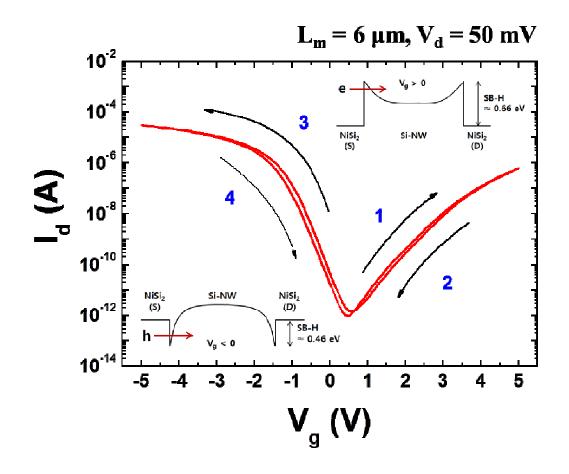
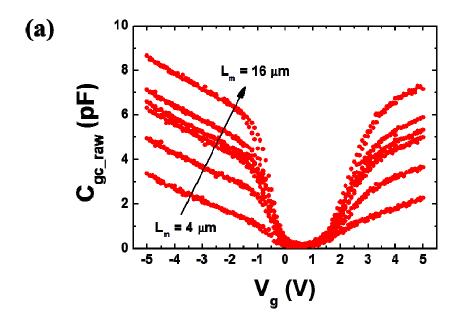
Supporting Information for "Scaling and graphical transport-map analysis of ambipolar Schottky-barrier thin-film transistors based on a parallel array of Si-nanowires"


Dae-Young Jeon,^{1,2} Sebastian Pregl,^{1,2,3} So Jeong Park,^{1,2} Larysa Baraban,³ Gianaurelio Cuniberti,³ Thomas Mikolajick,^{1,4} and Walter M. Weber^{1,*}

¹Namlab gGmbH, Nöthnitzer Strasse 64, 01187 Dresden, Germany


- ²Center for Advancing Electronics Dresden (CfAED), TU Dresden, 01062 Dresden, Germany
- ³Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden, Germany

⁴Chair for Nanoelectronic Materials, TU Dresden, Dresden, Germany

*Corresponding author: walter.weber@namlab.com

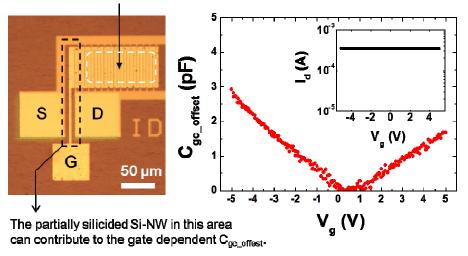
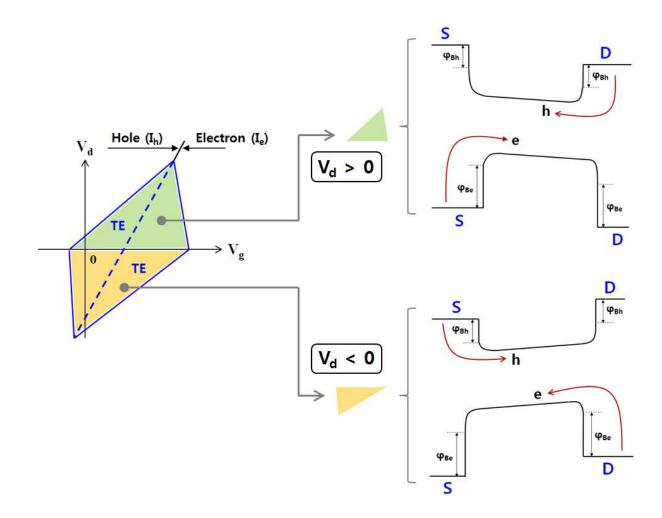


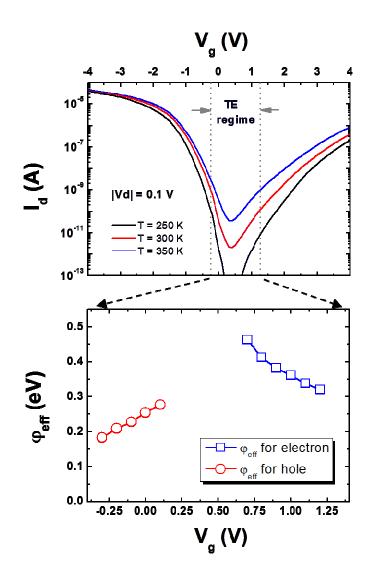
Figure S1. Transfer curve of the ambipolar SB-TFTs showing insignificant hysteresis effects. The hysteresis effects were also mostly vanished after annealing process in N₂ atmosphere at 300 °C. The numbers in the plot denote a sweep direction of V_g $(1 \rightarrow 2 \rightarrow 3 \rightarrow 4)$ and the illustrations with the inset describe the injection probability of hole or electron strongly affected by a bias condition of V_g.



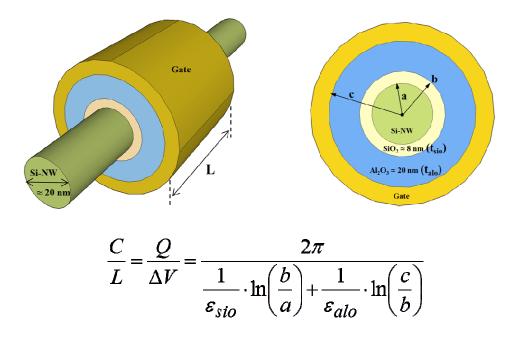
In this device for the extraction of the C_{gc_offset} , the whole area of channel is covered by $NiSi_2(L_m = 3 \ \mu m)$.

Figure S2. (a) The raw data of C_{gc} vs V_g as varying L_m . The capacitance isn't saturated even at high $|V_g|$ due to the gate dependent off-set capacitance (C_{gc_offset}) stemming from the particular structure of the device. (b) Optical microscope (OM) image of an ambipolar SB-TFTs, where the whole channel (the dotted white square) could be fully silicided with NiSi₂ and corresponding I_d and C_{gc} as a function of V_g . Constant I_d against V_g was observed in the inset, since I_d current mostly flows through a shortest path of NiSi₂ in the channel. Whereas, the gate dependent C_{gc} was interestingly obtained with the same device. Si-NW in parallel could exist on the whole area of substrate. This allows that the partially silicided Si-NW in the dotted black square can cause the C_{gc_offset} , even though it hardly contributes to I_d.

Figures S3. Schematic illustrating I-V map of thermionic emission (TE) dominant regime and possible band-diagram for I_h or I_e transport according to the sign of V_d bias. For $V_d > 0$ in the TE regime, I_h and I_e can be given as, individually: ^{1,2}


$$I_e \approx A^* T^2 \times \exp^{\left(\frac{-\varphi_{B_e}}{kT/q}\right)} \times \exp^{\left(\frac{V_g - V_s - V_c}{kT/q}\right)}$$
(S1)
$$I_h \approx B^* T^2 \times \exp^{\left(\frac{-\varphi_{B_h}}{kT/q}\right)} \times \exp^{\left(\frac{V_d - V_g + V_c}{kT/q}\right)}$$
(S2)

With assumption of $I_h = I_e$ on the border line of transition in the I-V map, a linear function of V_d vs V_g can be obtain by:


$$V_{d} = 2V_{g} + (\varphi_{Bh} - \varphi_{Be}) - 2V_{c} + V_{s} + \frac{kT}{q} \ln\left(\frac{A^{*}}{B^{*}}\right)$$
(S3)

Finally, one can get a simple equation as followings, since $V_s = 0$ and $kT/q \times ln(A^*/B^*)$ can be neglected at room temperature:

$$V_d \approx 2V_g + (\varphi_{Bh} - \varphi_{Be}) - 2V_c \quad (S4)$$

Figure S4. Temperature dependence of I_d vs. V_g (upper) and the effective barrier height φ_{eff} values extracted by $\ln(I_d/T^2) \approx -q/kT \times \varphi_{eff}(V)$ in the TE regime (lower), $L_m = 6 \ \mu m$. The φ_{eff} is still modulated by even V_g slightly beyond flat-band voltage within the TE regime where a very small amount of tunneling current is expected, due to the image force induced lowering of the effective barrier height.¹

- a = radius of Si-Nanowire
- $b = a + t_{sio}$ and $c = b + t_{alo}$
- ε_{sio} and ε_{alo} are permittivity of SiO₂ and Λl_2O_3 , respectively.

Figure S5. Illustration of a Si-NW transistor with a perfect surrounded gate. The equation denotes capacitance per unit gate length with two dielectric materials.^{3,4} One can calculate a capacitance per unit area of nanowire surface ($C_{ox calcul.}$) as:

$$C_{ox_calcul.} = \frac{C}{A} = \frac{C}{2a\pi \times L} = \frac{1}{a \times \left(\frac{1}{\varepsilon_{sio}} \times \ln\left(\frac{b}{a}\right) + \frac{1}{\varepsilon_{alo}} \times \ln\left(\frac{c}{b}\right)\right)}$$
(S5)

Then, the number of Si-NWs connected to source or drain was estimated as $\approx 1.6 \times 10^3$ with $C_{ox_calcul.} = C_{ox_meas.} = S/(2\pi a \times N)$, where A, S and N represent surface area of a single nanowire, slope of C_{gc} vs. L_m in the figure 3(b) and the number of Si-NWs, respectively. The value is comparable to that ($\approx 1.0 \times 10^3$) from a statistical analysis using SEM, with considering variation of nanowire diameters and assumption regarding gate geometry.

REFERENCES

- (1) Sze, S. M.; Ng, K. K., Physics of semiconductor devices. John Wiley & Sons: 2006.
- (2) Beister, J.; Wachowiak, A.; Heinzig, A.; Trommer, J.; Mikolajick, T.; Weber, W. M. physica status solidi (c) 2014, 11, (11-12), 1611-1617.
- (3) Khanal, D.; Wu, J. Nano letters 2007, 7, (9), 2778-2783.
- (4) Xiong, W. W., Multigate MOSFET technology. In FinFETs and Other Multi-Gate Transistors, Springer: 2008; pp 49-111.