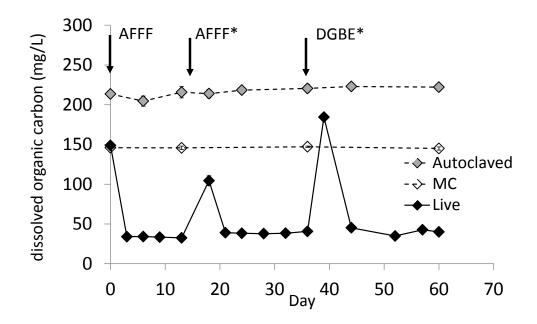
Supporting Information: Aerobic Biotransformation of Fluorotelomer Thioether Amido Sulfonate (Lodyne) in AFFF-Amended Microcosms

Katie C. Harding-Marjanovic,^{1,#} Erika F. Houtz,^{1,^} Shan Yi,¹ Jennifer A. Field,² David L. Sedlak,¹ Lisa Alvarez-Cohen^{1,3}*

¹Department of Civil and Environmental Engineering, University of California at Berkeley, California, 94720

²Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331

³Earth Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720


[#]Current address: Exponent Inc., Pasadena, CA 91101

[^]Current address: Environmental Chemistry Laboratory, California Department of Toxic Substances Control, Berkeley, CA 94710

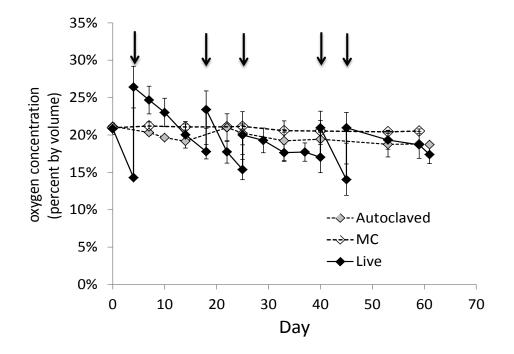

*Corresponding author phone: 510-643-5969; E-mail: alvarez@ce.berkeley.edu

Table of Contents

Figure S1: Dissolved organic carbon concentrations in microcosms	S3
Figure S2: Headspace oxygen concentrations in microcosms	S3
Figure S3. Concentrations of 4:2 and 8:2 FtS in microcosms	S6
Figure S4. Concentrations of 7:3 FtCA and 8:2 FtUCA in microcosms	S6
Figure S5. Concentrations of 6:2 FtCA and 8:2 FtCA in microcosms	S7
Figure S6. Concentrations if PFHpA and PFOA in microcosms	S7
Figure S7. Chromatograph of m/z 586, m/z 602, and m/z 618 ions in a live microcosm	S9
Figure S8. Chromatograph of m/z 702 and m/z 718 ions in a live microcosm	S9
Figure S9. Average LC-MS/MS response of molecular ion 702	S10
Figure S10. Average LC-MS/MS response of molecular ion 718	S10
Figure S11. Average LC-MS/MS response of molecular ion 586	S11
Figure S12. Average LC-MS/MS response of molecular ion 686	S11
Figure S13. Product ion scans of m/z 602 and m/z 618	S12
Figure S14. Total oxidizable precursor assay in autoclaved microcosms	S13
Figure S15. Total oxidizable precursor assay in medium controls	S 13
Table S1. Chemical composition of Ansul AFFF	S4
Table S2. LC-MS/MS conditions for 4:2, 6:2, and 8:2 FtS	
Table S3. Solvent gradient for FtCA quantification	
Table S4. LC-MS/MS conditions for Shimadzu Nexera	
Table S5. LC-MS/MS calibration parameters and quantification of FtTAoS	S5
Table S6. Measured mass, theoretical mass, and mass accuracy of intermediate products.	

Figure S1. Dissolved organic carbon concentrations in microcosms. AFFF amendment on day zero was made to live, autoclaved, and medium control bottles, while the AFFF and DGBE amendments denoted with asterisks were made to live microcosms only. Error bars represent the standard deviation of triplicate microcosm bottles. MC is medium control.

Figure S2. Headspace oxygen concentrations in microcosms. Oxygen amendment is denoted by an arrow and occurred in the live microcosms only. Error bars represent the standard deviation of triplicate microcosm bottles. MC is medium control.

Ansul AFFF	' MSDS ¹	Determined in this study			
Listed constituent	-		Concentration in neat Ansul AFFF stock		
Diethylene glycol monobutyl ether	17%	Diethylene glycol monobutyl ether	220 g/L		
"Proprietary mixture of hydrocarbon surfactants, fluorosurfactants, and inorganic salts not otherwise specified"		4:2 FtTAoS	0.0024 g/L (0.005 mM)		
	5-10%	6:2 FtTAoS	15.2 g/L (25.9 mM)		
		8:2 FtTAoS	0.038 g/L (0.056 mM)		
		6:2 FtSOAoS	Not quantified		
1-Propanol	0.4%	Not analyzed			
Hexylene glycol	0.5%	Not analyzed			
Water	75-80%	Not analyzed			

Table S1. Chemical composition of Ansul AFFF, as specified in a representative MSDS sheet (left) and measured in the stock solution used in this study (right).

¹A representative MSDS sheet was used to provide the information shown: Ansulite 3 % AFFF AFC-5-A Foam Concentrate MSDS Prepared by Wormald/Tyco International, Rydalmere, Australia, April 2008.

²All other fluorinated surfactants described in the text or in Houtz *et al.* 2013 were not detected in the Ansul AFFF formulation used for this study, including fluorotelomer thiohydroxy ammonium (6:2 FtTHN⁺).

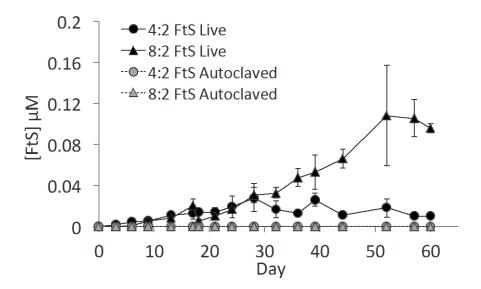
			Fragmentor	Quantifier	Collision	Qualifier	Collision	
	Internal	Molecular	Voltage	Ion	Energy	Ion	Energy	
Compound	Standard	Ion	(V)	(m/z)	(V)	(m/z)	(V)	Polarity
4:2 FtS	[¹³ C ₂] 6:2 FtS	327	135	307	20	81	20	Negative
6:2 FtS	[¹³ C ₂] 6:2 FtS	427	140	407	25	81	35	Negative
6:2 FtS	[¹³ C ₂] 6:2 FtS	527	140	507	30	81	40	Negative

Table S2. Monitored ion transitions, MS conditions, and internal standard for 4:2, 6:2, and 8:2 FtS on an Agilent LC-MS/MS.

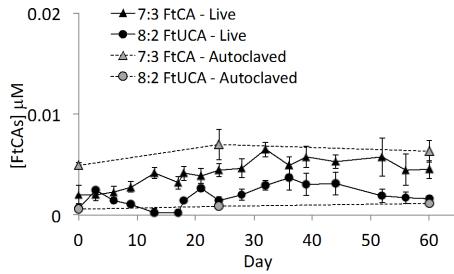
Table S3. Solvent gradient program used for FtCA quantification on Simadzu Nexera X2 UHPLC / ABSciEX 5500 Triple Quad MS system.

Time	
(min)	% MeOH
0.1	30
1	50
3.5	80
4	90
5	90
6	30
7	30

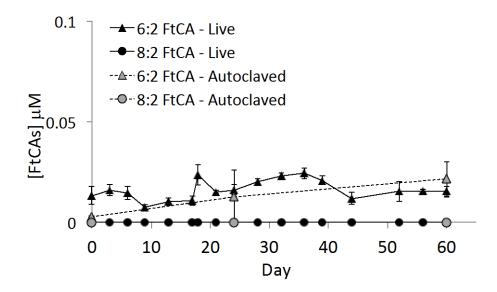
	AZ OTILLE / ADSEILA 5500 TIPIC Quad INS system.									
						Collision			Collision	
			Decluster	Quantifier	Collision	Cell Exit	Qualifier	Collision	Cell Exit	
	Internal	Molecular	Potential	Ion	Energy	Potential	Ion	Energy	Potential	
Compound	Standard	Ion	(V)	(m/z)	(V)	(V)	(m/z)	(V)	(V)	Polarity
5:3 FtCA (FPePA)	[¹³ C ₂] 6:2 FtS	341	50	237	20	15				Negative
7:3 FtCA (FHpPA)	[¹³ C ₄] PFOA	441	55	337	30	25	317	18	13	Negative
6:2 FtCA (FHEA)	[¹³ C ₂] 6:2 FtS	377	35	293	22	25	137	12	15	Negative
8:2 FtCA (FOEA)	[¹³ C ₅] PFNA	477	60	393	20	15	217	28	15	Negative
6:2 FtUCA (FHUEA)	[¹³ C ₂] 6:2 FtS	357	40	293	16	11	121	50	13	Negative
8:2 FtUCA (FOUEA)	[¹³ C ₅] PFNA	457	40	393	20	15	343	52	31	Negative


Table S4. Monitored ion transitions, MS conditions, and internal standards for Shimadzu Nexera X2 UHPLC / ABSciEX 5500 Triple Ouad MS system.

Quantification of 4:2 and 8:2 FtTAoS for which authentic standards were not available:


For the quantification of 6:2 FtTAoS, a commercial source material was available. To quantify 4:2 and 8:2 FtTAoS, the raw instrument responses for the compounds were first normalized to the instrument response of the mass labeled-6:2 FtS internal standard. This response ratio was then applied to the calibration curve obtained for 6:2 FtTAoS. This is delineated in Table S5.

	ion parameters and v		THOS ON Agricia LC	
Analyte	Calibration Range µg/L	Number of Calibration Points	R^2	Internal Standard
4:2 FtTAoS	calculated u	[¹³ C ₂] 6:2 FtS		
6:2 FtTAoS	1 – 24	[¹³ C ₂] 6:2 FtS		
8:2 FtTAoS	calculated u	[¹³ C ₂] 6:2 FtS		


Table S5 Calibration parameters and quantification of FtTAoS on Agilent LC-MS/MS

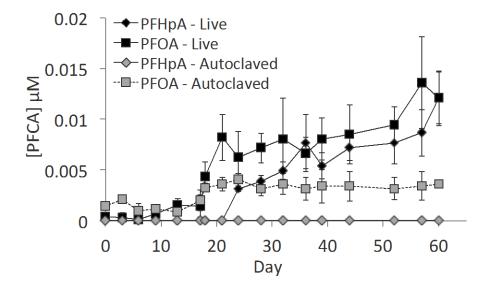

Figure S3. Concentrations of 4:2 and 8:2 FtS in microcosms. Error bars represent the standard deviation of triplicate microcosm bottles.

Figure S4. Concentrations of 7:3 FtCA and 8:2 FtUCA in microcosms. Error bars represent the standard deviation of triplicate microcosm bottles.

Figure S5. Concentrations of 6:2 FtCA and 8:2 FtCA in microcosms. Error bars represent the standard deviation of triplicate microcosm bottles.

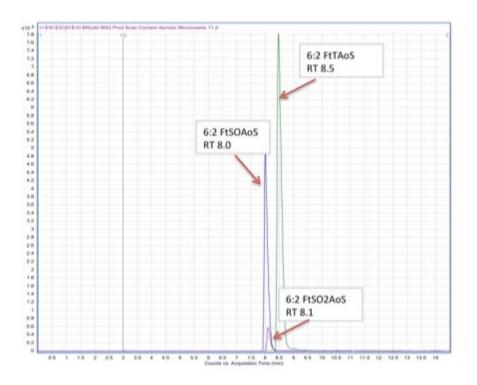
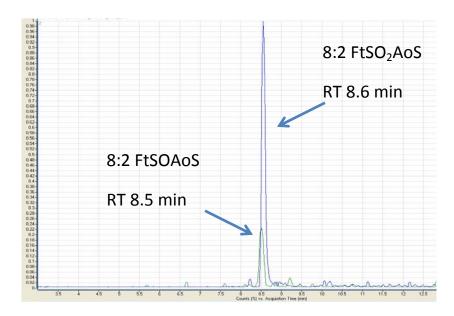
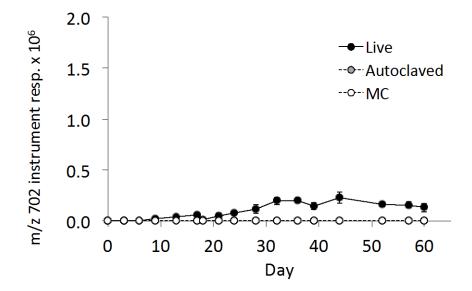
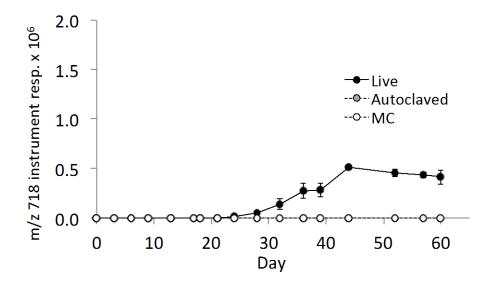


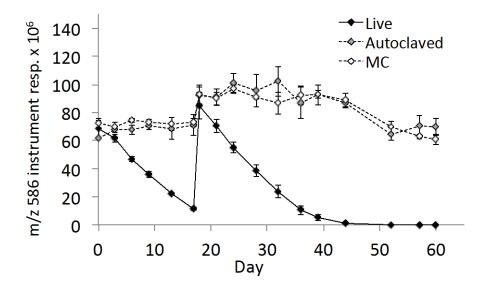
Figure S6. Concentrations of PFHpA and PFOA in microcosms. Error bars represent the standard deviation of triplicate microcosm bottles.

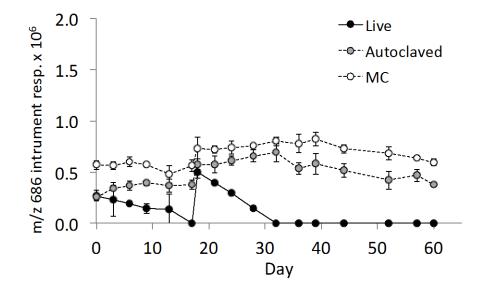

Table S6. Measured mass, theoretical mass, and mass accuracy of intermediate products identified by high resolution mass spectrometry. Retention time refers to the compound's LC-MS/MS elution time.

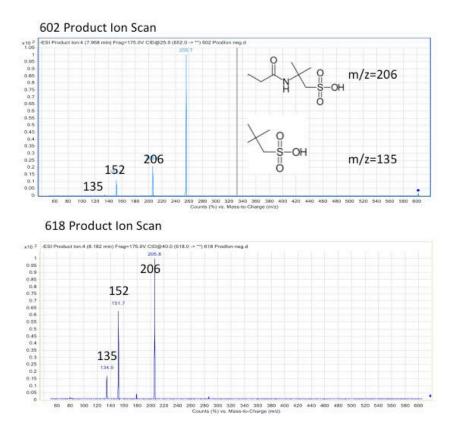
		Retention				Mass
		Time,		Measured	Theoretical	Accuracy,
Compound	m/z	minutes	Composition	Mass	Mass	ppm
6:2 FtSO ₂ AoS	618	8.1	$C_{15}H_{17}O_6NF_{13}S_2$	618.0276	618.0295	-3.11
6:2 FtSOAoS	602	8.0	$C_{15}H_{17}O_5NF_{13}S_2$	602.0329	602.0346	-2.84
8:2 FtSO ₂ AoS	718	8.6		NA		
8:2 FtSOAoS	702	8.5		NA		

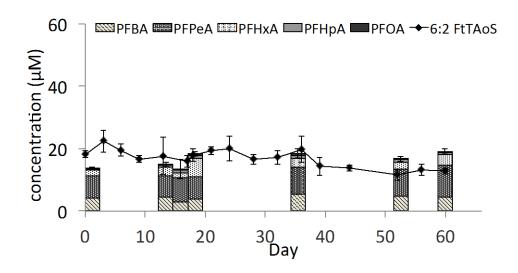

NA: Masses were not confirmed with HRMS.


Figure S7. Chromatograph of 6:2 FtTAoS (m/z 586), 6:2 FtSOAoS (m/z 602), and 6:2 FtSO₂AoS (m/z 618) molecular ions in a live microcosm.


Figure S8. Chromatograph of 8:2 FtSOAoS (m/z 702), and 8:2 FtSO₂AoS (m/z 718) molecular ions in a live microcosm on day 60 of the incubation. 8:2 FtTAoS (m/z 686) was not detected on day 60.


Figure S9. Average LC-MS/MS analyte response of molecular ion 702 at a retention time of 8.5 minutes, normalized to the response of the mass labeled-6:2 FtS internal standard. Error bars represent the standard deviation of triplicate bottles. MC is medium control.


Figure S10. Average LC-MS/MS analyte response of molecular ion 718 at a retention time of 8.6 minutes, normalized to the response of the mass labeled-6:2 FtS internal standard. Error bars represent the standard deviation of triplicate bottles. MC is medium control.


Figure S11. Average LC-MS/MS analyte response of molecular ion 586 (6:2 FtTAoS) at a retention time of 8.0 minutes, normalized to the response for the mass labeled-6:2 FtS internal standard. Error bars represent the standard deviation of triplicate bottles. MC is medium control.

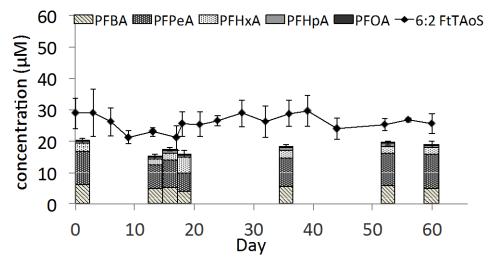

Figure S12. Average LC-MS/MS analyte response of molecular ion 686 (8:2 FtTAoS) at a retention time of 8.1 minutes, normalized to the response of the mass labeled-6:2 FtS internal standard. Error bars represent the standard deviation of triplicate bottles. MC is medium control.

Figure S13. Product ion scans of m/z 602 (6:2 FtSOAoS) and 618 (6:2 FtSO₂AoS) and proposed structures of daughter ions.

Figure S14. Concentration of 6:2 FtTAoS measured in the autoclaved microcosms and concentration of PFCA products measured in autoclaved microcosm samples after they were subjected to the total oxidizable precursor assay. PFNA was not detected.

Figure S15. Concentration of 6:2 FtTAoS measured in the medium controls and concentration of PFCA products measured in medium control samples after they were subjected to the total oxidizable precursor assay. PFNA was not detected.