# **Supplementary Information**

# A Steric Effect on the Nucleophilic Reactivity of Nickel(III)-Peroxo Complexes

Jalee Kim,<sup>1,‡</sup> Bongki Shin,<sup>1,‡</sup> Hyunjeong Kim,<sup>1</sup> Junhyung Lee,<sup>1</sup> Joongoo Kang,<sup>1</sup> Sachiko Yanagisawa,<sup>2</sup> Takashi Ogura,<sup>2</sup> Hideki Masuda,<sup>3</sup> Tomohiro Ozawa,<sup>3</sup> and Jaeheung Cho\*<sup>1</sup>

<sup>1</sup>Department of Emerging Materials Science, DGIST, Daegu 711-873, Korea <sup>2</sup>Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan <sup>3</sup>Picobiology Institute, Graduate School of Life Science, University of Hyogo, Koto 3-2-1, Kamigori-cho,

*Ako-gun, Hyogo 678-1297, Japan* <sup>‡</sup>These authors contributed equally.

\*To whom correspondence should be addressed.

E-mail: jaeheung@dgist.ac.kr

#### **Experimental Section**

# Synthesis of Ligands

**Pyridine-2,6-dicarbaldehyde (L1).** We have modified the published method by using SeO<sub>2</sub> and 1,4dioxane to obtain L1.<sup>[1]</sup> Yield: 5.12 g (71%), <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz): 8.07 (1H, t, PyH), 8.16 (2H, d, PyH), 10.15 (2H, s, CH).

*N,N'*-(pyridine-2,6-diylbis(methylene))dicyclohexylamine (L2). To a stirred ethanol solution of L1 (13 g, 10 mmol) was added cyclohexylamine (2.86 mL, 25 mmol) over 1 hour. Upon stirring for 6 hours, excess NaBH<sub>4</sub> was added to the mixture, which was further stirred for several hours. The solution was filtered and evaporated under reduced pressure. An ordinary work-up treatment of the reaction mixture with NaOH followed by extraction with CHCl<sub>3</sub> and evaporation gave an organic product. Yield: 2.38 g (88%), <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz): ~1.08 (12H, m, CH<sub>2</sub>), ~1.70 (8H, m, CH<sub>2</sub>), 2.40 (2H, s, CH), 3.82 (4H, s, CH<sub>2</sub>), 7.05 (2H, d, PyH), 7.48 (1H, t, PyH).

**2,6-bis(chloromethyl)pyridine (L3).** To a stirred Et<sub>2</sub>O solution of 2,6-bis(hydroxymethyl)pyridine (6.33 g) in an ice bath was slowly added thionyl chloride (7.29 mL). The mixture was then warmed on the water bath for 20 hours, during which time a white precipitate formed. The precipitate was collected by filteration. The solid was dissolved in water treated with NaHCO<sub>3</sub>. The mixture was extracted with ethyl acetate. The solvent was removed under reduced pressure to yield **L3**, as a white solid. Yield: 8.82 g (91 %), <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz): 4.66 (4H, s, CH<sub>2</sub>), 7.45 (2H, t, CH), 7.76 (1H, t, PyH).

*N,N*'-di-cyclohexyl-2,11-diaza[3,3](2,6)pyridinophane (CHDAP). L2 (0.498 g, 2 mmol) in DMF and sodium carbonate (0.15 g) were heated at reflux. A DMF solution of L3 (0.603 g, 3.4 mmol) was then added dropwise to the mixture over 1 hour while stirring. After adding an ice water, a white powder precipitated and was filtered and washed with water and ethanol. Yield: 0.58 g (72%), <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta \sim 1.14$  (2H, m, CH<sub>2</sub>),  $\sim 1.39$  (8H, m, CH<sub>2</sub>), 1.68 (2H, d, CH<sub>2</sub>), 1.87 (4H, d, CH<sub>2</sub>), 2.03 (4H, d, CH<sub>2</sub>) 2.76 (2H, m, CH), 3.92 (8H, s, CH<sub>2</sub>), 6.72 (4H, d, PyH), 7.05 (2H, t, PyH). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta = 159.2$ , 135.5, 122.5, 67.9, 60.9, 30.2, 26.6. CSI-TOF-MS (in CH<sub>3</sub>CN): *m/z* 405.3008 [M + H]<sup>+</sup>.

## **Preparation of Precursor Complexes**

[Ni(TBDAP)(NO<sub>3</sub>)(H<sub>2</sub>O)](NO<sub>3</sub>). To an acetonitrile solution (2 mL) of Ni(NO<sub>3</sub>)<sub>2</sub><sup>-6</sup>H<sub>2</sub>O (0.29 g, 1 mmol), a chloroform solution (2 mL) of TBDAP (0.35 g, 1 mmol) was added slowly. The mixture was stirred for overnight. The solvents were removed under vacuum to yield blue powder, which was recrystallized from CH<sub>3</sub>CN/Et<sub>2</sub>O solution as a blue product. Yield: 0.4 g (75%). Paramagneitc <sup>1</sup>H NMR spectrum in SI, Figure S10. UV-vis (CH<sub>3</sub>CN):  $\lambda_{max}$  ( $\varepsilon$ ) = 645 nm (10 M<sup>-1</sup> cm<sup>-1</sup>), 823 nm (10 M<sup>-1</sup> cm<sup>-1</sup>), and 1066 nm (25 M<sup>-1</sup> cm<sup>-1</sup>). ESI-MS (CH<sub>3</sub>CN): *m*/*z* 472.2 for [Ni(TBDAP)(NO<sub>3</sub>)]<sup>+</sup>. Anal. Calcd for C<sub>22</sub>H<sub>34</sub>N<sub>6</sub>NiO<sub>7</sub>: C, 47.76; H, 6.19; N, 15.19. Found: C, 47.85; H, 5.79; N, 15.33.  $\mu_{eff}$  = 2.9 BM. X-ray quality crystals were obtained by slow diffusion of Et<sub>2</sub>O into a solution of the complex in CH<sub>3</sub>CN.

[Ni(CHDAP)(NO<sub>3</sub>)](NO<sub>3</sub>)(CH<sub>3</sub>OH). CHDAP (0.18 g, 0.5 mmol) in chloroform (2 mL) was added to CH<sub>3</sub>CN solution (2 mL) of Ni(NO<sub>3</sub>)<sub>2</sub> 6H<sub>2</sub>O (0.15 g, 0.5 mmol). The resulting solution was stirred for 12 hours, affording a blue solution. The solvents were removed under vaccum to yield blue powder, which was recrystallized from MeOH/Et<sub>2</sub>O solution as a blue crystalline product. Crystalline yield: 0.18 g (75%). Paramagneitc <sup>1</sup>H NMR spectrum in SI, Figure S10. UV-vis (CH<sub>3</sub>CN):  $\lambda_{max}$  ( $\epsilon$ ) = 588 nm (15 M<sup>-1</sup> cm<sup>-1</sup>), 835 nm (25 M<sup>-1</sup> cm<sup>-1</sup>), and 1010 nm (45 M<sup>-1</sup> cm<sup>-1</sup>). ESI-MS (CH<sub>3</sub>CN): *m/z* 251.7 for [Ni(CHDAP)(CH<sub>3</sub>CN)]<sup>2+</sup>, and 524.3 for [Ni(CHDAP)(NO<sub>3</sub>)]<sup>+</sup>. Anal. Calcd for C<sub>27</sub>H<sub>40</sub>N<sub>6</sub>O<sub>7</sub>Ni: C, 52.36; H, 6.51; N, 13.57. Found: C, 52.28; H, 6.30; N, 13.75.  $\mu_{eff}$  = 3.1 BM.

[Ni(CHDAP)Cl<sub>2</sub>]. CHDAP (0.15 g, 0.37 mmol) in dichloromethane (10 mL) was added to suspension of NiCl<sub>2</sub> (0.05 g, 0.37 mmol) in CH<sub>3</sub>CN (10 mL). The resulting solution was refluxed for 2 days, giving a green solution. The solvents were removed under vacuum to yield solid, which was redissolved in CH<sub>3</sub>CN (4 mL). Et<sub>2</sub>O and pentane were added to the solution to give a green powder. The green powder was collected by filteration, washed with Et<sub>2</sub>O, and dried under vacuum. Yield: 0.17 g (86%). UV-vis (CH<sub>3</sub>CN):  $\lambda_{max}$  ( $\epsilon$ ) = 619 nm (60 M<sup>-1</sup> cm<sup>-1</sup>), 659 nm (50 M<sup>-1</sup> cm<sup>-1</sup>), and 696 nm (50 M<sup>-1</sup> cm<sup>-1</sup>). ESI-MS (CH<sub>3</sub>CN): *m/z* 497.2 for [Ni(CHDAP)Cl]<sup>+</sup>.  $\mu_{eff}$  = 3.4 BM.

### Reference

[1] Koz, G.; Özdemir, N.; Astley, D.; Dincer, M.; Astley. S. T. J. Mol. Struct. 2010, 966, 39-47.

|                                                                   |            | Bond Dist                                                           | ances (Å) |                                     |            |
|-------------------------------------------------------------------|------------|---------------------------------------------------------------------|-----------|-------------------------------------|------------|
| [Ni(TBDAP)(NO <sub>3</sub> )(H <sub>2</sub> O)](NO <sub>3</sub> ) |            | [Ni(CHDAP)(NO <sub>3</sub> )](NO <sub>3</sub> )(CH <sub>3</sub> OH) |           | $1\text{-}ClO_4\text{-}0.5CH_2Cl_2$ |            |
| Ni1-N1                                                            | 2.291(2)   | Ni1-N1                                                              | 1.9512(9) | Ni1-N1                              | 1.9195(15) |
| Ni1-N2                                                            | 1.977(2)   | Ni1-N2                                                              | 2.1889(9) | Ni1-N2                              | 2.2453(16) |
| Ni1-N3                                                            | 2.277(2)   | Ni1-N3                                                              | 1.9429(9) | Ni1-N3                              | 1.9193(15) |
| Ni1-N4                                                            | 1.985(2)   | Ni1-N4                                                              | 2.2058(9) | Ni1-N4                              | 2.2901(15) |
| Ni1-O1                                                            | 2.0940(17) | Ni1-01                                                              | 2.1352(8) | Ni1-O1                              | 1.8589(14) |
| Ni1-O4                                                            | 2.0390(18) | Ni1-O2                                                              | 2.0951(8) | Ni1-O2                              | 1.8670(14) |
|                                                                   |            |                                                                     |           | 01-02                               | 1.401(2)   |
|                                                                   |            | Bond Ar                                                             | ngles (°) |                                     |            |
| [Ni(TBDAP)(NO <sub>3</sub> )(H <sub>2</sub> O)](NO <sub>3</sub> ) |            | [Ni(CHDAP)(NO <sub>3</sub> )](NO <sub>3</sub> )(CH <sub>3</sub> OH) |           | $1\text{-}ClO_4{\cdot}0.5CH_2Cl_2$  |            |
| N1- Ni1-N2                                                        | 81.30(8)   | N1- Ni1-N2                                                          | 82.32(4)  | N1-Ni1-N2                           | 79.85(6)   |
| N1-Ni1-N3                                                         | 149.30(8)  | N1-Ni1-N3                                                           | 95.64(4)  | N1-Ni1-N3                           | 93.82(6)   |
| N1-Ni1-N4                                                         | 77.45(8)   | N1-Ni1-N4                                                           | 79.40(4)  | N1-Ni1-N4                           | 81.99(6)   |
| N2-Ni1-N3                                                         | 77.73(8)   | N2-Ni1-N3                                                           | 80.42(4)  | N2-Ni1-N3                           | 82.96(6)   |
| N2-Ni1-N4                                                         | 90.51(9)   | N2-Ni1-N4                                                           | 153.22(4) | N2-Ni1-N4                           | 153.17(6)  |
| N3-Ni1-N4                                                         | 80.55(8)   | N3-Ni1-N4                                                           | 82.08(4)  | N3-Ni1-N4                           | 78.71(6)   |
|                                                                   |            |                                                                     |           | 01-Ni1-O2                           | 44.19(7)   |
|                                                                   |            |                                                                     |           | Ni1-O1-O2                           | 68.21(8)   |
|                                                                   |            |                                                                     |           | Ni1-O2-O1                           | 67.60(8)   |

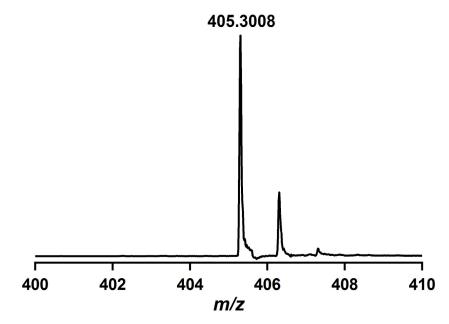
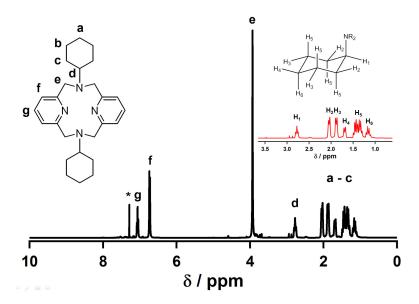
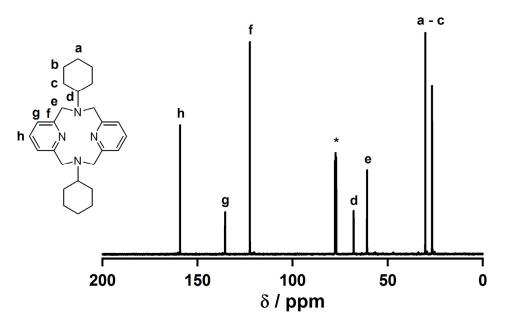
**Table S1**. Selected bond distances (Å) and angles (°) for [Ni(TBDAP)(NO<sub>3</sub>)(H<sub>2</sub>O)](NO<sub>3</sub>), [Ni(CHDAP)(NO<sub>3</sub>)](NO<sub>3</sub>)(CH<sub>3</sub>OH) and **1**-ClO<sub>4</sub>·0.5CH<sub>2</sub>Cl<sub>2</sub>.

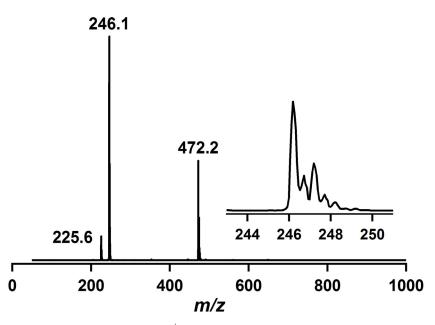
Table S2. Structural comparison for the nickel(III)-peroxo complexes (Å) in  $[Ni(TBDAP)(O_2)]^+$  (1) and $[Ni(CHDAP)(O_2)]^+$  (2).X-rayDFT

|                                 | X-ray                | DFT                  |                      |
|---------------------------------|----------------------|----------------------|----------------------|
|                                 | $[Ni(TBDAP)(O_2)]^+$ | $[Ni(TBDAP)(O_2)]^+$ | $[Ni(CHDAP)(O_2)]^+$ |
| avg. Ni-O                       | 1.8630               | 1.86                 | 1.87                 |
| avg. Ni-N <sub>equatorial</sub> | 1.9194               | 1.93                 | 1.93                 |
| avg. Ni-N <sub>axial</sub>      | 2.2677               | 2.30                 | 2.23                 |
| 0-0                             | 1.401                | 1.36                 | 1.36                 |

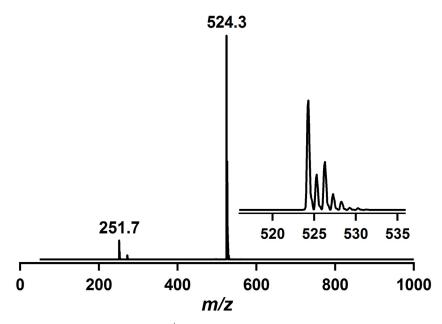
Table S3. Kinetic data for the oxidation of *para*-substituted benzaldehydes by 1 and 2.

|                      | 1                            | 2                            |  |
|----------------------|------------------------------|------------------------------|--|
| Substrate            | $k_{\rm obs}~({\rm s}^{-1})$ | $k_{\rm obs}~({\rm s}^{-1})$ |  |
| p-tolualdehyde       | $3.5 \times 10^{-4}$         | $1.4 \times 10^{-3}$         |  |
| 4-fluorobenzaldehyde | $8.4	imes10^{-4}$            | $4.1 \times 10^{-3}$         |  |
| Benzaldehyde         | $1.3 \times 10^{-3}$         | $6.1 \times 10^{-3}$         |  |
| 4-chlorobenzaldehyde | $2.2 \times 10^{-3}$         | $8.9 \times 10^{-3}$         |  |
| 4-bromobenzaldehyde  | $2.5 \times 10^{-3}$         | $9.9 \times 10^{-3}$         |  |

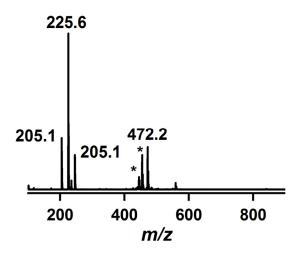






Figure S1. CSI-TOF-MS for the CHDAP ligand in CH<sub>3</sub>CN.

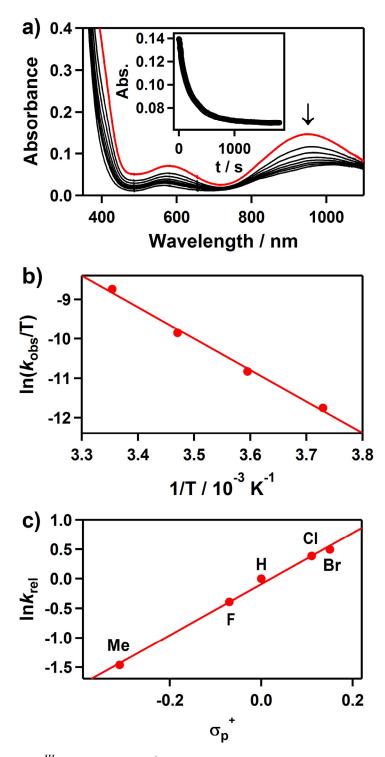



**Figure S2**. <sup>1</sup>H NMR spectrum of the CHDAP ligand in CDCl<sub>3</sub> at room temperature. The asterisk is a solvent band. Inset shows the assignments for the signals of the cyclohexyl groups.

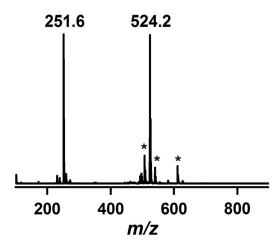



**Figure S3**. <sup>13</sup>C NMR spectrum of the CHDAP ligand in CDCl<sub>3</sub> at room temperature. The asterisk is a solvent band.

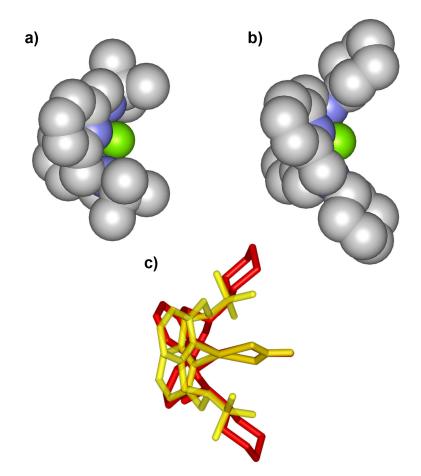



**Figure S4**. ESI-MS for  $[Ni(TBDAP)(NO_3)]^+$  in CH<sub>3</sub>CN. Mass peaks at 225.6, 246.1 and 472.2 are assigned to  $[Ni(TBDAP)(CH_3CN)]^{2+}$ ,  $[Ni(TBDAP)(CH_3CN)_2]^{2+}$  and  $[Ni(TBDAP)(NO_3)]^+$ , respectively.

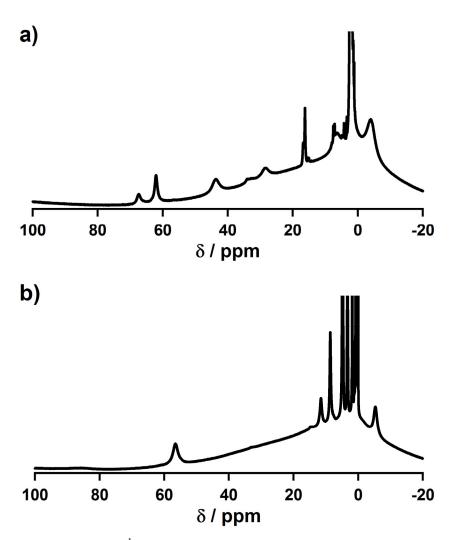



**Figure S5**. ESI-MS for  $[Ni(CHDAP)(NO_3)]^+$  in CH<sub>3</sub>CN. Mass peaks at 251.7 and 524.3 are assigned to  $[Ni(CHDAP)(CH_3CN)]^{2+}$  and  $[Ni(CHDAP)(NO_3)]^+$ , respectively.




**Figure S6**. ESI-MS taken after the completion of the reaction of **1** with 2-PPA in CH<sub>3</sub>CN at 25 °C, showing the formation of a Ni(II) precursor together with some unidentified species (\*): Mass peaks at m/z of 205.1, 225.6, 205.1 and 472.2 are assigned to  $[Ni(TBDAP)]^{2+}$ ,  $[Ni(TBDAP)(CH_3CN)_2]^{2+}$  and  $[Ni(TBDAP)(NO_3)]^+$ , respectively.




**Figure S7**. Reactions of  $[Ni^{III}(CHDAP)(O_2)]^+$  (2) with aldehydes in CH<sub>3</sub>CN:CH<sub>3</sub>OH (1:1). (a) UV-vis spectral changes of 2 (4 mM) upon addition of 100 equiv. of 2-PPA at 25 °C. Inset shows the time course of the absorbance at 934 nm. (b) Plot of first-order rate constants against 1/T to determine activation parameters. (c) Hammett plot of  $\ln k_{rel}$  against  $\sigma_p^+$  of *para*-substituted benzaldehydes. The  $k_{rel}$  values were calculated by dividing  $k_{obs}$  of *para*-X-Ph-CHO (X = Me, F, H, Cl, Br) by  $k_{obs}$  of benzaldehyde at 25 °C.



**Figure S8**. ESI-MS taken after the completion of the reaction of **2** with 2-PPA in CH<sub>3</sub>CN at 25 °C, showing the formation of a Ni(II) precursor together with some unidentified species (\*): Mass peaks at m/z of 251.6 and 524.2 are assigned to [Ni(CHDAP)(CH<sub>3</sub>CN)]<sup>2+</sup> and [Ni(CHDAP)(NO<sub>3</sub>)]<sup>+</sup>, respectively.



**Figure S9**. Structural comparison of Ni(II) precursor complexes. Space-filling diagrams of  $[Ni(TBDAP)]^{2+}$  (a) and  $[Ni(CHDAP)]^{2+}$  (b) moieties taken from the X-ray crystal structures of  $[Ni(TBDAP)(NO_3)(H_2O)]^+$  and  $[Ni(CHDAP)(NO_3)]^+$ , respectively, where NO<sub>3</sub><sup>-</sup> and H<sub>2</sub>O molecules are omitted for clarity (C, gray; N, blue; Ni, green). (c) Overlay of the molecular structures of Ni(II) precursors with TBDAP (yellow) and CHDAP (red), illustrating difference in the steric effect on *tert*-butyl vs cyclohexyl groups toward the nickel center. Although the structure of  $[Ni(TBDAP)(NO_3)]^+$  is plagued by problems of low-quality crystals, the data were sufficient to show the difference of substituents.



**Figure S10**. The Paramagnetic <sup>1</sup>H NMR spectra of (a)  $[Ni(TBDAP)(NO_3)(H_2O)]^+$  and (b)  $[Ni(CHDAP)(NO_3)]^+$  in CD<sub>3</sub>CN at room temperature.