,2.0839 25,1.092708\H,0,-2.025979,2.569471,1.021431\H,0,-1.544725,1.241582,2.0 66213\C,0,-1.372147,1.477782,-1.380148\H,0,-2.026465,2.350757,-1.44947 3\H,0,-0.345407,1.83468,-1.464384\H,0,-1.583643,0.849215,-2.245956\C,0 ,-3.069997,0.270089,-0.010925\H,0,-3.304485,-0.239362,0.924709\H,0,-3. 745966,1.125396,-0.090036\H,0,-3.312002,-0.40642,-0.831819\\Version=AM 64L-G09RevC.01\State=1-A\HF=-749.3351618\MP2=-751.3793856\RMSD=5.176e-09\PG=C01 [X(C9H18N2Si1)]\\@

___01

I\T\GINC-SOLARIS\SP\RMP2-FC\GTMP2large\C3H3N2(1-)\PASCAL\25-Jun-2014\0
\\#p MP2(FC)/GTMP2large scf=tight int=finegrid geom=check guess=read\\
Title Card Required\\-1,1\N,0,3.429213749,5.6517956341,-0.1672935643\C
,0,2.3002715966,5.7979883123,-0.8672915592\C,0,2.9991680018,5.77017077

03,1.1155177348\H,0,2.2917964862,5.7554112787,-1.9486360716\C,0,1.6323 633181,5.9814789872,1.1177586516\H,0,3.6812584947,5.6985066808,1.95126 70484\H,0,0.9633185987,6.1190538453,1.9557767592\N,0,1.182176975,5.999 3202113,-0.1635419688\\Version=AM64L-G09RevC.01\State=1-A\HF=-224.3111 979\MP2=-225.1998913\RMSD=9.890e-09\PG=C01 [X(C3H3N2)]\@

_H_01

1\1\GINC-SOLARIS\SP\RMP2-FC\GTMP2large\C3H4N2\PASCAL\28-Oct-2013\0\\#p
MP2(FC)/GTMP2large scf=tight int=finegrid geom=check guess=read\\Titl
e Card Required\\0,1\C,0,2.2312692201,5.946956949,-0.8876522708\C,0,2.
9637430449,5.9688266741,1.1757726211\H,0,2.2554190241,5.9595501724,-1.
9629063688\C,0,1.6037798337,5.8872015703,1.1385142127\H,0,3.6661132208
,6.0012548499,1.9872765398\H,0,0.9215058054,5.8360638102,1.9679784427\
N,0,1.1590376846,5.8740115555,-0.1516427421\N,0,3.3524700897,6.0055168
163,-0.1343022881\H,0,4.2934607468,6.0672362923,-0.4727884765\\Version
=AM64L-G09RevC.01\State=1-A\HF=-224.8916444\MP2=-225.7629412\RMSD=5.82
0e-09\PG=C01 [X(C3H4N2)]\\@

_aux_f

1\1\GINC-IBLIS\SP\RMP2-FC\GTMP2large\C6H13N3\LOCAL\26-Jun-2014\0\\#p M
P2(FC)/GTMP2large scf=tight int=finegrid\\Title Card Required\\0,1\H,0
,0.029277,-0.039406,0.004594\C,0,-2.360717,-0.935978,-1.00984\H,0,-2.0
15689,-1.941499,-0.776568\H,0,-3.456251,-0.957438,-1.08457\H,0,-1.9565
79,-0.654424,-1.980239\C,0,-2.300959,1.343027,-0.312313\H,0,-3.39297,1
.455851,-0.342903\H,0,-1.909613,2.028459,0.437245\H,0,-1.900871,1.6319
82,-1.282404\C,0,-2.361124,-0.399057,1.316219\H,0,-2.010716,-1.402538,
1.549695\H,0,-1.960958,0.282222,2.064435\H,0,-3.45677,-0.390295,1.3912
29\N,0,-1.898907,-0.010696,0.001617\C,0,1.843767,1.064547,0.001472\C,0,
3.149119,-0.603334,0.00047\C,0,1.882506,-1.112396,0.001886\N,0,1.0533
89,-0.028607,0.002345\H,0,1.445172,2.064175,0.001257\H,0,4.081003,-1.1
40485,-0.000481\H,0,1.510868,-2.12036,0.002167\N,0,3.113881,0.759718,0
.000207\\Version=AM64L-G09RevC.01\State=1-A\HF=-398.2282343\MP2=-399.8
469631\RMSD=9.232e-09\PG=C01 [X(C6H13N3)]\\@

_aux_b

1\1\GINC-SOLARIS\SP\RMP2-FC\GTMP2large\C6H13N3\PASCAL\25-Jun-2014\0\\#
p MP2(FC)/GTMP2large scf=tight int=finegrid\\Title Card Required\\0,1\
H,0,-3.390472,-0.121874,0.009629\C,0,-1.869915,-0.697199,-1.22748\H,0,
-2.331891,-0.222198,-2.087478\H,0,-0.787878,-0.551905,-1.227697\H,0,-2
.131564,-1.749946,-1.194346\C,0,-1.857681,-0.703941,1.22796\H,0,-0.775
66,-0.560628,1.217732\H,0,-2.309648,-0.232717,2.095302\H,0,-2.120913,1.756206,1.192349\C,0,-2.028493,1.403161,0.006921\H,0,-2.447664,1.8664
03,-0.880597\H,0,-2.438607,1.861557,0.901155\H,0,-0.940385,1.442833,0.
001363\N,0,-2.379436,-0.039744,0.004699\C,0,1.553931,-0.9828,-0.007493
\C,0,3.031173,0.51094,0.007581\C,0,1.797319,1.120388,-0.006002\N,0,0.8
33585,0.154135,-0.015816\H,0,1.087012,-1.960004,-0.012871\H,0,4.010179
,0.962571,0.017715\H,0,1.554697,2.172943,-0.009584\N,0,2.869394,-0.836
408,0.006604\\Version=AM64L-G09RevC.01\State=1-A\HF=-398.1532042\MP2=399.7840402\RMSD=1.609e-09\PG=C01 [X(C6H13N3)]\\@

Cyanide (CN)

_sil_01

1\1\GINC-STEAK\SP\RMP2-FC\GTMP2large\C7H15N1Si1\ROOT\24-Jun-2014\0\\#p
MP2(FC)/GTMP2large scf=tight int=finegrid\\Title Card Required\\0,1\S
i,0,-0.56223,0.464554,0.00001\C,0,-0.951348,1.445386,1.544163\H,0,-0.8
1625,0.851264,2.446633\H,0,-0.311788,2.325093,1.61966\H,0,-1.98517,1.7
89396,1.52669\C,0,1.18519,-0.268522,0.000004\C,0,-0.951291,1.445513,-1
.544079\H,0,-0.815782,0.851595,-2.446622\H,0,-1.985222,1.789202,-1.526
809\H,0,-0.311983,2.325431,-1.619256\C,0,2.202315,0.873539,-0.00009\H,
0,2.109842,1.507693,0.882614\H,0,3.217088,0.467957,0.000038\H,0,2.1099
8,1.507467,-0.882973\C,0,1.389948,-1.128924,1.246209\H,0,0.680546,-1.9
55428,1.293475\H,0,2.394143,-1.560343,1.239592\H,0,1.293926,-0.549931,
2.165116\C,0,1.389882,-1.129009,-1.246137\H,0,2.39406,-1.560471,-1.239
501\H,0,0.680432,-1.955473,-1.29329\H,0,1.293866,-0.550091,-2.165091\

C,0,-1.740025,-0.993095,-0.000046\N,0,-2.460644,-1.89378,-0.000077\\Version=AM64L-G09RevC.01\State=1-A\HF=-617.3531308\MP2=-618.8579273\RMSD =2.713e-09\PG=C01 [X(C7H15N1Si1)]\\@

___01

1\1\GINC-IBLIS\SP\RMP2-FC\GTMP2large\C1N1(1-)\LOCAL\26-Jun-2014\0\\#p
MP2(FC)/GTMP2large scf=tight int=finegrid geom=check guess=read\\Title
Card Required\\-1,1\N,0,5.3783705355,-0.8570579323,-0.0006350031\C,0,
4.2054029445,-0.8568744477,-0.0003953969\\Version=AM64L-G09RevC.01\Sta
te=1-SG\HF=-92.3397725\MP2=-92.6812171\RMSD=1.869e-09\PG=C*V [C*(C1N1)
]\\@

_H_01

1\1\GINC-GOLEM\SP\RMP2-FC\GTMP2large\C1H1N1\ROOT\18-Jun-2014\0\\#p MP2
(FC)/GTMP2large scf=tight int=finegrid geom=check guess=read\\Title Ca
rd Required\\0,1\N,0,5.3635037492,-0.8570556069,-0.000631966\C,0,4.217
206581,-0.8568762937,-0.0003978086\H,0,3.1516499399,-0.8567096105,-0.0
001801442\\Version=AM64L-G09RevC.01\State=1-SG\HF=-92.907093\MP2=-93.2
48191\RMSD=7.694e-09\PG=C*V [C*(H1C1N1)]\@

_aux_f

1\1\GINC-PHOBOS\SP\RMP2-FC\GTMP2large\C4H10N2\ROOT\25-Jun-2014\0\\#p M
P2(FC)/GTMP2large scf=tight int=finegrid\\Title Card Required\\0,1\H,0
,1.186796,-0.000893,0.000617\C,0,-1.204079,0.746274,1.158514\H,0,-0.81
9312,1.76332,1.109642\H,0,-2.298715,0.795624,1.234272\H,0,-0.820013,0.
281103,2.064542\C,0,-1.205655,-1.376162,0.066712\H,0,-2.300363,-1.4653
39,0.071174\H,0,-0.821869,-1.928345,-0.789188\H,0,-0.821677,-1.843219,
0.971789\C,0,-1.203749,0.630651,-1.225433\H,0,-0.8187,1.647539,-1.2751
84\H,0,-0.819672,0.079563,-2.0819\H,0,-2.298339,0.672659,-1.305899\N,0
,-0.767386,-0.000146,0.000025\C,0,2.280454,-0.000666,0.000299\N,0,3.42
882,-0.000224,-0.000085\\Version=AM64L-G09RevC.01\State=1-A\HF=-266.24
37986\MP2=-267.3285344\RMSD=5.527e-09\PG=C01 [X(C4H10N2)]\\@

_aux_b

1\1\GINC-PHOBOS\SP\RMP2-FC\GTMP2large\C4H10N2\ROOT\25-Jun-2014\0\\#p M
P2(FC)/GTMP2large scf=tight int=finegrid\\Title Card Required\\0,1\H,0
,2.352078,0.01355,0.005882\C,0,0.877414,-0.684341,1.235939\H,0,1.24923
,-0.139332,2.097839\H,0,-0.212984,-0.678571,1.201456\H,0,1.267754,-1.6
97143,1.233059\C,0,0.886068,-0.725889,-1.210639\H,0,-0.204714,-0.71741
5,-1.18417\H,0,1.265118,-0.211054,-2.08776\H,0,1.275112,-1.7384,-1.169
927\C,0,0.865619,1.414602,-0.023336\H,0,1.238494,1.921082,0.861255\H,0
,1.246928,1.892009,-0.920463\H,0,-0.224495,1.37355,-0.027666\N,0,1.337
953,0.005387,0.002287\C,0,-2.017755,-0.020224,-0.009381\N,0,-3.183752,
0.00559,0.002713\Version=AM64L-G09RevC.01\State=1-A\HF=-266.1852634\M
P2=-267.2683551\RMSD=3.939e-09\PG=C01 [X(C4H10N2)]\\@

NMe3

1\1\GINC-HP1\SP\RMP2-FC\GTMP2large\C3H9N1\ROOT\10-Apr-2015\0\\#p MP2(F C)/GTMP2large scf=tight int=finegrid geom=check guess=read\\Title Card Required\\0,1\N,0,-0.818472077,3.1018935436,0.0049609704\C,0,-0.39770 59929,3.7963036617,1.1934187091\H,0,-0.6704391456,4.8481017592,1.12381 08356\H,0,-0.8976073647,3.3757970311,2.0644988767\H,0,0.6897565888,3.7 354506258,1.3607884624\C,0,-0.5434901754,1.6917975348,0.0926850036\H,0 ,-1.0434425711,1.2705543345,0.9633799184\H,0,-0.9242202408,1.184577632 6,-0.7923463261\H,0,0.5329159894,1.471336667,0.1765740211\C,0,-0.23669 26356,3.6801895296,-1.1777426021\H,0,-0.617315323,3.1736655575,-2.0632 185769\H,0,-0.5093694342,4.7319469875,-1.2481803736\H,0,0.8629813588,3 .6105302826,-1.1902040742\\Version=AM64L-G09RevC.01\State=1-A1\HF=-173 .3296747\MP2=-174.0673203\RMSD=5.785e-09\PG=C03V [C3(N1),3SGV(C1H1),X(H6)]\\@

Compound 4b

_1 1\1\GINC-AZAZEL\SP\RMP2-FC\GTMP2large\C12H12O1\ROOT\21-Nov-2012\0\\#p MP2(FC)/GTMP2large scf=tight int=finegrid\\Title Card Required\\0,1\C, 0,0.80634,-1.560078,-0.19746\C,0,2.124725,-1.923165,-0.176487\C,0,3.13 1724,-0.949556,-0.048149\C,0,2.79039,0.368565,0.056874\H,0,0.056899,-2 .330791,-0.292476\H,0,2.395448,-2.966022,-0.259117\H,0,4.170137,-1.247 426,-0.032667\H,0,3.556274,1.125571,0.156966\C,0,0.415336,-0.203347,-0 .091814\C,0,1.437507,0.77536,0.040319\C,0,1.087609,2.139226,0.155579\C ,0,-0.222185,2.518295,0.142132\C,0,-1.23681,1.552232,0.008485\C,0,-0.9 46159,0.218845,-0.111005\H,0,1.874781,2.873773,0.255963\H,0,-0.489871, 3.561164,0.23387\H,0,-2.271706,1.861985,0.004461\C,0,-2.076677,-0.7805 4,-0.229749\H,0,-1.772213,-1.583723,-0.905806\C,0,-2.44395,-1.38038,1. 112533\H,0,-2.801349,-0.596066,1.777215\H,0,-3.235289,-2.117205,0.9878 53\H,0,-1.583952,-1.858309,1.576858\0,0,-3.253359,-0.190284,-0.73223\H ,0,-3.079387,0.146579,-1.612822\\Version=AM64L-G09RevC.01\State=1-A\HF =-536.443853\MP2=-538.579167\RMSD=4.591e-10\PG=C01 [X(C12H12O1)]\\@

_2

1\1\GINC-CALYPSO\SP\RMP2-FC\GTMP2large\C12H12O1\ROOT\19-Aug-2012\0\\#p MP2(FC)/GTMP2large scf=tight int=finegrid\\Title Card Required\\0,1\C ,0,-0.382144,-1.53886,-0.066506\C,0,-1.601674,-2.154202,-0.001534\C,0, -2.784755,-1.397401,0.080324\c,0,-2.717591,-0.033777,0.087163\H,0,0.51 3557,-2.130097,-0.161613\H,0,-1.657545,-3.233286,-0.019585\H,0,-3.7417 85,-1.896465,0.131103\H,0,-3.620426,0.559185,0.14222\C,0,-0.27435,-0.1 26374,-0.048049\C,0,-1.473805,0.633885,0.022646\C,0,-1.41174,2.045572, 0.026328\C,0,-0.209841,2.685058,-0.041103\C,0,0.978709,1.934875,-0.105 776\C,0,0.974688,0.56382,-0.099435\H,0,-2.333918,2.60788,0.079387\H,0, -0.16174,3.764416,-0.045385\H,0,1.92451,2.458602,-0.154466\C,0,2.31126 3,-0.145859,-0.096795\H,0,3.070694,0.611282,-0.314654\C,0,2.653556,-0. 763631,1.244352\H,0,2.688009,0.005719,2.013032\H,0,1.919192,-1.508673, 1.540112\H,0,3.62857,-1.244139,1.184827\0,0,2.405141,-1.174044,-1.0609 95\H,0,2.155855,-0.820705,-1.916703\\Version=AM64L-G09RevC.01\State=1-A\HF=-536.4428908\MP2=-538.5784948\RMSD=5.031e-09\PG=C01 [X(C12H12O1)] //@

3

1\1\GINC-CALYPSO\SP\RMP2-FC\GTMP2large\C12H12O1\ROOT\19-Aug-2012\0\\#p MP2(FC)/GTMP2large scf=tight int=finegrid\\Title Card Required\\0,1\C ,0,-0.768884,-1.541703,-0.170269\C,0,-2.083548,-1.919112,-0.168708\C,0 ,-3.105585,-0.957843,-0.068349\C,0,-2.784819,0.365986,0.031023\H,0,0.0 01306,-2.294945,-0.21214\H,0,-2.339937,-2.96661,-0.238024\H,0,-4.14009 1,-1.269867,-0.066243\H,0,-3.561812,1.113899,0.112434\C,0,-0.401902,-0 .178023,-0.078926\C,0,-1.436718,0.788068,0.028198\C,0,-1.104055,2.1582 05,0.128466\C,0,0.199567,2.554028,0.114516\C,0,1.227389,1.597945,-0.00 5761\C,0,0.958837,0.257866,-0.101273\H,0,-1.90073,2.88456,0.213498\H,0 ,0.454688,3.601351,0.188748\H,0,2.248676,1.946531,-0.031949\C,0,2.0652 19,-0.765913,-0.236455\H,0,1.829241,-1.403911,-1.088753\C,0,3.451679,-0.197056,-0.460997\H,0,3.497785,0.411614,-1.363111\H,0,3.781505,0.4088 21,0.383213\H,0,4.151642,-1.022641,-0.566917\0,0,2.07513,-1.655542,0.8 65802\H,0,2.073604,-1.139144,1.674039\\Version=AM64L-G09RevC.01\State= 1-A\HF=-536.4419721\MP2=-538.5774288\RMSD=1.442e-09\PG=C01 [X(C12H12O1)]\\@

_4

1\1\GINC-NAUTILUS\SP\RMP2-FC\GTMP2large\C12H12O1\ROOT\30-Aug-2012\0\\#
p MP2(FC)/GTMP2large scf=tight int=finegrid\\Title Card Required\\0,1\
C,0,0.786481,-1.551795,-0.216187\C,0,2.100629,-1.929233,-0.189254\C,0,
3.116032,-0.967268,-0.047511\C,0,2.787173,0.353676,0.063413\H,0,0.0314
29,-2.315122,-0.324145\H,0,2.358471,-2.974333,-0.277776\H,0,4.15158,-1
.272748,-0.028067\H,0,3.561715,1.099673,0.171816\C,0,0.407069,-0.19265
7,-0.104049\C,0,1.439532,0.7767,0.040739\C,0,1.099643,2.141365,0.15924
3\C,0,-0.207725,2.530763,0.132853\C,0,-1.229986,1.577226,-0.014691\C,0
,-0.947403,0.241614,-0.131353\H,0,1.889163,2.87126,0.267374\H,0,-0.463
751,3.576445,0.219453\H,0,-2.258884,1.896463,-0.055183\C,0,-2.076252,-

0.753099,-0.241104\H,0,-1.807151,-1.508681,-0.982162\C,0,-2.35125,-1.4 35516,1.089466\H,0,-1.465694,-1.940341,1.470096\H,0,-2.662501,-0.69300 9,1.820754\H,0,-3.146907,-2.173616,0.98763\0,0,-3.235942,-0.075579,-0. 682574\H,0,-3.843596,-0.712008,-1.058582\\Version=AM64L-G09RevC.01\Sta te=1-A\HF=-536.4413553\MP2=-538.5770295\RMSD=6.363e-09\PG=C01 [X(C12H1 201)]\\@

_5

1\1\GINC-NAUTILUS\SP\RMP2-FC\GTMP2large\C12H12O1\ROOT\30-Aug-2012\0\\# p MP2(FC)/GTMP2large scf=tight int=finegrid\\Title Card Required\\0,1\ C,0,0.786045,-1.542898,-0.250198\C,0,2.099895,-1.920752,-0.212832\C,0, 3.112973,-0.963016,-0.027233\c,0,2.782301,0.355502,0.103522\H,0,0.0331 62,-2.300826,-0.403161\H,0,2.362299,-2.962302,-0.331068\H,0,4.147662,-1.272325,0.004379\H,0,3.553366,1.102018,0.237068\C,0,0.404948,-0.18678 ,-0.106531\C,0,1.434734,0.777761,0.061851\C,0,1.098765,2.145419,0.1740 48\C,0,-0.20401,2.540454,0.107215\C,0,-1.225972,1.586327,-0.056552\C,0 ,-0.953009,0.248219,-0.1438\H,0,1.891125,2.869956,0.30205\H,0,-0.46151 2,3.587666,0.175462\H,0,-2.248167,1.923123,-0.138414\C,0,-2.082987,-0. 753432,-0.263886\H,0,-1.839626,-1.462433,-1.054431\C,0,-2.305265,-1.50 855,1.03798\H,0,-3.089782,-2.252927,0.909752\H,0,-1.40194,-2.006939,1. 381173\H,0,-2.60658,-0.813853,1.824405\0,0,-3.285615,-0.159535,-0.6900 89\H,0,-3.745595,0.195613,0.071986\\Version=AM64L-G09RevC.01\State=1-A \HF=-536.4408621\MP2=-538.5767324\RMSD=4.595e-09\PG=C01 [X(C12H12O1)]\ /@

_6

1\1\GINC-GOLEM\SP\RMP2-FC\GTMP2large\C12H12O1\ROOT\11-Jun-2014\0\\#p M P2(FC)/GTMP2large scf=tight int=finegrid\\Title Card Required\\0,1\C,0 ,-0.383204,-1.54037,-0.087408\C,0,-1.59984,-2.159087,-0.007666\C,0,-2. 783677,-1.405341,0.090248\C,0,-2.719102,-0.041765,0.097297\H,0,0.51183 3,-2.127751,-0.204265\H,0,-1.653742,-3.238209,-0.031627\H,0,-3.739093, -1.906511,0.150818\H,0,-3.622478,0.5495,0.161563\C,0,-0.277054,-0.1283 73,-0.064508\C,0,-1.47758,0.628854,0.019213\C,0,-1.41996,2.040428,0.02 1466\C,0,-0.220398,2.682407,-0.057798\C,0,0.969355,1.935389,-0.131263\ C,0,0.968623,0.565046,-0.1246\H,0,-2.343153,2.600228,0.083113\H,0,-0.1 74459,3.761848,-0.064897\H,0,1.912275,2.462517,-0.189827\C,0,2.30531,-0.134233,-0.101568\H,0,3.057612,0.624431,-0.334712\C,0,2.631371,-0.710 901,1.26884\H,0,2.645678,0.078543,2.018548\H,0,1.898395,-1.455206,1.57 1013\H,0,3.616392,-1.181338,1.259982\O,0,2.339203,-1.129891,-1.104681\ H,0,3.214057,-1.521255,-1.115768\Version=AM64L-G09RevC.01\State=1-A\H F=-536.439961\MP2=-538.5756612\RMSD=4.360e-09\PG=C01 [X(C12H1201)]\\@

7

1\1\GINC-AZAZEL\SP\RMP2-FC\GTMP2large\C12H12O1\ROOT\21-Nov-2012\0\\#p MP2(FC)/GTMP2large scf=tight int=finegrid\\Title Card Required\\0,1\C, 0,-0.76114,-1.544104,-0.161381\C,0,-2.072185,-1.932583,-0.166826\C,0,-3.102135,-0.978949,-0.073351\C,0,-2.791227,0.34705,0.025728\H,0,0.0146 87,-2.291538,-0.19688\H,0,-2.320193,-2.982291,-0.234007\H,0,-4.134311, -1.298599,-0.075713\H,0,-3.57404,1.089323,0.103049\C,0,-0.403336,-0.17 8324,-0.071498\C,0,-1.446318,0.779619,0.030087\C,0,-1.124915,2.151902, 0.129851\C,0,0.176063,2.556592,0.122916\C,0,1.211117,1.608208,0.010798 \C,0,0.952313,0.267789,-0.086845\H,0,-1.927234,2.872588,0.209865\H,0,0 .42356,3.605542,0.19965\H,0,2.229778,1.964069,-0.000635\C,0,2.0637,-0. 743549,-0.232673\H,0,1.817272,-1.373716,-1.095432\C,0,3.441236,-0.1595 37,-0.470881\H,0,3.465561,0.456773,-1.368185\H,0,3.770382,0.433785,0.3 80146\H,0,4.160939,-0.967055,-0.610768\0,0,2.058156,-1.543694,0.936625 \H,0,2.749311,-2.204012,0.860359\\Version=AM64L-G09RevC.01\State=1-A\H F=-536.439598\MP2=-538.5752378\RMSD=3.133e-09\PG=C01 [X(C12H1201)]\\@

Compound **5b**

1

1\1\GINC-IBLIS\SP\RMP2-FC\GTMP2large\C18H26O1Si1\LOCAL\25-Jul-2014\0\\
 #p MP2(FC)/GTMP2large scf=tight int=finegrid maxdisk=200GB\\Title Card

Required\\0,1\C,0,2.92724,-1.489672,-0.027955\C,0,4.191645,-1.81773,-0.432562\C,0,5.132829,-0.812472,-0.71945\C,0,4.780462,0.500681,-0.5924 28\H,0,2.229825,-2.284252,0.189162\H,0,4.470286,-2.856969,-0.53319\H,0 ,6.129318,-1.08209,-1.038236\H,0,5.495763,1.282235,-0.810013\C,0,2.525 781,-0.13901,0.114649\C,0,3.482185,0.871901,-0.176123\C,0,3.122381,2.2 3132,-0.044423\C,0,1.864778,2.574958,0.356053\C,0,0.914229,1.577036,0. 63926\C,0,1.217114,0.246892,0.527262\H,0,3.859409,2.990881,-0.26634\H, 0,1.589452,3.615155,0.456684\H,0,-0.081963,1.856183,0.946343\C,0,0.173 535,-0.790006,0.883871\H,0,0.268956,-1.630682,0.189952\C,0,0.371907,-1 .307938,2.29836\H,0,0.226147,-0.492985,3.004926\H,0,-0.353933,-2.08965 2,2.5165\H,0,1.374842,-1.707321,2.438752\0,0,-1.123662,-0.257167,0.795 967\Si,0,-2.156304,-0.504015,-0.494069\C,0,-3.729472,0.443777,-0.03673 4\C,0,-4.362017,-0.170651,1.211583\H,0,-4.672439,-1.203104,1.046446\H, 0,-3.67613,-0.157249,2.058415\H,0,-5.254283,0.393252,1.498429\C,0,-4.7 26305,0.3762,-1.193523\H,0,-5.008779,-0.649669,-1.434993\H,0,-5.644362 ,0.909014,-0.931047\H,0,-4.333257,0.837489,-2.100406\C,0,-3.389591,1.9 06139,0.248061\H,0,-4.297257,2.461531,0.501222\H,0,-2.700939,1.999804, 1.086975\H,0,-2.939241,2.398856,-0.614725\C,0,-2.484157,-2.34324,-0.68 2484\H,0,-2.844578,-2.787895,0.244738\H,0,-3.231727,-2.52988,-1.454654 \H,0,-1.582753,-2.881071,-0.97949\C,0,-1.380749,0.132099,-2.077367\H,0 ,-2.015449,-0.077619,-2.939498\H,0,-1.201753,1.206176,-2.043514\H,0,-0 .418375,-0.348284,-2.259512\\Version=AM64L-G09RevC.01\State=1-A\HF=-10 60.9039287\MP2=-1064.2093005\RMSD=3.098e-09\PG=C01 [X(C18H2601si1)]\\@

_2

1\1\GINC-IBLIS\SP\RMP2-FC\GTMP2large\C18H26O1Si1\LOCAL\25-Jul-2014\0\\ #p MP2(FC)/GTMP2large scf=tight int=finegrid maxdisk=200GB\\Title Card Required\\0,1\C,0,1.567664,1.40361,0.758397\C,0,2.27126,2.560036,0.56 5\C,0,3.49419,2.547665,-0.130578\C,0,3.981688,1.371404,-0.623444\H,0,0 .617426,1.431605,1.265519\H,0,1.88107,3.49398,0.943898\H,0,4.040339,3. 468384,-0.277589\H,0,4.916769,1.350548,-1.166585\C,0,2.050564,0.163665 ,0.274034\C,0,3.280225,0.158511,-0.438989\C,0,3.787187,-1.055409,-0.95 5401\C,0,3.104206,-2.22122,-0.775453\C,0,1.888293,-2.217928,-0.066522\ C,0,1.358682,-1.070015,0.463048\H,0,4.723311,-1.041781,-1.496634\H,0,3 .488024,-3.149253,-1.174159\H,0,1.361783,-3.153611,0.070333\C,0,0.0833 15,-1.183376,1.27231\H,0,-0.291247,-2.19952,1.118385\C,0,0.32563,-1.01 5484,2.762106\H,0,0.725555,-0.031681,2.99438\H,0,-0.612226,-1.1422,3.3 00415\H,0,1.035309,-1.762453,3.114378\0,0,-0.911594,-0.269732,0.877731 \si,0,-1.8288,-0.344752,-0.51877\C,0,-3.389348,0.647434,-0.104795\C,0, -4.141214,-0.030791,1.039276\H,0,-4.485493,-1.029364,0.766589\H,0,-3.5 19503,-0.120975,1.929788\H,0,-5.025624,0.553066,1.310461\C,0,-4.300739 ,0.727893,-1.328831\H,0,-4.61997,-0.258135,-1.670005\H,0,-5.20541,1.29 342,-1.088856\H,0,-3.81854,1.232235,-2.166923\C,0,-3.000569,2.061717,0 .325364\H,0,-3.895662,2.639319,0.57406\H,0,-2.358546,2.050772,1.205643 \H,0,-2.477207,2.600804,-0.46531\C,0,-2.223748,-2.138109,-0.909393\H,0 ,-2.672183,-2.659664,-0.063831\H,0,-2.921614,-2.203847,-1.74524\H,0,-1 .325811,-2.683577,-1.202568\C,0,-0.898695,0.399629,-1.963761\H,0,-1.50 0822,0.378277,-2.873343\H,0,-0.61063,1.433163,-1.774765\H,0,0.015317,-0.160521,-2.161314\\Version=AM64L-G09RevC.01\State=1-A\HF=-1060.902550 1\MP2=-1064.2107026\RMSD=4.020e-09\PG=C01 [X(C18H2601Si1)]\\@

-3

1\1\GINC-PHOENIX\SP\RMP2-FC\GTMP2large\C18H2601Si1\PASCAL\28-Jul-2014\
0\\#p MP2(FC)/GTMP2large scf=tight int=finegrid maxdisk=200GB\\Title C
ard Required\\0,1\C,0,2.547311,-1.667639,-0.010333\C,0,3.703862,-2.260
801,-0.435242\C,0,4.827775,-1.480886,-0.762954\C,0,4.76285,-0.121162,0.655583\H,0,1.70353,-2.293581,0.236829\H,0,3.755092,-3.336805,-0.5211
22\H,0,5.7367,-1.9594,-1.097892\H,0,5.620606,0.488636,-0.905056\C,0,2.
443545,-0.260812,0.114904\C,0,3.583117,0.521504,-0.217432\C,0,3.520787
,1.928055,-0.104888\C,0,2.375576,2.534768,0.320095\C,0,1.244952,1.7635
67,0.647112\C,0,1.257612,0.397921,0.552052\H,0,4.394501,2.511975,-0.35
9882\H,0,2.32862,3.610909,0.407776\H,0,0.340308,2.250221,0.979298\C,0,
0.027727,-0.389845,0.952774\H,0,-0.076415,-1.240287,0.273978\C,0,0.154
215,-0.911737,2.374077\H,0,1.051722,-1.515361,2.496734\H,0,0.209377,-0

4

1\1\GINC-PHOBOS\SP\RMP2-FC\GTMP2large\C18H26O1Si1\ROOT\28-Jul-2014\0\\ #p MP2(FC)/GTMP2large scf=tight int=finegrid maxdisk=200GB\\Title Card Required\\0,1\C,0,-2.556835,-1.434922,0.64703\C,0,-3.730709,-1.665757 ,1.30943\C,0,-4.751368,-0.697771,1.311932\C,0,-4.566757,0.482238,0.649 954\H,0,-1.793549,-2.197836,0.662338\H,0,-3.875664,-2.598308,1.835849\ H,0,-5.675489,-0.890227,1.837551\H,0,-5.343685,1.234709,0.646288\C,0,-2.330686,-0.224275,-0.05208\c,0,-3.365108,0.750801,-0.043235\c,0,-3.17 7722,1.972798,-0.726204\C,0,-2.010839,2.220074,-1.387444\C,0,-0.982953 ,1.2592,-1.394684\c,0,-1.120874,0.059272,-0.750201\H,0,-3.972724,2.705 755,-0.713847\H,0,-1.866982,3.155789,-1.908655\H,0,-0.058488,1.462997, -1.91305\C,0,-0.005968,-0.960665,-0.822765\H,0,0.080913,-1.449297,0.15 1368\C,0,-0.298833,-2.017254,-1.8771\H,0,-0.322267,-1.548,-2.858829\H, 0,0.479462,-2.778939,-1.876079\H,0,-1.259656,-2.499259,-1.704888\0,0,1 .207728,-0.332472,-1.145126\si,0,2.648212,-0.42114,-0.308199\C,0,2.647 242,0.782001,1.162067\C,0,2.516294,2.217348,0.654238\H,0,3.355547,2.50 3922,0.01932\H,0,1.598063,2.36171,0.084804\H,0,2.493023,2.915716,1.495 72\C,0,3.955231,0.641667,1.940599\H,0,4.828786,0.849378,1.320744\H,0,3 .976438,1.350419,2.773238\H,0,4.074731,-0.356174,2.364315\C,0,1.475843 ,0.479406,2.095832\H,0,1.490003,1.160582,2.951676\H,0,0.514766,0.60974 ,1.598416\H,0,1.517769,-0.535414,2.494916\C,0,3.942218,0.044362,-1.574 \H,0,3.724394,1.011006,-2.026924\H,0,4.941046,0.094147,-1.139872\H,0,3 .964891,-0.694538,-2.375207\C,0,2.927842,-2.182116,0.282418\H,0,3.9248 35,-2.289992,0.711079\H,0,2.213405,-2.499233,1.042167\H,0,2.857536,-2. 881352,-0.551369\\Version=AM64L-G09RevC.01\State=1-A\HF=-1060.9025244\ MP2=-1064.2092726\RMSD=2.036e-09\PG=C01 [X(C18H2601Si1)]\\@

_5

1\1\GINC-IBLIS\SP\RMP2-FC\GTMP2large\C18H26O1Si1\LOCAL\28-Jul-2014\0\\ #p MP2(FC)/GTMP2large scf=tight int=finegrid maxdisk=200GB\\Title Card Required\\0,1\C,0,1.914188,1.393291,0.688165\C,0,2.83043,2.395137,0.5 24875\C,0,4.070632,2.141404,-0.089142\C,0,4.36302,0.882705,-0.529502\H ,0,0.956977,1.607994,1.133265\H,0,2.597057,3.394032,0.865208\H,0,4.785 151,2.942454,-0.213415\H,0,5.311113,0.675482,-1.007045\C,0,2.187698,0. 073154,0.252616\c,0,3.44004,-0.176214,-0.373394\c,0,3.751103,-1.476896 ,-0.829252\C,0,2.857444,-2.494551,-0.674123\C,0,1.618012,-2.249301,-0. 055372\C,0,1.27102,-1.008684,0.412255\H,0,4.707816,-1.649196,-1.303063 \H,0,3.091333,-3.488853,-1.026587\H,0,0.920058,-3.068897,0.056023\C,0, -0.05409,-0.870041,1.133607\H,0,-0.612644,-1.788848,0.932185\C,0,0.125 208,-0.766778,2.638503\H,0,0.655186,-1.639026,3.017693\H,0,0.69369,0.1 20321,2.907385\H,0,-0.848688,-0.710052,3.122431\0,0,-0.802927,0.238431 ,0.699027\Si,0,-1.84308,0.336872,-0.604438\C,0,-3.615149,0.047726,0.01 75\C,0,-3.708774,-1.310856,0.710723\H,0,-4.727056,-1.483911,1.071133\H ,0,-3.462208,-2.134389,0.038749\H,0,-3.046785,-1.370287,1.575311\C,0,-4.596417,0.079702,-1.15335\H,0,-5.619668,-0.061272,-0.793842\H,0,-4.57 1261,1.032381,-1.68456\H,0,-4.396964,-0.71156,-1.87706\C,0,-3.991219,1 .139479,1.018686\H,0,-3.299893,1.171819,1.861246\H,0,-4.00231,2.127809 ,0.557988\H,0,-4.992692,0.958141,1.419895\C,0,-1.384248,-0.922161,-1.9 16001\H,0,-1.514778,-1.952022,-1.583653\H,0,-2.00232,-0.785512,-2.8044

89\H,0,-0.343767,-0.804139,-2.217561\C,0,-1.631724,2.070941,-1.268999\ H,0,-2.330953,2.28742,-2.077172\H,0,-1.78082,2.816229,-0.488208\H,0,-0 .622074,2.201896,-1.658701\\Version=AM64L-G09RevC.01\State=1-A\HF=-106 0.9016818\MP2=-1064.2085869\RMSD=2.205e-09\PG=C01 [X(C18H2601Si1)]\@

_6

1\1\GINC-PHOBOS\SP\RMP2-FC\GTMP2large\C18H2601Si1\ROOT\28-Jul-2014\0\\ #p MP2(FC)/GTMP2large scf=tight int=finegrid maxdisk=200GB\\Title Card Required\\0,1\C,0,1.814953,1.487916,0.525828\C,0,2.701851,2.444468,0. 116018\C,0,3.853716,2.091914,-0.610827\C,0,4.088726,0.781573,-0.913279 \H,0,0.92101,1.775351,1.053455\H,0,2.512595,3.483282,0.346487\H,0,4.54 5444,2.857939,-0.930807\H,0,4.96795,0.497817,-1.475683\C,0,2.031938,0. 117759,0.238837\C,0,3.194645,-0.232433,-0.50123\C,0,3.447524,-1.586968 ,-0.813722\C,0,2.583325,-2.561101,-0.411272\C,0,1.432771,-2.216471,0.3 21724\C,0,1.144521,-0.918838,0.656183\H,0,4.336111,-1.835499,-1.377711 \H,0,2.772484,-3.597117,-0.65294\H,0,0.758527,-3.003838,0.633285\C,0,-0.074595,-0.664101,1.517065\H,0,-0.656943,-1.589712,1.51101\C,0,0.3017 17,-0.372258,2.961061\H,0,0.897746,0.534217,3.035517\H,0,-0.599462,-0. 241567,3.558554\H,0,0.879944,-1.195854,3.377371\0,0,-0.861451,0.392125 ,1.02426\si,0,-2.417495,0.355607,0.425683\C,0,-2.427063,-0.118927,-1.4 1309\C,0,-2.004002,-1.576261,-1.59296\H,0,-2.008856,-1.841768,-2.65411 8\H,0,-0.994531,-1.756887,-1.223011\H,0,-2.681521,-2.264794,-1.085854\ C,0,-1.455074,0.779084,-2.177614\H,0,-1.737588,1.830984,-2.117493\H,0, -0.436633,0.686365,-1.801938\H,0,-1.444086,0.507164,-3.23704\C,0,-3.83 4276,0.062699,-1.98296\H,0,-4.173281,1.097125,-1.916655\H,0,-3.850095, -0.215047,-3.040589\H,0,-4.569704,-0.564209,-1.475943\C,0,-3.042998,2. 09958,0.67702\H,0,-4.080211,2.209364,0.360212\H,0,-2.987895,2.369207,1 .731884\H,0,-2.444948,2.822419,0.122623\C,0,-3.450034,-0.849641,1.4307 43\H,0,-4.489417,-0.834067,1.100059\H,0,-3.103555,-1.880218,1.354549\H ,0,-3.442417,-0.574115,2.48598\\Version=AM64L-G09RevC.01\State=1-A\HF= -1060.9011584\MP2=-1064.2084999\RMSD=3.865e-09\PG=C01 [X(C18H2601Si1)] //@

7

1\1\GINC-PHOENIX\SP\RMP2-FC\GTMP2large\C18H26O1Si1\PASCAL\28-Jul-2014\ 0\\#p MP2(FC)/GTMP2large scf=tight int=finegrid maxdisk=200GB\\Title C ard Required\\0,1\C,0,-1.563982,-1.162077,-0.983471\C,0,-2.20027,-2.36 4786,-1.118139\C,0,-3.466133,-2.571958,-0.540769\C,0,-4.063084,-1.5642 19,0.161231\H,0,-0.584066,-1.034195,-1.414303\H,0,-1.724789,-3.165463, -1.666593\H,0,-3.959698,-3.526685,-0.651869\H,0,-5.034823,-1.712275,0. 61251\C,0,-2.155308,-0.092753,-0.270849\C,0,-3.430848,-0.310047,0.3150 87\C,0,-4.050053,0.731567,1.041147\C,0,-3.431986,1.938678,1.174488\C,0 ,-2.172259,2.157626,0.584484\C,0,-1.529121,1.181551,-0.127799\H,0,-5.0 19948,0.554994,1.485692\H,0,-3.903915,2.736505,1.729776\H,0,-1.714866, 3.127903,0.703362\C,0,-0.171639,1.423675,-0.753352\H,0,-0.197736,1.005 695,-1.764762\C,0,0.2034,2.887036,-0.88437\H,0,-0.570824,3.444212,-1.4 09581\H,0,0.36976,3.34159,0.09033\H,0,1.125242,2.983075,-1.454555\0,0, 0.784754,0.722088,0.008398\si,0,2.362905,0.328534,-0.351827\c,0,2.7861 96,-1.068064,0.854966\C,0,2.667898,-0.55007,2.288348\H,0,2.882789,-1.3 54089,2.998122\H,0,3.373881,0.256685,2.49024\H,0,1.664872,-0.180553,2. 499519\C,0,4.211624,-1.564262,0.613289\H,0,4.454996,-2.363208,1.319034 \H,0,4.340064,-1.97266,-0.390319\H,0,4.953871,-0.777185,0.752388\C,0,1 .812962,-2.230069,0.664797\H,0,0.781837,-1.923321,0.832671\H,0,1.87877 4,-2.658265,-0.336868\H,0,2.041686,-3.031883,1.372801\C,0,3.501864,1.7 98804,-0.08607\H,0,3.314796,2.27587,0.87571\H,0,4.548447,1.491758,-0.1 06097\H,0,3.376174,2.556147,-0.859637\C,0,2.492758,-0.217926,-2.144319 \H,0,3.524617,-0.469604,-2.393341\H,0,1.880519,-1.093434,-2.360322\H,0 ,2.187532,0.575966,-2.8277\\Version=AM64L-G09RevC.01\State=1-A\HF=-106 0.8989755\MP2=-1064.2055065\RMSD=8.219e-09\PG=C01 [X(C18H2601Si1)]\\@

REFERENCES

^a P. Patschinski and H. Zipse, Department of Chemistry, LMU München,

Butenandtstrasse 5-13, D-81377 München, Germany Fax.: +49 89 2180 77738 e-mail: zipse@cup.uni-muenchen.de

[1] Schrödinger, LLC., MacroModel 9.7, 2009.

[2] Gaussian 03, Revision D.01, M. J. Frisch et al. For full citation see: http://www.gaussian.com.

[3] Gaussian 09, Revision C.01; M. J. Frisch et al. For full citation see: http://www.gaussian.com.

[4] Hoops, S.; Sahle, S.; Gauges, R.; Lee, C.; Pahle, J.; Simus, N.; Singhal, M.; Xu, L.; Mendes, P. and Kummer, U. *Bioinformatics* **2006**, *22*, 3067-3074.