Supplementary information for:

Electrocatalytic oxidation of Ammonia on Transition Metal Surfaces: A First-Principles Study

Jeffrey A. Herron, Peter Ferrin, Manos Mavrikakis*

Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, Wisconsin 53706, United States

*Corresponding Author. Email: manos@engr.wisc.edu

S1. Optimized geometries of adsorbates

Figures S1-4 show the optimized structures of adsorbed H_xNNH_y intermediates on Re(0001),

Ru(0001), Os(0001), Co(0001), Rh(111), Ir(111), Ni(111), Pd(111), Cu(111), Ag(111), and

Au(111).

Re(0001) NNH HNNH NNH₂ HNNH₂ H₂NNH₂ Ru(0001) H₂NNH₂ NNH HNNH NNH₂ HNNH₂ Os(0001) HNNH NNH₂ HNNH₂ H₂NNH₂ NNH

Figure S1. Optimized geometries of H_xNNH_y species in their minimum energy structures on Re(0001), Ru(0001), and Os(0001). Images show overhead view (above) and side view (below).

Co(0001)

NNH

HNNH₂

H₂NNH₂

Rh(111)

HNNH₂

NNH

lr(111)

NNH

HNNH₂

 H_2NNH_2

Figure S2. Optimized geometries of H_xNNH_y species in their minimum energy structures on Co(0001), Rh(111), and Ir(111). Images show overhead view (above) and side view (below).

Figure S3. Optimized geometries of H_xNNH_y species in their minimum energy structures on Ni(111) and Pd(111). Images show overhead view (above) and side view (below).

Cu(111)

NNH

NNH₂

HNNH₂

Ag(111)

NNH

Au(111)

HNNH₂ H₂NNH₂

Figure S4. Optimized geometries of H_xNNH_y species in their minimum energy structures on Cu(111), Ag(111), and Au(111). Images show overhead view (above) and side view (below).

S2. Free energy diagrams

Figures S5-S14 show free energy diagrams of NH₃ electro-oxidation for Re(0001), Ru(0001),

Os(0001), Co(0001), Rh(111), Ir(111), Ni(111), Pd(111), Ag(111), and Au(111).

Reaction Coordinate

Figure S5. Free energy diagram for ammonia electro-oxidation on Re(0001) at 0 V_{RHE} . Stoichiometry is balanced with OH⁻, H₂O, H₊, and e⁻, which are not shown explicitly. All energies are given with adsorbates at infinite separation, 1/9 ML coverage. Zero energy corresponds to N₂(g).

Reaction Coordinate

Figure S6. Free energy diagram for ammonia electro-oxidation on Ru(0001) at 0 V_{RHE}. Stoichiometry is balanced with OH⁻, H₂O, H₊, and e⁻, which are not shown explicitly. All energies are given with adsorbates at infinite separation, 1/9 ML coverage. Zero energy corresponds to N₂(g).

Figure S7. Free energy diagram for ammonia electro-oxidation on Os(0001) at 0 V_{RHE} . Stoichiometry is balanced with OH⁺, H₂O, H+, and e⁻, which are not shown explicitly. All energies are given with adsorbates at infinite separation, 1/9 ML coverage. Zero energy corresponds to N₂(g).

Figure S8. Free energy diagram for ammonia electro-oxidation on Co(0001) at 0 V_{RHE}. In purple and red are N-N bond formation reaction steps with the respective transition state (TS) energies. Stoichiometry is balanced with OH⁻, H₂O, H+, and e⁻, which are not shown explicitly. All energies are given with adsorbates at infinite separation, 1/9 ML coverage. Zero energy corresponds to N₂(g).

Figure S9. Free energy diagram for ammonia electro-oxidation on Rh(111) at 0 V_{RHE} . In purple and red are N-N bond formation reaction steps with the respective transition state (TS) energies. Stoichiometry is balanced with OH⁻, H₂O, H+, and e⁻, which are not shown explicitly. All energies are given with adsorbates at infinite separation, 1/9 ML coverage. Zero energy corresponds to N₂(g).

Figure S10. Free energy diagram for ammonia electro-oxidation on Ir(111) at 0 V_{RHE}. In purple and red are N-N bond formation reaction steps with the respective transition state (TS) energies. Stoichiometry is balanced with OH⁻, H₂O, H+, and e⁻, which are not shown explicitly. All energies are given with adsorbates at infinite separation, 1/9 ML coverage. Zero energy corresponds to N₂(g).

Figure S11. Free energy diagram for ammonia electro-oxidation on Ni(111) at 0 V_{RHE}. Stoichiometry is balanced with OH⁻, H₂O, H₊, and e⁻, which are not shown explicitly. All energies are given with adsorbates at infinite separation, 1/9 ML coverage. Zero energy corresponds to N₂(g).

Figure S12. Free energy diagram for ammonia electro-oxidation on Pd(111) at 0 V_{RHE} . In purple and red are N-N bond formation reaction steps with the respective transition state (TS) energies. Stoichiometry is balanced with OH⁻, H₂O, H+, and e⁻, which are not shown explicitly. All energies are given with adsorbates at infinite separation, 1/9 ML coverage. Zero energy corresponds to N₂(g).

Figure S13. Free energy diagram for ammonia electro-oxidation on Ag(111) at 0 V_{RHE}. Stoichiometry is balanced with OH⁺, H₂O, H₊, and e⁺, which are not shown explicitly. All energies are given with adsorbates at infinite separation, 1/9 ML coverage. Zero energy corresponds to N₂(g).

Figure S14. Free energy diagram for ammonia electro-oxidation on Au(111) at 0 V_{RHE} . Stoichiometry is balanced with OH⁻, H₂O, H₊, and e⁻, which are not shown explicitly. All energies are given with adsorbates at infinite separation, 1/9 ML coverage. Zero energy corresponds to N₂(g).