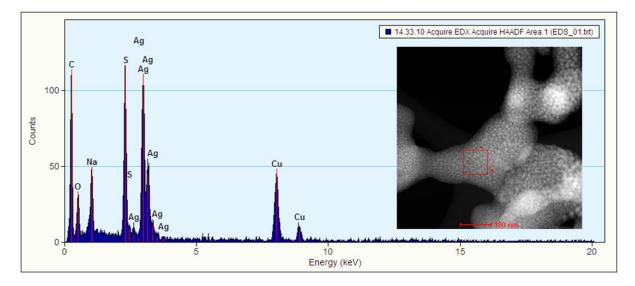
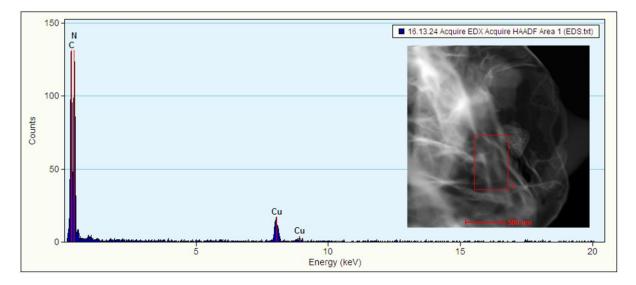
Supporting Information

Nonlinear Optical Investigations in Nine-Atom Silver Quantum Clusters and Graphitic Carbon Nitride Nanosheets


Kishore Sridharan[†], P. Sreekanth[‡], Tae Joo Park[†], and Reji Philip^{*,‡}

[†]Department of Materials Science and Engineering, Hanyang University, Ansan 426-791, Republic of Korea


[‡]Ultrafast and Nonlinear Optics Lab, Light and Matter Physics Group, Raman Research Institute, Bangalore 560080, India

*Corresponding author

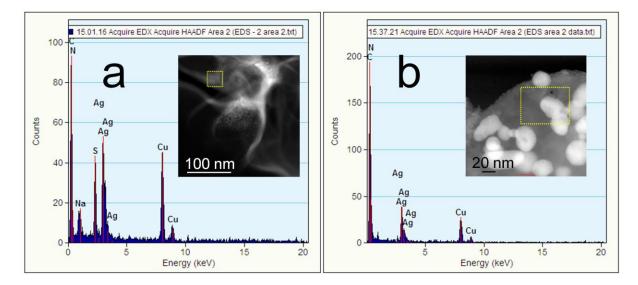

Email: reji@rri.res.in

Figure S1. Energy dispersive X-ray spectra obtained from the area marked in the HAADF-STEM image shown in the inset. The presence of the elemental peaks from Ag, S, and Na confirm the formation of Ag₉ QCs. Cu peaks correspond to the substrate.

Figure S2. Energy dispersive X-ray spectra obtained from the area marked in the HAADF-STEM image shown in the inset. The presence of the elemental peaks from C and N confirm the formation of GCN. Cu peaks correspond to the substrate.

Figure S3. Energy dispersive X-ray spectra of (a) Ag₉ QCs-GCN and (b) Ag NPs-GCN, obtained from the area marked in the HAADF-STEM image shown in the insets. In both (a) and (b), the presence of the elemental peaks from C and N confirm the formation of GCN. The presence of elemental peaks from Ag, Na and S confirm the formation of Ag₉ QCs (a), while the Ag peaks confirm the formation of Ag NPs (b). Cu peaks correspond to the substrate.

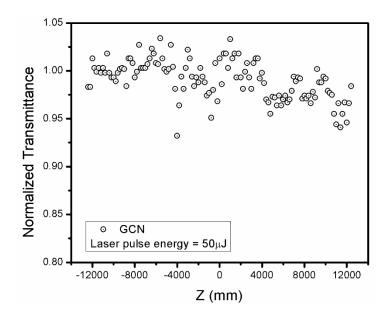
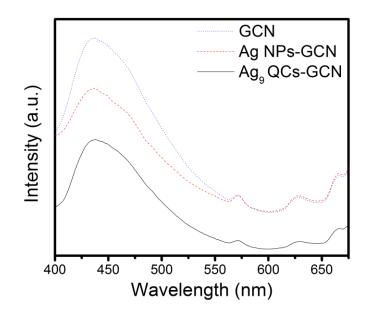



Figure S4. Open aperture Z-scan data of GCN measured using 5 ns laser pulses at 532 nm, at the input laser pulse energy of 50 μ J.

Figure S5. Photoluminescence spectra of GCN, Ag NPs-GCN and Ag₉ QCs-GCN excited at 350 nm. The significant reduction in the PL intensity for Ag₉ QCs-GCN indicates that electrons are effectively transferred from GCN to Ag₉ QCs.