Supplementary Information

Functional exchangeability of oxidase and dehydrogenase reactions in the biosynthesis of hydroxyphenylglycine, a non-ribosomal peptide building block

Veronica Diez, Mark Loznik, Sandra Taylor, Michael Winn, Nicholas Rattray, Helen Podmore, Jason Micklefield, Royston Goodacre, Marnix H. Medema, Ulrike Müller, Roel Bovenberg, Dick B. Janssen and Eriko Takano*

Cable SI. BlastP Hits obtained using the first 276 amino acid residues of Caci3265						
Description ^a	Total Score ^b Query cover ^c		E-value ^d	Ident ^e	Accession ^f	
3-oxoacyl-[acyl-carrier-protein] synthase III Clostridium perfringens ATCC 13124	35.0	47	0.45	28	Q0TRH0.1	
3-oxoacyl-[acyl-carrier-protein] synthase III Arabidopsis thaliana	34.7	60	0.64	24	P49243.2	
3-oxoacyl-[acyl-carrier-protein] synthase III Streptococcus agalactiae 2603V/R	33.9	48	1.1	23	P64113.1	
3-oxoacyl-[acyl-carrier-protein] synthase IIIA, chloroplastic. Cuphea wrightii	33.5	29	1.9	28	P49244.2	
3-oxoacyl-[acyl-carrier-protein] synthase III Polynucleobacter necessarius	32.3	57	3.4	26	A4SW4.1	
Probable pectin lyase A Neosartorya fischeri NRRL 181	32.3	15	3.6	32	A1CYC2.2	
Protein translocase subunit SecY Pyropia yezoensis	32.3	24	3.8	30	Q1XDJ1.1	
3-oxoacyl-[acyl-carrier-protein] synthase III Prochlorococcus marinus str. MIT 9313	32.3	39	3.9	28	Q7V4F6.1	
3-oxoacyl-[acyl-carrier-protein] synthase III Aromatoleum aromaticum EbN1	32.3	55	4.1	28	Q5P0D6.1	
3-oxoacyl-[acyl-carrier-protein] synthase III Bradyrhizobium diazoefficiens USDA 110	32.0	60	4.5	23	Q89K89.1	
3-oxoacyl-[acyl-carrier-protein] synthase III Azoarcus sp. BH72	32.0	51	4.7	27	A1K5Y5.1	
3-oxoacyl-[acyl-carrier-protein] synthase III Microcystis aeruginosa NIES-843	32.0	44	5.3	24	B0JXE2.1	

BlastP against Swiss-Prot database.

a. Only the best 12 hits are shown.

b. Total score: the total alignment scores from all alignment segments

c. Query cover: the percentage of query covered by alignment to the database sequence (%)

d. E-value: the best (lowest) Expect value of all alignments from that database sequence

e. Ident: the highest percent identity of all query-subject alignments (%)

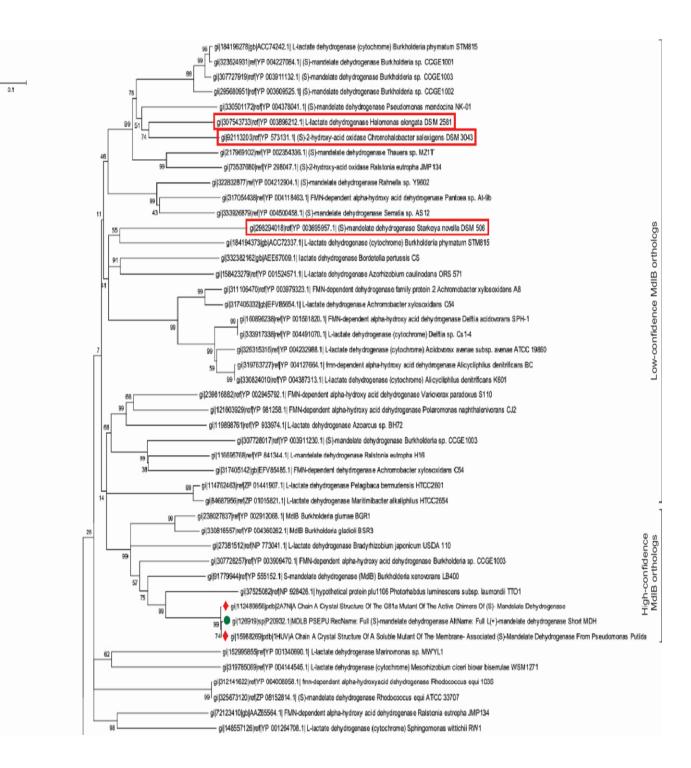
d. Accession number of the matched database sequence

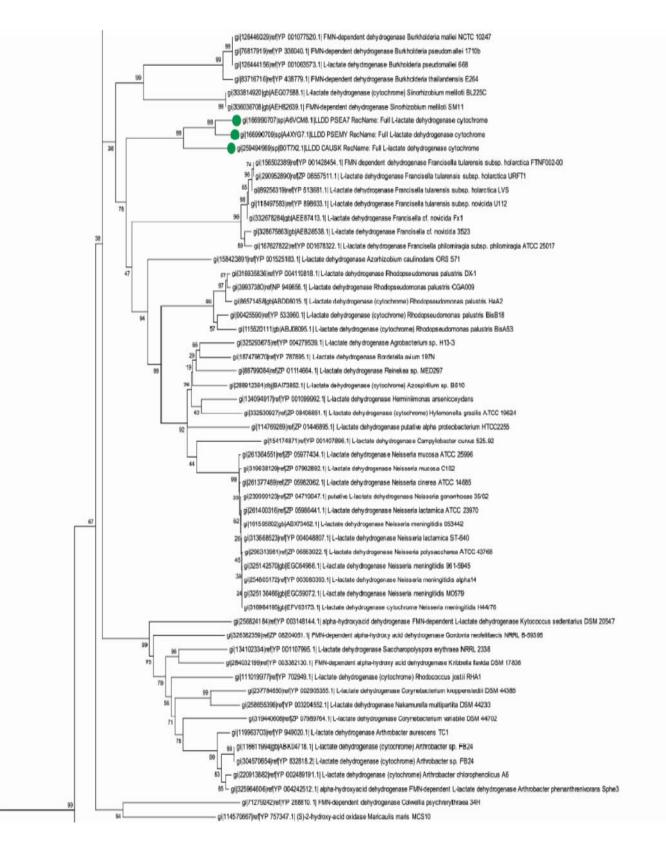
Table SII. Primers used for sequencing					
Primer name	Primer sequence 5'-3'	Template	Fragment size ^a		
Amir4598 fw-out	TCGTCGAAGTCCAGGGTGTC	A. mirum DSM 43827	1644		
Amir4598 rv-out	GATTTGCCGACCGGGAATGG				
Caci3265 fw-out	CCGTCAATGACAGAGCAGAG	C. acidiphila DSM 44928	2546		
Caci3265 rv-out	GCGGAAGACCTGGAGATACC				
Csal1075 fw-out	TATGGCCGATGCTGTTGATG	C. salexigens DSM 3043	1505		
Csal1075 fw-out	TGCCGAACTCTTCCGAAAGC				
Helo1144 fw-out	CGCCGTGTTCGGTGGAATAC	H. elongata DSM 3044	1493		
Helo1144 rv-out	GCGCTTGTAGTGTCGTATTC				
Kfla6052 fw-out	TCCTCGATGGCGTAGAACTG	K. flavida DSM 17836	1653		
Kfla6052 rv-out	TCTACCCGAACACGCTCTAC				
SCO3228 fw-out	CCTCGTTGAGGAAGTTCATC	S. coelicolor M145	1462		
SCO3228 rv-out	GCTTCGGCAGTTCCAACATC				
Snov4068 fw-out	GCGGCCGGACTTCTACAATG	S. novella DSM 506	1834		
Snov4068 rv-out	CACTCGACGGACCTTTATAC				

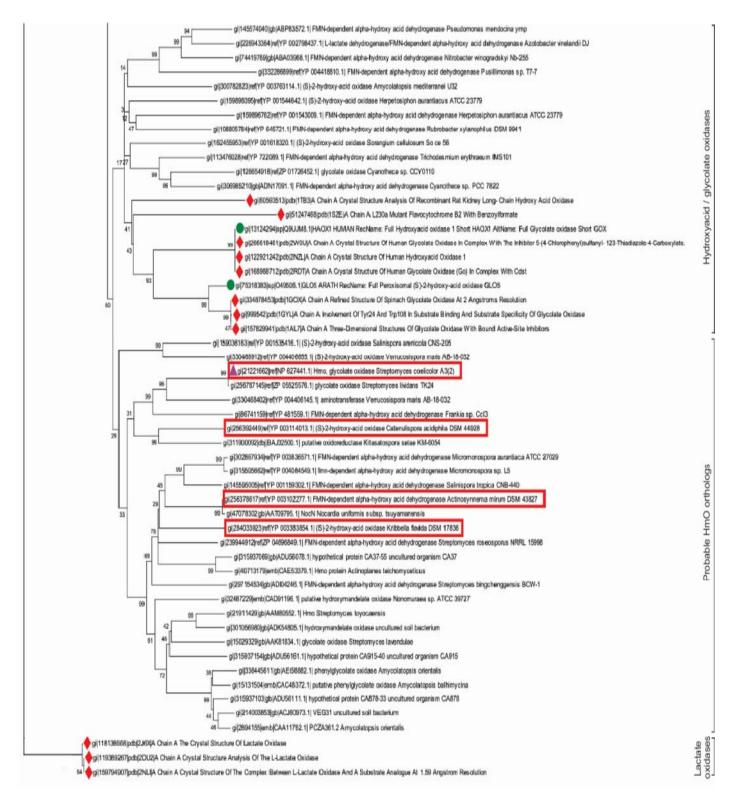
a. Size of PCR amplified product in bp.

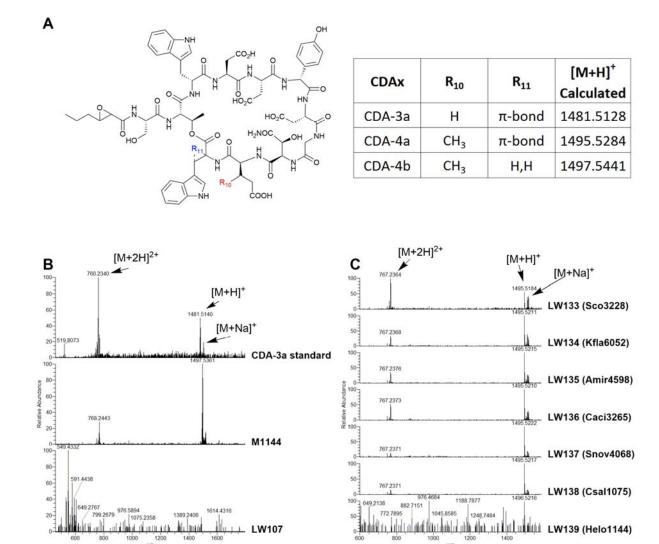
Primer name	Primer sequence 5'-3 ^{,a}	Template	Fragment size ^b	
Amir4598 rv XhoI	CTCGAGCCGGCCGTCGTCTTCC	A. mirum	1198	
Amir4598 fw NdeI	CATATGGGCGTCCGCAACTCC	DSM 43827		
Caci3265 fw NdeI	CATATGGCCGTGCATACAACTGTCCCG	C. acidiphila	2058	
Caci3265 rv XhoI	CTCGAGGCACGTTCAGGGCTCCATC	DSM 44928		
Csal1075 fw NdeI	CATATGAAGAGAAGCATGCCGCGCAGAC	C. salexigens	1232	
Csal1075 rv XhoI	CTCGAGACCGCCCATCCTACCCTG	DSM 3043		
Helo1144 fw HindIII	AAGCTTTGAGGTGACGGGTCAAC	H. elongata	1206	
Helo1144 rv NdeI	CATATGGTGAAACGCCGTCCCTATG	DSM 3044		
Kfla6052 fw XhoI	CTCGAGATCAGCCACAGGCTCTCC	K. flavida	1144	
Kfla6052 rv NdeI	CATATGCCGATGGGTGACGGAG	DSM 17836		
SCO3228 fw XhoI	CTCGAGTCATCCGTGGCTCCTGTC	S. coelicolor M145	1146	
SCO3228 rv NdeI	CATATGGTGCGAGAGCCGCTCACG			
Snov4068 fw HindIII	AAGCTTCGCTTCGAGGCTTCTCAG	S. novella DSM 506	1214	
Snov4068 rv NdeI	CATATGAAGATCGAGAGGATGATCAC			

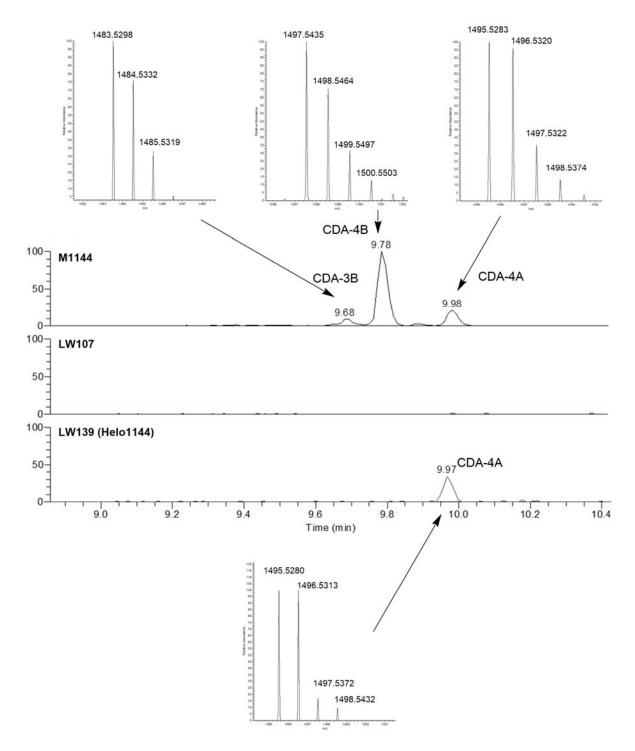
a. Sequences in bold represent restriction sites added to the original sequence. The names of the restriction enzymes recognizing these sites are included in the names of the primers.

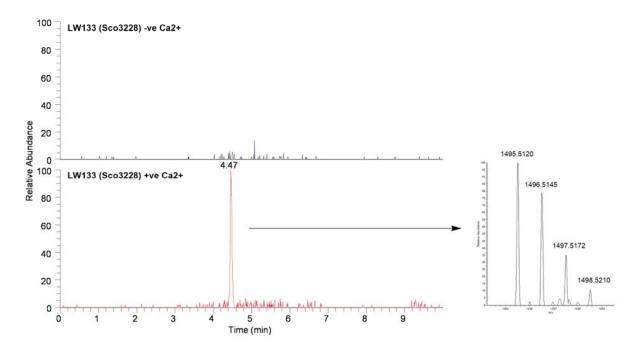

b. Size of PCR amplified products in bp.


Table SIV. Comparison of the CDA derivatives produced in M1144 and LW139. ^a							
	Apex RT	Start RT	End RT	Area	%Area	Height	%Height
M1144 CDA-4B	9.78	9.74	9.85	5224461597	0.89	2087381264	2.02
M1144 CDA-4A	9.98	9.85	10.07	3361268084	0.57	958614880	0.93
LW139 CDA-4A	9.94	9.93	10.07	37768147.1	0.02	55246448.3	0.16


a. Data were extracted from continuum spectra generated from the Q-Exactive system. Each chromatogram was visualized within the Thermo Xcalibur software and deconvolved using the inbuilt Genesis algorithm. This processing generated the relevant area-under-curve information for each CDA peak. The data generated were cross-referenced via retention time and associated mass spectra and subsequently compared against the total-ion-count of each full spectrum yielding a % area contribution to each sample analyzed.


Figure S1. Alignment between the *S. coelicolor* HmO (Scoelico = Sco3228) and the L-mandelate dehydrogenase (MdlB) sequences from *P. putida* (Pputida), *C. salexigens* (Csal1075), *H. elongata* (Helo1144), and *S. novella* (Snov4068). The boxed segment of 39-aminoacids in *P. putida* MdlB (residues 177-215) is implicated in membrane association.¹⁷ The pink triangles indicate the active site residues, Tyr²⁶, Tyr¹³¹, Asp¹⁵⁸, Arg¹⁶⁵, Lys²⁴⁹, His²⁷³, and Arg²⁷⁶ that are highly conserved among the α -hydroxy acid oxidizing enzymes and are believed to be important for catalyzing the substrate oxidation half reaction.²² The green arrows indicate the Gly81 residue in *P. putida* MdlB implicated in binding to the FMN that is conserved in the other dehydrogenases but changed to Ala in the oxidases.³⁴ Alignment was generated by using the CLUSTALW program.




Figure S2. Phylogenetic Tree of the HmO and MdlB homologs. BLAST hits of HmO and MdlB proteins were combined in one alignment and in one phylogenetic tree. The evolutionary distances were calculated using the Poisson correction method³⁹ and a phylogenetic tree was created using the neighbour-joining method within MEGA5.⁴⁰ Red diamonds represent amino acid sequences with protein structures in the PDB database, green circles represent entries from the SwissProt database. Boxed in red, the selected proteins tested *in vivo* and/or *in vitro* in the present paper.

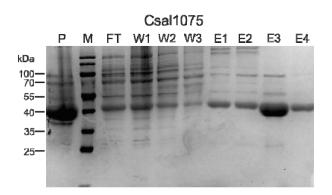
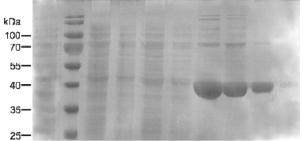

Figure S3. MS analysis of CDA production in *S. coelicolor* M1144 (the parent), LW107 (*hmO*::Tn5) and its complemented strains. A sample of pure, previously fully characterized CDA-3a is provided for comparison.⁵³ (**A**) Structure and calculated theoretical masses of CDA variants identified in this study. (**B**) Masses detected in the peaks identified from extracted chromatograms (*m*/*z* 1480-1600) from figure 5A at 4.4 mins: CDA-3a pure standard (mass accurate to 0.8 ppm); M1144: *S. coelicolor* parent containing a wild type L-HPG operon (mass accurate to 5 ppm); LW107: M1144 *hmO::Tn5*. The WT strain M1144 can be seen to produce mainly CDA-4b. (**C**) Masses detected in the peaks identified from extracted chromatograms (*m*/*z* 1480-1600) from figure 5B at 4.4 mins: LW133: *hmO* mutant strain complemented with *S. coelicolor hmO*; LW134, LW135, and LW136: LW107 expressing Hmo homologs Kfla6052, Amir4598, Caci3265, respectively; LW137, LW138, LW139: LW107 complemented with MdlB orthologs, Snov4068, Csal1075 and Helo1144, respectively. No detectable CDA could be found in LW107 and only a trace in LW139. All other samples showed evidence of CDA-4a production, which represents a shift in production from CDA-4b produced by M1144. The reason for this shift is not speculated on. All masses are accurate to < 5 ppm.

Figure S4. High resolution LC-MS analysis of CDA production in *S. coelicolor* M1144 (the parent), LW107 (*hmO*::Tn5), and LW139 complemented with MdlB ortholog Helo1144. Shown are extracted ion chromatograms for the mass range of known CDA variants (m/z = 1480-1600). Retention times of peaks are shown (min). Associated masses for major peaks are also shown. M1144 can be seen to produce mainly CDA-4b with smaller amounts of CDA-3b and CDA-4a. LW107 does not produce any detectable CDA as expected. LW139 can be seen to produce CDA-4a. All detected mass have an accuracy of less than 1 ppm.


Figure S5. MS analysis of CDA production in *S. coelicolor* LW133 (*hmO* mutant strain complemented with *S. coelicolor hmO*) with or without the addition of calcium to the culture medium. Shown are extracted ion chromatograms for the mass range of known CDA variants (m/z = 1480-1600). Retention times of peaks are shown (minutes). CDA production is seen only in the presence of calcium (lower plot). The peak corresponds to a mass of 1495.5120 (theoretical mass of CDA-4a is 1495.5284 (5 ppm difference)).

Helo1144 P M FT W1 W2 W3 E1 E2 E3 E4

SCO2338 P M FT W1 W2 W3 E1 E2 E3 E4

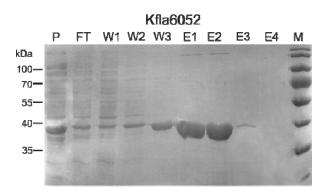


Figure S6. Purification of the HmO and MdlB homologs tested in vitro.

P = insoluble fraction corresponding to membranes and cell debris; FT: flow through; W1-3: wash fractions; E1-4: elution fractions. Buffer composition is detailed in Methods.