Supporting Information

UV-Curable Coatings from Multi-Armed Cardanol-Based Acrylate Oligomers

Ren Liu¹, Xiaopeng Zhang¹, Jiajia Zhu¹, Xiaoya Liu¹*, Zhen Wang², and Jingling Yan²*

- 1. The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- Laboratory of Polymer Composites Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, 130022, China.

* Corresponding authors: Xiaoya Liu, Email: lxy@jiangnan.edu.cn. Phone: +86-510-85326066, Fax: +86-510-85917763.

Jingling Yan, Email: jyan@ciac.ac.cn. Phone: +86-431-85262682, Fax: +86-431-85262682.

Content

 Table S1. Acid numbers, epoxy equivalent weights, and iodine values of multi-armed

 cardanol-based acrylate oligomers and their intermediates

 Table S2. Characteristic chemical shifts of protons for representative cardanol-based acrylate

 and its intermediates

Figure S1. GPC traces for A-Gly-3 and its intermediates

Figure S2. Images of cardanol-based acrylates and acrylated epoxidized soybean oil (ASBO) (From the left to the right: ASBO, A-Gly-3, A-Xyl-4, A-TGly-5, A-Suc-6)

 Table S1. Acid numbers, epoxy equivalent weights, and iodine values of multi-armed cardanol

 based acrylate oligomers and their intermediates

Oligomer ^a	Theoretical acid number	Measured acid number	Epoxy equivalent weight (g/eq)	Epoxy value	Iodine value
Polyacid-3	282	288			
U-Gly-3		2.3		0.020	101
E-Gly-3			395	0.253	19
A-Gly-3		5.0		0.031	
Polyacid-4	260	268			
U-Xyl-4		2.1		0.024	99
E-Xyl-4			392	0.255	14
A-Xyl-4		5.0		0.015	
Polyacid-5	259	258			
U-TGly-5		1.8		0.018	98
E-TGly-5			413	0.242	15
A-TGly-5		4.7		0.032	
Polyacid-6	215	223			
U-Suc-6		4.7		0.015	95
E-Suc-6			442	0.226	16
A-Suc-6		4.2	5600	0.018	

^a The oligomers were named after their functionality, core and number of arms, e.g. A-Gly-3 was three-armed acrylate oligomer with a glycerol core, U-Suc-6 was six armed unsaturated oligomer with a sucrose core.

 Table S2. Characteristic chemical shifts of protons for representative cardanol-based acrylate

 and its intermediates

Compound	Chemical	Group assignment					
1	shift (ppm)						
Three-armed	5.2-5.3	H of <i>CH</i> in glycerol residue					
polyacid	4.0-4.4	H of CH_2 in glycerol residue					
from	3.0-3.2	H on carbon attached to carboxylic acid in					
glycerol		cyclohexane residue					
	2.5-2.7	H on carbon attached to carboxylic acid in					
		cyclohexane residue					
	1.0-2.4	H of CH_2 and CH in cyclohexane residue					
	0.8-0.9	H of CH_3 in cyclohexane residue					
U-Gly-3	7.1-7.2, 6.7-	aromatic H in cardanol residue					
	6.9						
	5.7-5.9, 5.3-	H of <i>CH=CH</i> in the side chain of cardanol residue					
	5.5, 4.9-5.1						
	3.9-4.4	H of $-O-CH_2-CH(OH)-CH_2-O$ - in the ring-opening					
		product of glycidyl group					
	2.8-2.9	H of CH ₂ in –CH=CH- <i>CH</i> ₂ -CH=CH- group					
	2.5-2.7	H of benzyl CH_2 in cardanol residue					
	1.9-2.1	H of CH_2 in $-CH_2$ -CH=CH- group					
	1.55-1.65	H of CH_2 attached to benzyl carbon					
	1.2-1.4	H of CH_2 in the side chain of cardanol residue					
	0.8-1.1	H of CH_3 in the side chain of cardanol residue					
E-Gly-3	2.8-3.2	H of <i>CH</i> in internal epoxy group					
	1.45-1.55	H of CH_2 adjacent to epoxy group					
A-Gly-3 6.4-6.5, 6.		H of $CH_2 = CH$ in acrylate group					
	6.2, 5.8-5.9						

Figure S1. GPC traces for A-Gly-3 and its intermediates

Figure S2. Images of cardanol-based acrylates and acrylated epoxidized soybean oil (ASBO) (From the left to the right: ASBO, A-Gly-3, A-Xyl-4, A-TGly-5, A-Suc-6)