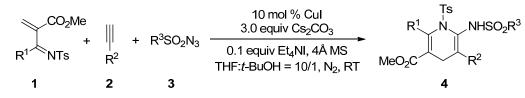
Supporting Information

Three-Component Functionalized Dihydropyridine Synthesis via a Formal Inverse Electron-Demand Hetero-Diels–Alder Reaction

Xiaonan Yan, Fei Ling, Yuchen Zhang, and Cheng Ma* Department of Chemistry, Zhejiang University, 20 Yugu Road, Hangzhou 310027, China

Table of Contents

Experiment section	S2
General procedure A for the synthesis of product 4	S2-S7
General procedure B for the synthesis of compound 5	S7-S8
Synthesis of compound 6m	S8-S9
Synthesis of compound 7m	S9
References	S9
¹ H NMR and ¹³ C NMR spectra	S10-S53


Experiment section

All reactions were preformed in oven-dried flask under nitrogen atmosphere, otherwise noted. THF and toluene were distilled from Na immediately prior to use while *t*-BuOH from CaH₂. Thin-layer chromatography (TLC) was performed on silica gel plates (60F–254) using UV-light (254 and 365 nm). Flash chromatography was conducted on silica gel (300–400 mesh). NMR (400 MHz for ¹H NMR, 100 MHz for ¹³C NMR) samples were run in CDCl₃ or DMSO-*d*₆, and they were referenced to TMS. High resolution mass spectral (HRMS) analyses were measured using ESI techniques.

1-azadienes **1** were prepared according to the literature procedures.^{[1],[2]}

General procedure A for the synthesis of product 4

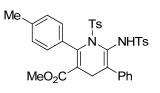
An oven-dried flask was charged with sulfonylazide **3** (0.3 mmol), CuI (3.8 mg, 0.02 mmol), Et₄NI (5.1 mg, 0.02 mmol), 1-azadienes **1** (0.2 mmol), 4Å MS (100 mg), evacuated and backfilled with nitrogen. Then THF (5 mL) and *t*-BuOH (0.5 mL) were added. After stirred at room temperature for 10 min, alkyne **2** (0.3 mmol), Cs_2CO_3 (195 mg, 0.6 mmol) were successively added. The reaction mixture was stirred at 25 °C until 1-azadienes **1** disappeared, monitored by TLC. The mixture was quenched with saturated ammonium chloride (10 mL), and extracted by CH₂Cl₂ (10 mL x 3). The organic layer was dried over Na₂SO₄, filtered, concentrated in vacuo. The residue was purified by column chromatography on silica gel to provide the desired product **4**.

Methyl 6-(4-methylphenylsulfonamido)-2,5-diphenyl-1-tosyl-1,4-dihydropyridine-3-carboxylate 4a

To a mixture of 4-methylbenzenesulfonyl azide (59.2 mg, 0.3 mmol), CuI (3.8 mg, 0.02 mmol), methyl 2-(phenyl(tosylimino)methyl)acrylate (68.7 mg, 0.2 mmol), Et₄NI (5.1 mg, 0.02 mmol), 4Å MS (100 mg) in THF (5 mL) and *t*-BuOH (0.5 mL) under N₂ atmosphere, ethynylbenzene (30.6 mg, 0.3 mmol) and Cs₂CO₃ (195 mg, 0.6 mmol) were added. The residue was purified by column chromatography on silica gel (n-hexane/EtOAc = 10:1, v/v) to provide **4a** as a white solid (110.6 mg, 90%); ¹**H** NMR (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.49 (d, *J* = 8.4 Hz, 2H), 7.35 (d, *J* = 8.4 Hz, 2H), 7.25–7.24 (m, 1H), 7.18–7.10 (m, 9H), 7.01–7.00 (m, 2H), 6.96–6.94 (m, 2H), 6.83 (s, 1H), 3.44 (s, 3H), 2.96 (d, *J* = 20.4 Hz, 1H), 2.31–2.29 ppm (m, 7H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 167.6, 148.0, 145.1, 143.5, 137.0, 136.9, 136.3, 134.7, 134.3, 129.8, 129.8, 129.5, 129.4, 128.4, 128.3, 128.2, 128.1, 127.6, 127.4, 125.9, 121.3, 51.9, 33.1, 21.8, 21.7 ppm; **HRMS** calc for C₃₃H₃₀N₂O₆S₂, [M]⁺ 614.1545, found 614.1543.

Methyl 6-(4-methylphenylsulfonamido)-5-phenyl-2-(o-tolyl)-1-tosyl-1,4-dihydropyridine-3-carboxylate 4b

Me_{Ts} NHTs NeO₂C Ph To a mixture of 4-methylbenzenesulfonyl azide (59.2 mg, 0.3 mmol), CuI (3.8 mg, 0.02 mmol), methyl 2-(o-tolyl(tosylimino)methyl)acrylate (71.5 mg, 0.2 mmol), Et₄NI (5.1 mg, 0.02 mmol), 4Å MS (100 mg) in THF (5 mL) and *t*-BuOH (0.5 mL) under N₂ atmosphere, ethynylbenzene (30.6 mg, 0.3 mmol) and Cs₂CO₃ (195 mg, 0.6 mmol) were added. The residue was purified by column chromatography on silica gel (n-hexane/EtOAc = 10:1, v/v) to provide **4b** as a white solid (96.8 mg, 77%); ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.47 (d, *J* = 8.0 Hz, 2H), 7.32 (d, *J* = 8.4 Hz, 2H), 7.13–7.07 (m, 5H), 7.05–7.04 (m, 3H), 7.00–6.91 (m, 5H), 6.81 (s, 1H), 3.45 (s, 3H), 2.97 (d, *J* = 20.4 Hz, 1H), 2.43 (d, J = 20.4 Hz, 1H), 2.31 (s, 3H), 2.27 (s, 3H), 2.17 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) $\delta = 167.7$, 148.2, 144.9, 143.4, 137.2, 136.8, 136.3, 134.5, 134.3, 130.4, 130.3, 129.6, 129.5, 128.4, 128.3, 128.1, 128.1, 127.4, 127.3, 127.2, 125.9, 120.9, 51.8, 33.2, 21.8, 21.6, 21.4 ppm; **HRMS** calc for C₃₄H₃₂N₂O₆S₂, [M]⁺ 628.1702, found 628.1706.

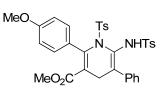

Methyl 6-(4-methylphenylsulfonamido)-5-phenyl-2-(m-tolyl)-1-tosyl-1,4-dihydropyridine-3-carboxylate 4c

Me	Ts NNHTs
MeO ₂ C	Ph

To a mixture of 4-methylbenzenesulfonyl azide (59.2 mg, 0.3 mmol), CuI (3.8 mg, 0.02 mmol), methyl 2-(m-tolyl(tosylimino)methyl)-acrylate (71.5 mg, 0.2 mmol), Et₄NI (5.1 mg, 0.02 mmol), 4Å MS (100 mg) in THF (5 mL) and *t*-BuOH (0.5 mL) under N₂ atmosphere, ethynylbenzene (30.6 mg, 0.3 mmol) and Cs_2CO_3 (195 mg, 0.6

mmol) were added. The residue was purified by column chromatography on silica gel (n-hexane/EtOAc = 10:1, v/v) to provide **4c** as a white solid (98.1 mg, 78%); ¹**H NMR** (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.47 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.4 Hz, 2H), 7.13–7.07 (m, 5H), 7.04–7.04 (m, 3H), 7.00–6.92 (m, 5H), 6.79 (s, 1H), 3.45 (s, 3H), 2.97 (d, *J* = 20.4 Hz, 1H), 2.43 (d, *J* = 20.4 Hz, 1H), 2.31 (s, 3H), 2.27 (s, 3H), 2.18 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 167.6, 148.2, 144.9, 143.3, 137.1, 136.7, 136.3, 134.5, 134.5, 134.2, 130.3, 130.2, 129.5, 129.4, 128.3, 128.2, 128.1, 128.0, 127.4, 127.2, 127.2, 125.8, 120.8, 51.8, 33.1, 21.7, 21.6, 21.3 ppm; **HRMS** calc for C₃₄H₃₂N₂O₆S₂, [M]⁺ 628.1702, found 628.1703.

Methyl 6-(4-methylphenylsulfonamido)-5-phenyl-2-(p-tolyl)-1-tosyl-1,4-dihydropyridine-3-carboxylate 4d

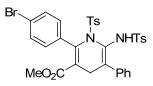


To a mixture of 4-methylbenzenesulfonyl azide (59.2 mg, 0.3 mmol), CuI (3.8 mg, 0.02 mmol), methyl 2-(p-tolyl(tosylimino)methyl)acrylatemethyl (71.5 mg, 0.2 mmol), Et₄NI (5.1 mg, 0.02 mmol), 4Å MS (100 mg) in THF (5 mL) and *t*-BuOH (0.5 mL) under N₂ atmosphere, ethynylbenzene (30.6 mg, 0.3 mmol) and Cs₂CO₃ (195 mg, 0.6 mmol) were added. The residue was purified by column chromatography on silica gel

(n-hexane/EtOAc = 10:1, v/v) to provide **4d** as a white solid (103.1 mg, 82%); ¹**H** NMR (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.49 (d, *J* = 8.4 Hz, 2H), 7.36 (d, *J* = 8.4 Hz, 2H), 7.18–7.10 (m, 5H), 7.04–7.01 (m, 4H), 7.00–6.93 (m, 4H), 6.80 (s, 1H), 3.46 (s, 3H), 2.94 (d, *J* = 20.4 Hz, 1H), 2.32 (s, 3H), 2.29–2.22 ppm (m, 7H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 167.6, 148.1, 145.0, 143.4, 139.5, 137.2, 136.9, 136.3, 134.1, 131.7, 129.6, 129.6, 129.5, 128.3, 128.3, 128.2, 128.0, 128.0, 127.3, 125.7, 120.6, 51.8, 33.0, 21.7, 21.6, 21.6 ppm; **HRMS** calc for C₃₄H₃₂N₂O₆S₂, [M]⁺ 628.1702, found 628.1702.

Methyl

$2-(4-methoxy phenyl)-6-(4-methyl phenyl sulfon a mido)-5-phenyl-1-tosyl-1, 4-dihydropyridine-3-carboxylate\ 4e^{-1}-1, 4-dihydropyridine-3-carboxylate\$

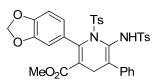


To a mixture of 4-methylbenzenesulfonyl azide (59.2 mg, 0.3 mmol), CuI (3.8 mg, 0.02 mmol), methyl 2-((4-methoxyphenyl)(tosylimino)methyl)acrylate (71.5 mg, 0.2 mmol), Et₄NI (5.1 mg, 0.02 mmol), 4Å MS (100 mg) in THF (5 mL) and *t*-BuOH (0.5 mL) under N₂ atmosphere, ethynylbenzene (30.6 mg, 0.3 mmol) and Cs₂CO₃ (195 mg, 0.6 mmol) were added. The residue was purified by column

chromatography on silica gel (n-hexane/EtOAc = 10:1, v/v) to provide **4e** as a white solid (85.1 mg, 66%); ¹**H NMR** (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.49 (d, *J* = 8.4 Hz, 2H), 7.33 (d, *J* = 8.4 Hz, 2H), 7.19–7.07 (m, 7H), 7.01–6.99 (m, 2H), 6.94 (d, *J* = 8.4 Hz, 2H), 6.81 (s, 1H), 6.68–6.64 (m, 2H), 3.74 (s, 3H), 3.48 (s, 3H), 2.96 (d, *J* = 20.0 Hz, 1H), 2.32–2.27 ppm (m, 7H); ¹³C **NMR** (100 MHz, CDCl₃, 25 °C, TMS) δ = 167.7, 160.6, 148.2, 144.9, 143.3, 137.4, 136.7, 136.2, 134.5, 131.4, 129.6, 129.4, 128.3, 128.2, 128.0, 128.0, 127.3, 126.8, 125.7, 119.6, 112.9, 55.2, 51.8, 33.0, 21.7, 21.6 ppm; **HRMS** calc for C₃₄H₃₂N₂O₇S₂, [M]⁺ 644.1651, found 644.1655.

Methyl

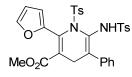
2-(4-bromophenyl)-6-(4-methylphenylsulfonamido)-5-phenyl-1-tosyl-1,4-dihydropyridine-3-carboxylate 4f



To a mixture of 4-methylbenzenesulfonyl azide (59.2 mg, 0.3 mmol), CuI (3.8 mg, 0.02 mmol), methyl 2-((4-bromophenyl)(tosylimino)methyl)acrylate (84.5 mg, 0.2 mmol), Et₄NI (5.1 mg, 0.02 mmol), 4Å MS (100 mg) in THF (5 mL) and *t*-BuOH (0.5 mL) under N₂ atmosphere, ethynylbenzene (30.6 mg, 0.3 mmol) and Cs₂CO₃ (195 mg, 0.6 mmol) were added. The residue was purified by column chromatography on silica

gel (n-hexane/EtOAc = 10:1, v/v) to provide **4f** as a white solid (102.7 mg, 74%); ¹**H** NMR (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.47 (d, *J* = 8.4 Hz, 2H), 7.28 (d, *J* = 8.4 Hz, 2H), 7.25–7.23 (m, 2H), 7.14 (d, *J* = 8.4 Hz, 2H), 7.11–7.05 (m, 5H), 6.97–6.95 (m, 2H), 6.92–6.90 (m, 2H), 6.84 (s, 1H), 3.48 (s, 3H), 3.02 (d, *J* = 20.4 Hz, 1H), 2.41 (d, *J* = 20.4 Hz, 1H), 2.32 (s, 3H), 2.27 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 167.0, 147.2, 145.2, 143.4, 137.0, 136.6, 136.0, 134.4, 133.4, 131.6, 130.7, 129.7, 129.4, 128.3, 128.3, 128.1, 128.0, 127.2, 125.7, 123.9, 121.5, 52.0, 33.0, 21.8, 21.6 ppm; **HRMS** calc for C₃₃H₂₉BrN₂O₆S₂, [M]⁺ 692.0650, found 692.0649.

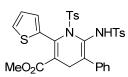
Methyl


2-(benzo[d][1,3]dioxol-5-yl)-6-(4-methylphenylsulfonamido)-5-phenyl-1-tosyl-1,4-dihydropyridine-3-carboxy late 4g

To a mixture of 4-methylbenzenesulfonyl azide (59.2 mg, 0.3 mmol), CuI (3.8 mg, 0.02 mmol), methyl 2-(benzo[d][1,3]dioxol-5-yl(tosylimino)methyl)acrylate (77.5 mg, 0.2 mmol), Et₄NI (5.1 mg, 0.02 mmol), 4Å MS (100 mg) in THF (5 mL) and *t*-BuOH (0.5 mL) under N₂ atmosphere, ethynylbenzene (30.6 mg, 0.3 mmol) and Cs₂CO₃ (195

mg, 0.6 mmol) were added. The residue was purified by column chromatography on silica gel (n-hexane/EtOAc = 10:1, v/v) to provide **4g** as a white solid (114.6 mg, 87%); ¹**H** NMR (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.52 (d, *J* = 8.0 Hz, 2H), 7.35 (d, *J* = 8.4 Hz, 2H), 7.18–7,11 (m, 5H), 7.03–6.95 (m, 4H), 6.82 (s, 1H), 6.69 (m, 1H), 6.59 (d, *J* = 8.0 Hz, 1H), 6.52 (s, 1H), 5.88 (d, *J* = 10.0 Hz, 2H), 3.49 (s, 3H), 2.94 (d, *J* = 20.0 Hz, 1H), 2.32–2.28 ppm (m, 7H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 167.6, 148.7, 147.4, 147.0, 145.1, 143.5, 137.5, 136.8, 136.2, 134.3, 129.6, 129.5, 128.3, 128.2, 128.1, 128.0, 127.2, 125.7, 124.4, 120.3, 110.1, 107.5, 101.3, 51.8, 33.0, 21.7, 21.5 ppm; **HRMS** calc for C₃₄H₃₀N₂O₈S₂, [M]⁺ 658.1444, found 658.1443.

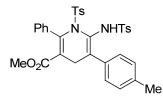
Methyl 2- (fur an - 2 - yl) - 6- (4 - methyl phenyl sulfon a mido) - 5 - phenyl - 1 - tosyl - 1, 4 - dihydropyridine - 3 - carboxylate 4 hold a middle a m



To a mixture of 4-methylbenzenesulfonyl azide (59.2 mg, 0.3 mmol), CuI (3.8 mg, 0.02 mmol), methyl 2-(furan-2-yl(tosylimino)methyl)acrylate (66.7 mg, 0.2 mmol), Et₄NI (5.1 mg, 0.02 mmol), 4Å MS (100 mg) in THF (5 mL) and *t*-BuOH (0.5 mL) under N₂ atmosphere, ethynylbenzene (30.6 mg, 0.3 mmol) and Cs₂CO₃ (195 mg, 0.6 mmol) were

added. The residue was purified by column chromatography on silica gel (n-hexane/EtOAc = 10:1.5, v/v) to provide **4h** as a white solid (73.8 mg, 61%); ¹**H NMR** (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.60 (d, *J* = 8.4 Hz, 2H), 7.44 (d, *J* = 8.4 Hz, 2H), 7.35 (d, 1H), 7.2–7.18 (m, 5H), 7.09–7.06 (m, 2H), 7.01 (d, *J* = 8.4 Hz, 2H), 6.71 (s, 1H), 6.33–6.31 (m, 1H), 6.18 (d, *J* = 3.2 Hz, 1H), 3.63 (s, 3H), 2.81 (d, *J* = 21.2 Hz, 1H), 2.32(s, 3H), 2.28 (s, 3H), 1.68 ppm (d, *J* = 21.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 166.9, 147.4, 145.7, 143.6, 143.5, 137.7, 136.9, 136.2, 135.3, 132.3, 129.9, 129.6, 128.5, 128.4, 128.2, 127.4, 125.8, 122.2, 113.7, 111.6, 52.2, 32.8, 21.8, 21.6 ppm; **HRMS** calc for C₃₁H₂₈N₂O₇S₂, [M]⁺ 604.1338, found 604.1340.

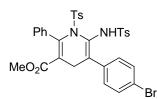
Methyl6-(4-methylphenylsulfonamido)-5-phenyl-2-(thiophen-2-yl)-1-tosyl-1,4-dihydropyridine-3-carboxylate 4i


To a mixture of 4-methylbenzenesulfonyl azide (59.2 mg, 0.3 mmol), CuI (3.8 mg, 0.02 mmol), methyl

2-(thiophen-2-yl(tosylimino)methyl)acrylate (69.9 mg, 0.2 mmol), Et₄NI (5.1 mg, 0.02 mmol), 4Å MS (100 mg) in THF (5 mL) and *t*-BuOH (0.5 mL) under N₂ atmosphere, ethynylbenzene (30.6 mg, 0.3 mmol) and Cs₂CO₃ (195 mg, 0.6 mmol) were added. The residue was purified by column chromatography on silica gel (n-hexane/EtOAc = 10:1.5, hit = 10.1 for 100 M = 520() hb bBJD (400 MHz = CDCh = 25.00 mmol) for 2722 (1 k = 0.00 mmol).

v/v) to provide **4i** as a white solid (65.8 mg, 53%); ¹**H NMR** (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.73 (d, *J* = 8.0 Hz, 2H), 7.34 (d, *J* = 8.4 Hz, 2H), 7.31–7.30 (m, 1H), 7.17 (d, *J* = 8.0 Hz, 2H), 7.13–7.11 (m, 3H), 7.02–6.98 (m, 3H), 6.94 (d, *J* = 8.0 Hz, 2H), 6.85–6.82 (m, 1H), 6.75 (s, 1H), 3.57 (s, 3H), 2.91 (d, *J* = 20.4 Hz, 1H), 2.32 (s, 3H), 2.26 (s, 3H), 2.04 ppm (d, *J* = 20.0 Hz, 1H); ¹³**C NMR** (100 MHz, CDCl₃, 25 °C, TMS) δ = 167.1, 145.3, 143.4, 140.1, 137.1, 136.7, 136.1, 136.0, 133.7, 131.3, 129.8, 129.5, 128.7, 128.3, 128.2, 127.3, 126.6, 126.0, 122.0, 52.1, 33.2, 21.8, 21.5 ppm; **HRMS** calc for C₃₁H₂₈N₂O₆S₃, [M]⁺ 620.1109, found 620.1115.

$Methyl 6- (4-methyl phenyl sulfon a mido)-2-phenyl-5- (p-tolyl)-1-tosyl-1, 4-dihydropyridine-3-carboxylate\ 4j-2-phenyl-5- (p-tolyl)-1-tosyl-5- (p-tolyl)-1-tosy$

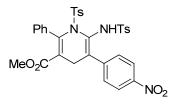


To a mixture of 4-methylbenzenesulfonyl azide (59.2 mg, 0.3 mmol), CuI (3.8 mg, 0.02 mmol), methyl 2-(phenyl(tosylimino)methyl)acrylate (68.7 mg, 0.2 mmol), Et₄NI (5.1 mg, 0.02 mmol), 4Å MS (100 mg) in THF (5 mL) and *t*-BuOH (0.5 mL) under N₂ atmosphere, 1-ethynyl-4-methylbenzene (34.8 mg, 0.3 mmol) and Cs₂CO₃ (195 mg, 0.6 mmol) were added. The residue was purified by column

chromatography on silica gel (n-hexane/EtOAc = 10:1, v/v) to provide **4j** as a white solid (71.7 mg, 57%); ¹**H NMR** (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.49 (d, *J* = 8.4 Hz, 2H), 7.36 (d, *J* = 8.4 Hz, 2H), 7.25–7.23 (m, 1H), 7.19–7.10 (m, 6H), 6.97–6.95 (m, 2H), 6.92 (m, 4H), 6.83 (s, 1H), 3.44 (s, 3H), 2.94 (d, *J* = 20.4 Hz, 1H), 2.32–2.25 ppm (m, 10H); ¹³**C NMR** (100 MHz, CDCl₃, 25 °C, TMS) δ = 167.6, 147.9, 145.0, 143.3, 138.2, 137.1, 134.7, 134.0, 133.2, 129.7, 129.6, 129.3, 128.9, 128.2, 128.0, 127.5, 127.3, 125.3, 121.3, 51.8, 32.9, 21.7, 21.6, 21.3 ppm; **HRMS** calc for C₃₄H₃₂N₂O₆S₂, [M]⁺ 628.1702, found 628.1705.

Methyl

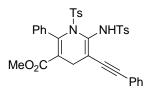
5-(4-bromophenyl)-6-(4-methylphenylsulfonamido)-2-phenyl-1-tosyl-1,4-dihydropyridine-3-carboxylate 4k



To a mixture of 4-methylbenzenesulfonyl azide (59.2 mg, 0.3 mmol), CuI (3.8 mg, 0.02 mmol), methyl 2-(phenyl(tosylimino)methyl)acrylate (68.7 mg, 0.2 mmol), Et₄NI (5.1 mg, 0.02 mmol), 4Å MS (100 mg) in THF (5 mL) and *t*-BuOH (0.5 mL) under N₂ atmosphere, 1-bromo-4-ethynylbenzene (54.3 mg, 0.3 mmol) and Cs₂CO₃ (195 mg, 0.6 mmol) were added. The residue was purified by column chromatography on silica

gel (n-hexane/EtOAc = 10:1, v/v) to provide **4k** as a white solid (86.1 mg, 62%); ¹**H NMR** (400 MHz, DMSO- d_6 , 25°C, TMS) δ = 10.03 (s, 1H), 7.62 (d, J = 8.0 Hz, 2H), 7.40–7.27 (m, 11H), 7.08–7.05 (m, 4H), 3.46 (s, 3H), 2.82 (d, J = 19.6 Hz, 1H), 2.39 (s, 3H), 2.35 (s, 3H), 1.97 ppm (d, J = 19.6 Hz, 1H); ¹³C NMR (100 MHz, DMSO- d_6 , 25 °C, TMS) δ = 166.3, 146.3, 144.9, 142.4, 138.2, 135.2, 134.9, 134.2, 134.0, 130.7, 130.1, 129.6, 129.2, 128.9, 128.8, 127.6, 127.4, 126.7, 126.0, 122.1, 121.5, 51.6, 32.1, 21.1, 21.1 ppm; **HRMS** calc for C₃₃H₂₉BrN₂O₆S₂, [M]⁺ 692.0650, found 692.0653.

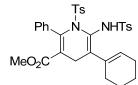
Methyl


6-(4-methylphenyl sulfon a mido)-5-(4-nitrophenyl)-2-phenyl-1-tosyl-1, 4-dihydropyridine-3-carboxylate~4l

To a mixture of 4-methylbenzenesulfonyl azide (59.2 mg, 0.3 mmol), CuI (3.8 mg, 0.02 mmol), methyl 2-(phenyl(tosylimino)methyl)acrylate (68.7 mg, 0.2 mmol), Et₄NI (5.1 mg, 0.02 mmol), 4Å MS (100 mg) in THF (5 mL) and *t*-BuOH (0.5 mL) under N₂ atmosphere, 1-ethynyl-4-nitrobenzene (44.1 mg, 0.3 mmol) and Cs₂CO₃ (195 mg, 0.6 mmol) were added. The residue was purified by column

chromatography on silica gel (n-hexane/EtOAc = 10:1, v/v) to provide **4l** as a white solid (110.8 mg, 84%); ¹**H NMR** (400 MHz, DMSO- d_6 , 25 °C, TMS) δ = 10.21 (s, 1H), 7.91 (d, J = 8.8 Hz, 2H), 7.62 (d, J = 8.4 Hz, 2H), 7.43–7.28 (m, 11H), 7.03–7.01 (m, 2H), 3.47 (s, 3H), 2.95 (d, J = 19.2 Hz, 1H), 2.39 (s, 3H), 2.25 (s, 3H), 2.15 ppm (d, J = 19.2 Hz, 1H); ¹³**C NMR** (100 MHz, DMSO- d_6 , 25 °C, TMS) δ = 166.2, 146.4, 146.3, 144.9, 142.6, 142.5, 138.1, 134.9, 134.1, 132.8, 129.6, 129.5, 129.3, 129.0, 128.9, 128.1, 127.6, 127.4, 126.1, 122.8, 121.8, 51.6, 32.0, 21.1, 20.8 ppm; **HRMS** calc for C₃₃H₂₉N₃O₈S₂, [M]⁺ 659.1396, found 659.1397.

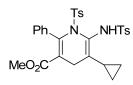
Methyl6-(4-methylphenylsulfonamido)-2-phenyl-5-(phenylethynyl)-1-tosyl-1,4-dihydropyridine-3-carboxylat e 4m


To a mixture of 4-methylbenzenesulfonyl azide (59.2 mg, 0.3 mmol), CuI (3.8 mg, 0.02 mmol), methyl 2-(phenyl(tosylimino)methyl)acrylate (68.7 mg, 0.2 mmol), Et₄NI (5.1 mg, 0.02 mmol), 4Å MS (100 mg) in THF (5 mL) and *t*-BuOH (0.5 mL) under N₂ atmosphere, buta-1,3-diyn-1-ylbenzene (37.8 mg, 0.3 mmol) and Cs₂CO₃ (195 mg, 0.6 mmol) were added. The residue was purified by column chromatography on silica gel

(n-hexane/EtOAc = 15:1, v/v) to provide **4m** as a yellow solid (74.1 mg, 58%); ¹**H** NMR (400 MHz, DMSO- d_6 , 25 °C, TMS) δ = 10.54 (s, 1H), 7.68 (d, J = 8.0 Hz, 2H), 7.45–7.42 (m, 4H), 7.39–7.36 (m, 4H), 7.35–7.26 (m, 4H), 7.25–7.23 (m, 2H), 7.10 (d, J = 8.4 Hz, 2H), 3.48 (s, 3H), 2.82 (d, J = 18.4 Hz, 1H), 2.55 (d, J = 18.4 Hz, 1H), 2.41 (s, 3H), 2.07 ppm (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6 , 25 °C, TMS) δ = 166.3, 146.0, 144.7, 142.9, 137.9, 135.1, 135.0, 134.2, 131.4, 129.5, 129.4, 129.1, 128.8, 128.2, 127.7, 127.5, 126.6, 121.9, 121.0, 111.3, 94.8, 84.6, 51.7, 30.7, 21.1, 20.7 ppm; **HRMS** calc for C₃₅H₃₀N₂O₆S₂, [M]⁺ 638.1545, found 638.1544.

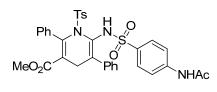
Gram-scale manipulation:

An entry was conducted by using 4-methylbenzenesulfonyl azide (1.78 g, 9.0 mmol), CuI (114.1 mg, 0.6 mmol), methyl 2-(phenyl(tosylimino)methyl)acrylate (2.06 g, 6.0 mmol), Et₄NI (51 mg, 0.2 mmol), 4Å MS (1.5 g) in THF (80 mL) and *t*-BuOH (8 mL) under N₂ atmosphere, buta-1,3-diyn-1-ylbenzene (1.13 g, 9.0 mmol) and Cs₂CO₃ (5.85 g, 18 mmol). The crude product was purified by silica gel chromatography on silica gel (n-hexane/EtOAc = 15:1, v/v) to provide **4m** (2.49 g, 65 %).


Methyl5-(cyclohex-1-en-1-yl)-6-(4-methylphenylsulfonamido)-2-phenyl-1-tosyl-1,4-dihydropyridine-3-carbox ylate 4n

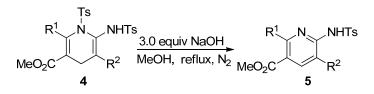
To a mixture of 4-methylbenzenesulfonyl azide (59.2 mg, 0.3 mmol), CuI (3.8 mg, 0.02 mmol), methyl 2-(phenyl(tosylimino)methyl)acrylate (68.7 mg, 0.2 mmol), Et₄NI (5.1 mg, 0.02 mmol), 4Å MS (100 mg) in THF (5 mL) and *t*-BuOH (0.5 mL) under N₂ atmosphere, 1-ethynylcyclohex-1-ene (31.8 mg, 0.3 mmol) and Cs₂CO₃ (195 mg, 0.6 mmol) were added. The residue was purified by column chromatography on silica gel

(n-hexane/EtOAc = 10:1, v/v) to provide **4n** as a white solid (53.2 mg, 43%); ¹**H** NMR (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.71 (d, *J* = 8.4 Hz, 2H), 7.43 (d, *J* = 8.4 Hz, 2H), 7.41–7.20 (m, 3H), 7.16 (d, *J* = 8.0 Hz, 2H), 7.13–7.09 (m, 2H), 6.91 (d, *J* = 7.2 Hz, 2H), 6.78 (s, 1H), 5.57 (s, 1H), 3.41 (s, 3H), 2.69 (d, *J* = 20.4 Hz, 1H), 2.36–2.35 (m, 6H), 2.19–2.15 (m, 1H), 1.92–1.84 (m, 3H), 1.51–1.42 (m, 3H), 1.35–1.32 ppm (m, 2H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 167.8, 147.4, 145.0, 143.7, 139.3, 137.9, 134.9, 133.7, 129.7, 129.6, 129.4, 129.3, 128.1, 127.6, 127.4, 123.9, 121.8, 51.7, 30.8, 26.9, 25.5, 22.4, 21.8, 21.6, 21.5 ppm; **HRMS** calc for C₃₃H₃₄N₂O₆S₂, [M]⁺ 618.1858, found 618.1852.

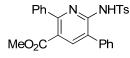

Methyl 5-cyclopropyl-6-(4-methylphenylsulfonamido)-2-phenyl-1-tosyl-1,4-dihydropyridine-3-carboxylate 40

To a mixture of 4-methylbenzenesulfonyl azide (59.2 mg, 0.3 mmol), CuI (3.8 mg, 0.02 mmol), methyl 2-(phenyl(tosylimino)methyl)acrylate (68.7 mg, 0.2 mmol), Et₄NI (5.1 mg, 0.02 mmol), 4Å MS (100 mg) in THF (5 mL) and *t*-BuOH (0.5 mL) under N₂ atmosphere, ethynylcyclopropane (19.8 mg, 0.3 mmol) and Cs₂CO₃ (195 mg, 0.6 mmol) were added. The residue was purified by column chromatography on silica gel (n-hexane/EtOAc = 10:1,

v/v) to provide **40** as a white solid (47.5 mg, 41%); ¹**H NMR** (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.79 (d, *J* = 8.0 Hz, 2H), 7.42 (d, *J* = 8.0 Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.20–7.18 (m, 3H), 7.07–7.03 (m, 2H), 7.00 (s, 1H), 6.61 (d, *J* = 7.6 Hz, 2H), 3.37 (s, 3H), 2.40–2.38 (m, 6H), 1.97–1.90 (m, 2H), 1.29–1.24 (m, 1H), 0.62–0.59 (m, 1H), 0.53–0.49 (m, 1H), 0.33–0.32 (m, 1H), 0.25–0.21 ppm (m, 1H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 168.0, 147.1, 145.3, 143.9, 140.3, 138.0, 135.0, 132.8, 130.0, 129.7, 129.3, 129.1, 128.1, 127.7, 127.3, 124.0, 121.2, 51.7, 25.4, 21.8, 21.7, 13.3, 4.9, 4.8 ppm; **HRMS** calc for C₃₀H₃₀N₂O₆S₂, [M]⁺ 578.1545, found 578.1547.


Methyl1-(4-acetamidophenyl)-6-(4-methylphenylsulfonamido)-2,5-diphenyl-1,4-dihydropyridine-3-carboxyla te 4p

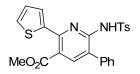
To a mixture of 4-acetamidobenzenesulfonyl azide (72.1 mg, 0.3 mmol), CuI (3.8 mg, 0.02 mmol), methyl 2-(phenyl(tosylimino)methyl)acrylate (68.7 mg, 0.2 mmol), Et₄NI (5.1 mg, 0.02 mmol), 4Å MS (100 mg) in THF (5 mL) and *t*-BuOH (0.5 mL) under N₂ atmosphere, ethynylbenzene (30.6 mg, 0.3 mmol) and Cs₂CO₃ (195 mg, 0.6 mmol) were added. The residue was purified by


column chromatography on silica gel (n-hexane/EtOAc = 5:1, v/v) to provide **4p** as a white solid (72.4 mg, 55%); ¹**H NMR** (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.87 (s , 1H), 7.60 (d, *J* = 7.6 Hz, 2H), 7.42 (d, *J* = 8.4 Hz, 2H), 7.36–7.31 (m, 5H), 7.27–7.23 (m, 4H), 7.18–7.17 (m, 3H), 7.08–7.07 (m, 2H), 7.03 (s, 1H), 3.53 (s, 3H), 3.02 (d, *J* = 20.4 Hz, 1H), 2.41 (s, 3H), 2.33 (d, *J* = 20.4 Hz, 1H), 2.16 ppm (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃, 25 °C, TMS) δ = 169.0, 167.5, 147.7, 145.2, 142.1, 137.3, 136.0, 134.6, 134.0, 134.0, 129.7, 129.6, 129.4, 128.4, 128.2, 128.0, 127.6, 125.7, 121.6, 119.1, 51.9, 33.1, 24.7, 21.7 ppm; **HRMS** calc for C₃₄H₃₁N₃O₇S₂, [M]⁺ 657.1603, found 657.1600.

General procedure B for the synthesis of compound 5

To a solution of **5** (0.3 mmol, 1.0 equiv) in MeOH (10 mL), NaOH (0.6 mmol, 3.0 equiv) was added under nitrogen atmosphere and the mixture was heated to reflux. The reaction was monitored by TLC and stopped at the desired time. The solvent was removed under vacuum and the residue was purified through column chromatography on silica gel (n-hexane/EtOAc = 15:1, v/v) to afford the pure product **5**.

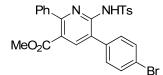
Methyl 6-(4-methylphenylsulfonamido)-2,5-diphenylnicotinate 5a



To a solution of **4a** (184.2 mg, 0.3 mmol) in MeOH (10 mL), NaOH (36 mg, 0.9 mmol) was added under nitrogen atmosphere and the mixture was heated to reflux. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified through column chromatography on silica gel

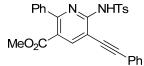
(n-hexane/EtOAc = 15:1, v/v) to afford the pure product **5a** as a white solid (125.2mg, 91%); ¹H NMR (400 MHz,

DMSO- d_6 , 25 °C, TMS) δ = 10.76 (s, 1H), 7.94 (s, 1H), 7.80–7.52 (d, J = 8.0 Hz, 2H), 7.60–754 (m, 4H), 7.51–7.42 (m, 4H), 7.32 (d, J = 8.4 Hz, 2H), 7.18 (d, J = 7.6 Hz, 2H), 3.63 (s, 3H), 2.38 ppm (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6 , 25 °C, TMS) δ = 167.2, 154.8, 149.2, 142.8, 140.9, 138.9, 138.1, 135.4, 129.0, 128.9, 128.8, 128.6, 128.2, 127.8, 127.4, 124.4, 121.6, 52.2, 21.0 ppm; **HRMS** calc for C₂₆H₂₂N₂O₄S, [M]⁺ 458.1300, found 458.1302.


Methyl 6-(4-methylphenylsulfonamido)-5-phenyl-2-(thiophen-2-yl)nicotinate 5i

To a solution of **4i** (186.2 mg, 0.3 mmol) in MeOH (10 mL), NaOH (36 mg, 0.9 mmol) was added under nitrogen atmosphere and the mixture was heated to reflux. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified through column chromatography on silica gel

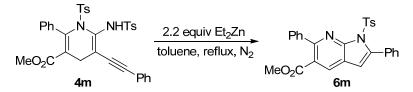
(n-hexane/EtOAc = 15:1, v/v) to afford the pure product **5i** as a white solid (110.1mg, 79%); ¹**HNMR** (400 MHz, DMSO, 25 °C, TMS) δ : 7.99 (d, *J* = 8.0 Hz, 2H), 7.69 (s, 1H), 7.45-7.41 (m, 4H), 7.33-7.30 (m, 4H), 7.18 (d, *J* = 8.0 Hz, 2H), 7.01-6.99 (m, 1H), 3.74 (s, 3H), 2.30 ppm (s, 3H); ¹³**CNMR** (100 MHz, DMSO, 25 °C, TMS) δ : 168.1, 149.3, 148.4, 144.3, 141.7, 140.4, 136.5, 134.4, 129.9, 129.3, 129.2, 129.1, 129.0, 128.8, 128.7, 128.6, 128.5, 127.5, 122.0, 120.2, 52.6, 21.6 ppm; **HRMS** calc for C₂₄H₂₀N₂O₄S₂, [M]⁺ 464.0864, found 464.0863.


Methyl 5-(4-bromophenyl)-6-(4-methylphenylsulfonamido)-2-phenylnicotinate 5k

To a solution of 4k (208.9 mg, 0.3 mmol) in MeOH (10 mL), NaOH (36 mg, 0.9 mmol) was added under nitrogen atmosphere and the mixture was heated to reflux. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified through column

chromatography on silica gel (n-hexane/EtOAc = 15:1, v/v) to afford the pure product **5i** as a white solid (133.8 mg, 83%); ¹**HNMR** (400 MHz, DMSO, 25 °C, TMS) δ : 10.82 (s, 1H), 7.94 (s, 1H), 7.78-7.73 (m, 4H), 7.53 (d, J = 8.4 Hz, 2H), 7.45-7.40 (m, 3H), 7.32 (d, J = 8.0 Hz, 2H), 7.19-7.17 (m, 2H), 3.62 (s, 3H), 2.37 ppm (s, 3H); ¹³CNMR (100 MHz, DMSO, 25 °C, TMS) δ : 167.2, 155.1, 142.9, 140.7, 138.7, 138.1, 134.6, 131.7, 131.3, 129.0, 128.9, 128.6, 127.8, 127.4, 123.2, 121.7, 52.2, 21.0 ppm; **HRMS** calc for C₂₆H₂₁BrN₂O₄S, [M]⁺ 536.0405, found 536.0401.

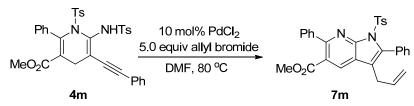
Methyl 6-(4-methylphenylsulfonamido)-2-phenyl-5-(phenylethynyl)nicotinate 5m


To a **4m** (191.6 mg, 0.3 mmol) in MeOH (10 mL), NaOH (36 mg, 0.9 mmol) was added under nitrogen atmosphere and the mixture was heated to reflux. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified through column chromatography on silica gel

(n-hexane/EtOAc = 15:1, v/v) to afford the pure product **5m** as a white solid (97.0 mg, 67%); ¹**H** NMR (400 MHz, DMSO- d_6 , 25 °C, TMS) δ = 11.29 (s, 1H), 8.22 (s, 1H), 7.90 (d, J = 8.4 Hz, 2H), 7.74–7.71 (m, 2H), 7.52–7.41 (m, 6H), 7.43 (d, J = 8.0 Hz, 2H), 7.25–7.22 (m, 2H), 3.64 (s, 3H), 2.36 ppm (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6 , 25 °C, TMS) δ = 166.8, 155.1, 151.6, 143.3, 143.0, 138.2, 137.8, 131.8, 129.4, 129.2, 129.2, 128.7, 128.7, 127.9, 127.5, 121.8, 120.9, 105.7, 97.2, 82.7, 52.3, 21.0 ppm; **HRMS** calc for C₂₈H₂₂N₂O₄S, [M]⁺ 482.1300, found 482.1296.

Synthesis of compound 6m

To a solution of **4m** (191.4 mg, 0.3 mmol) in anhydrous toluene (5 mL), Et_2Zn (0.44 mL, 0.66 mmol, 1.5N in toluene) was added under nitrogen atmosphere. Then the mixture was heated to reflux. The reaction was monitored by TLC and stopped at the desired time. The mixture was quenched carefully with H₂O (10 mL) at 0 °C, and

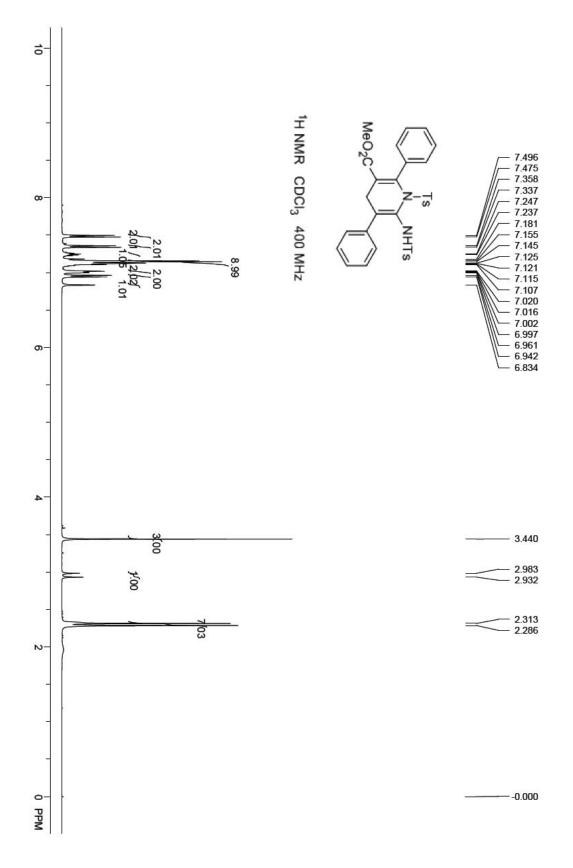

extracted by CH_2Cl_2 (10 mL x 3). The organic layer was dried over Na_2SO_4 , filtered, concentrated in vacuo. The solvent was concentrated under vacuum and the residue was purified through column chromatography on silica gel (n-hexane/EtOAc = 15:1, v/v) to afford the pure product **6m** as a white solid (75.3g, 52%).

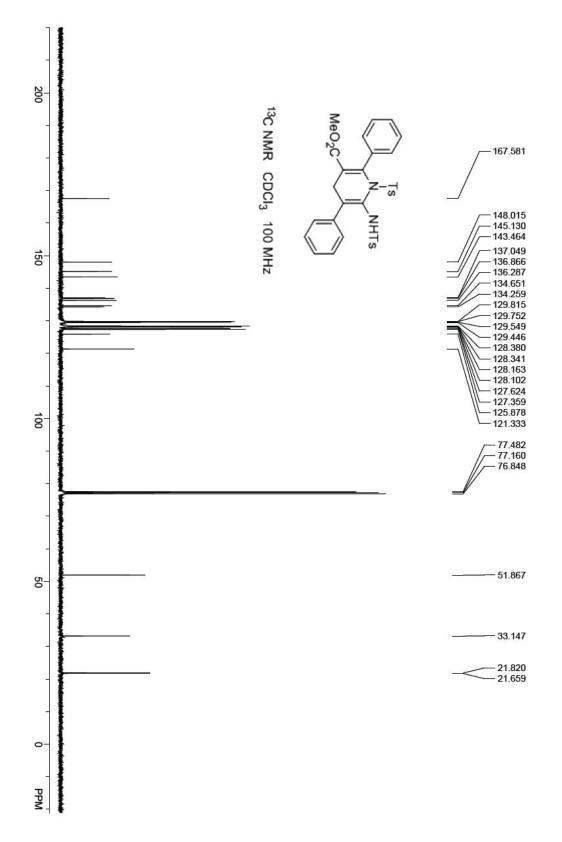
Methyl 2,6-diphenyl-1-tosyl-1H-pyrrolo[2,3-b]pyridine-5-carboxylate 6m

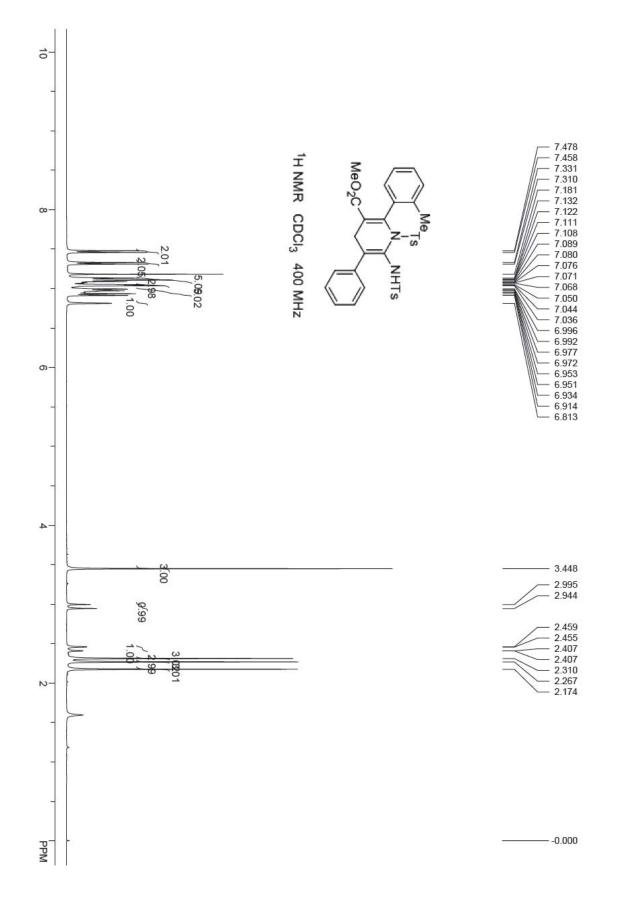
¹**H NMR** (400 MHz, CDCl₃, 25 °C, TMS) δ = 8.23 (s, 1H), 7.91 (d, *J* = 8.0 Hz, 2H), 7.65–7.62 (m, 4H), 7.53–7.50 (m, 6H), 7.19 (d, *J* = 8.0 Hz, 2H), 6.59 (s, 1H), 3.72 (s, 3H), 2.36 ppm (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃, 25 °C, TMS) δ = 169.2, 154.0, 149.8, 145.2, 143.8, 140.2, 135.5, 132.4, 131.0, 129.8, 129.3, 129.1, 129.0, 128.6, 128.5, 128.0, 127.8, 123.3, 119.8, 108.2, 52.4, 21.7 ppm; **HRMS** calc for C₂₈H₂₂N₂O₄S, [M]⁺ 482.1300, found 482.1301.

Synthesis of compound 7m

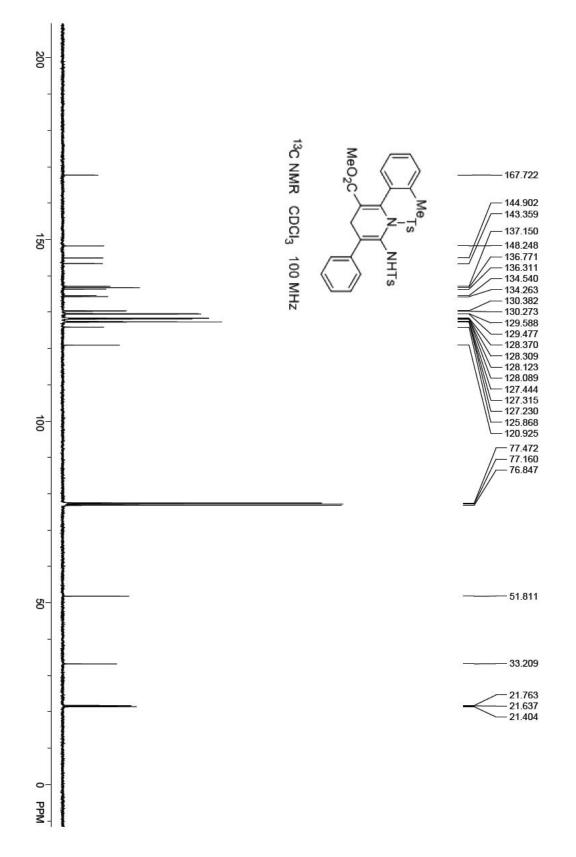
To a solution of **4m** (191.4 mg, 0.3 mmol), $PdCl_2$ (0.03 mmol, 0.1 equiv) in DMF (2 mL), 3-bromoprop-1-ene (1.5 mmol, 5.0 equiv) was added at 80°C. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified through column chromatography on silica gel (n-hexane/EtOAc = 15:1, v/v) to afford the pure product **7m** as yellow oil (83.1 mg, 53%).

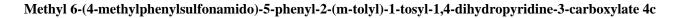

Methyl 3-allyl-2,6-diphenyl-1-tosyl-1H-pyrrolo[2,3-b]pyridine-5-carboxylate 7m

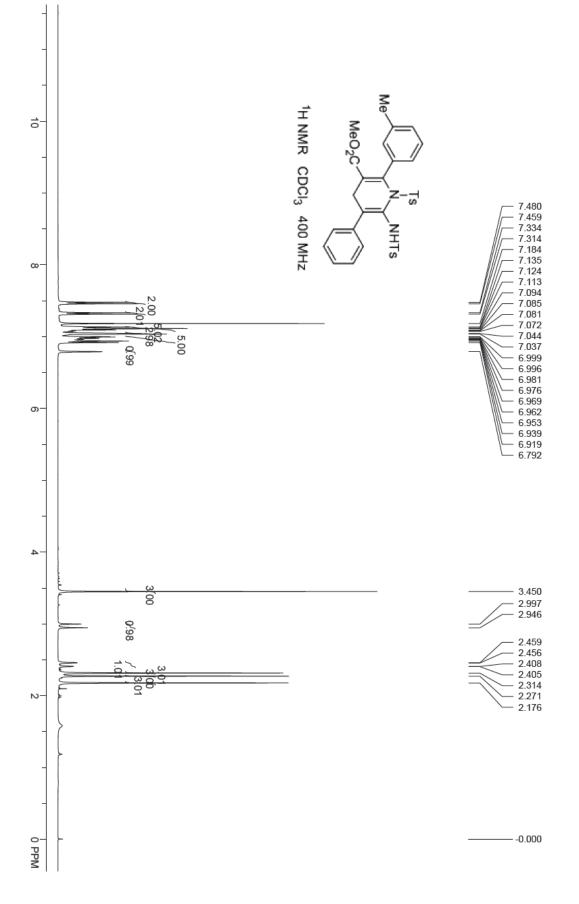

¹**H NMR** (400MHz, CDCl₃, 25 °C, TMS) δ = 8.08 (s, 1H), 7.79 (d, *J* = 8.4 Hz, 2H), 7.55–7.53 (m, 2H), 7.44–7.36 (m, 8H), 7.09 (d, *J* = 8.0 Hz, 2H), 5.83–5.79 (m, 1H), 4.95 (dd, *J*₁ = 1.6 Hz, *J*₂ = 10.4 Hz, 1H), 4.83 (dd, *J*₁ = 1.6 Hz, *J*₂ = 17.2 Hz, 1H), 3.61 (s, 3H), 3.17–3.16 (m, 2H), 2.26 ppm (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃, 25 °C, TMS) δ = 169.4, 154.1, 149.2, 145.0, 140.3, 139.2, 135.7, 135.4, 131.1, 130.4, 130.0, 129.3, 129.0, 128.5, 128.5, 128.0, 127.9, 122.9, 120.4, 116.9, 116.3, 52.4, 28.6, 21.7 ppm; **HRMS** calc for C₃₁H₂₆N₂O₄S, [M]⁺ 522.1613, found 522.1612.

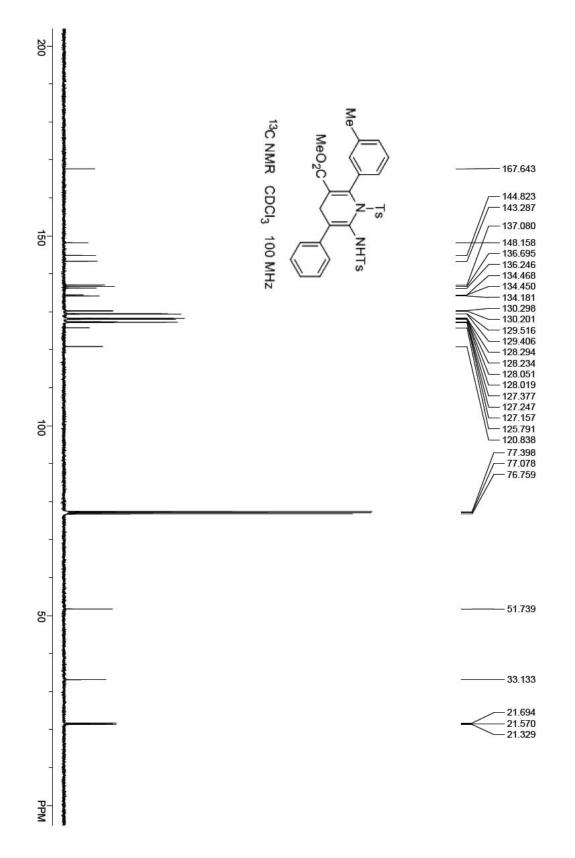

References:

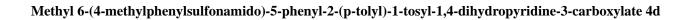
- 1. Liu, H.; Zhang, Q.; Wang, L.; Tong, X. Chem. Eur. J. 2010, 16, 1968.
- 2. Jiang, X.; Shi, X.; Wang, S.; Sun, T.; Cao, Y.; Wang, R. Angew. Chem., Int. Ed. 2012, 51, 2084.

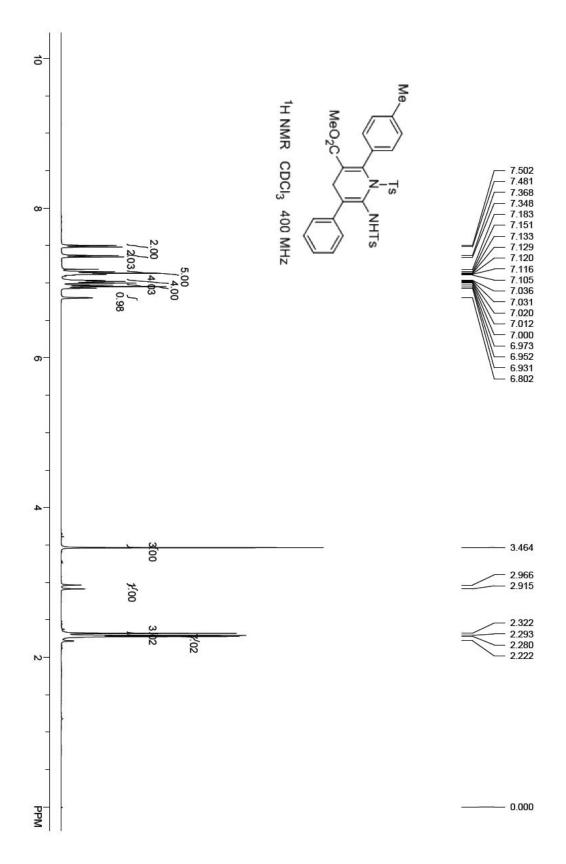

NMR spectra Methyl6-(4-methylphenylsulfonamido)-2,5-diphenyl-1-tosyl-1,4-dihydropyridine-3-carboxyla 4a

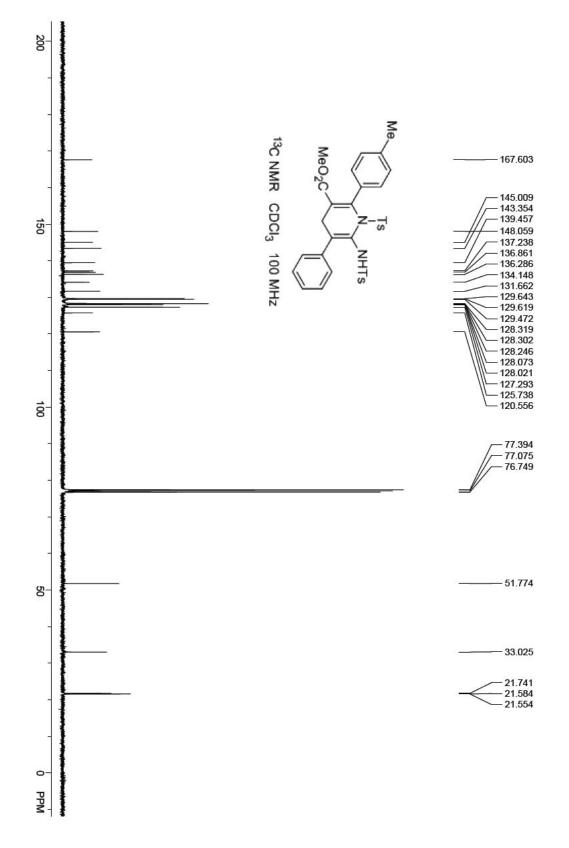


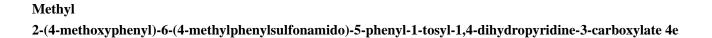


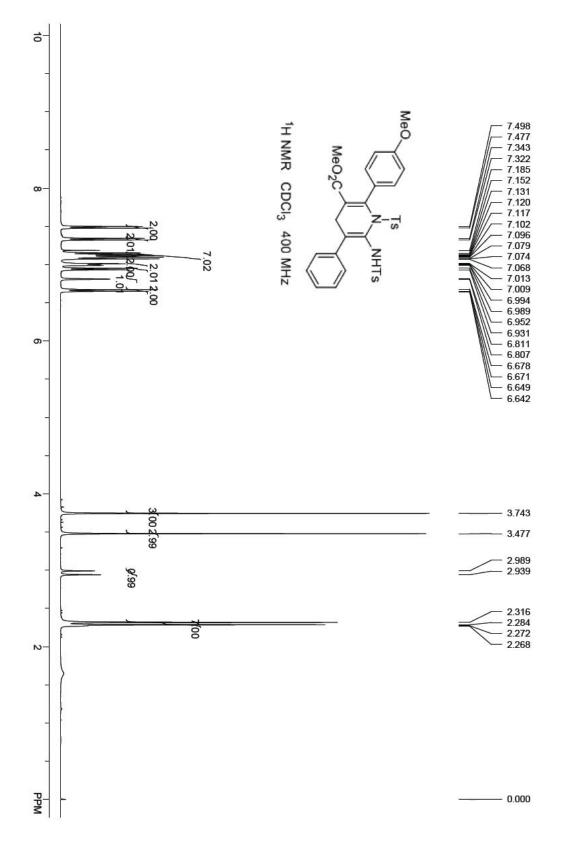


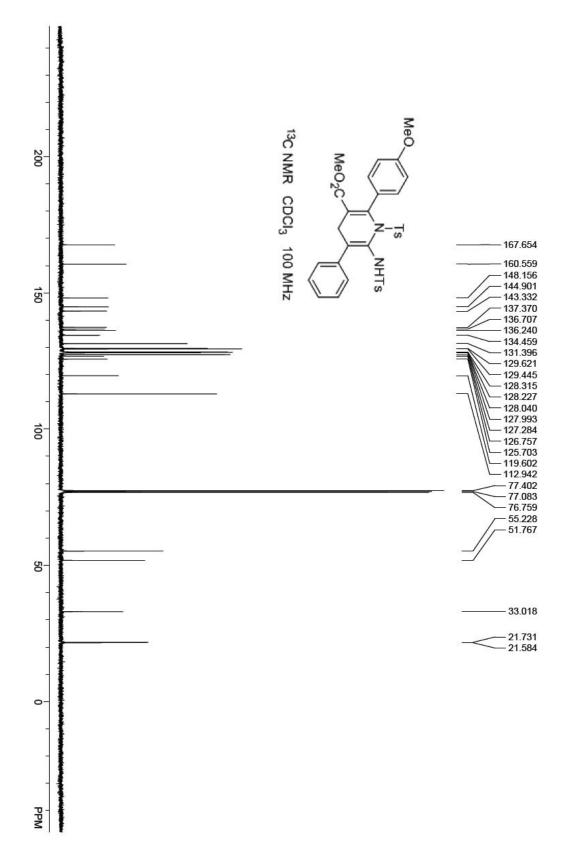

Methyl 6-(4-methylphenylsulfonamido)-5-phenyl-2-(o-tolyl)-1-tosyl-1,4-dihydropyridine-3-carboxylate 4b

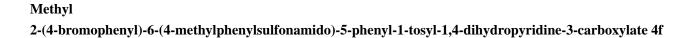


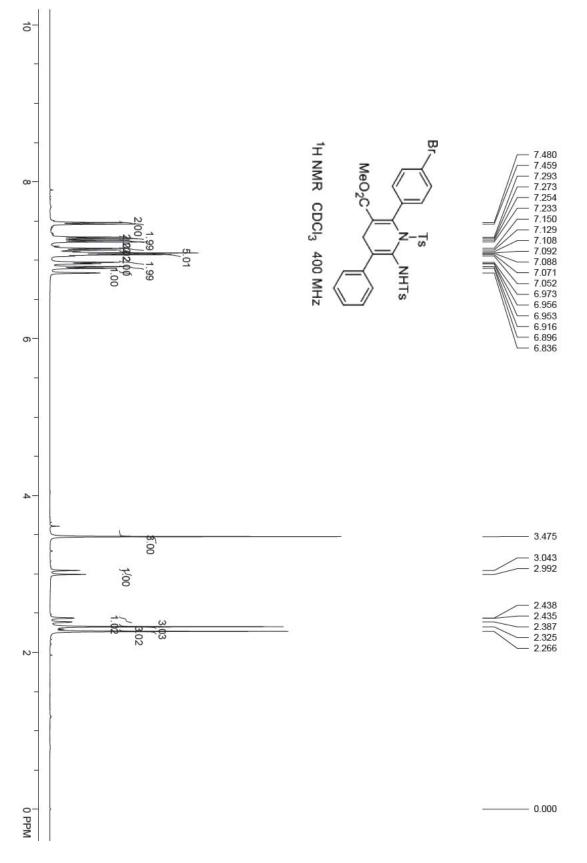


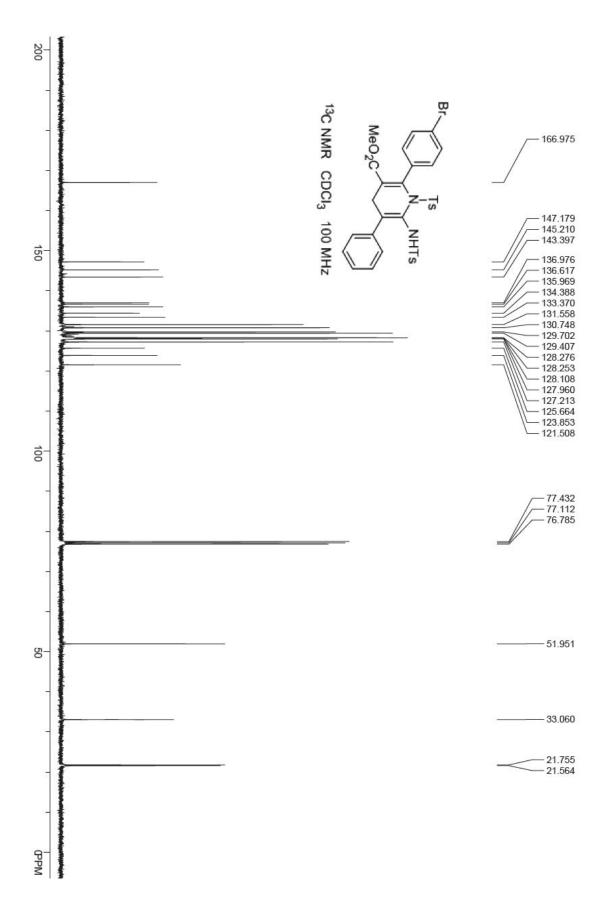


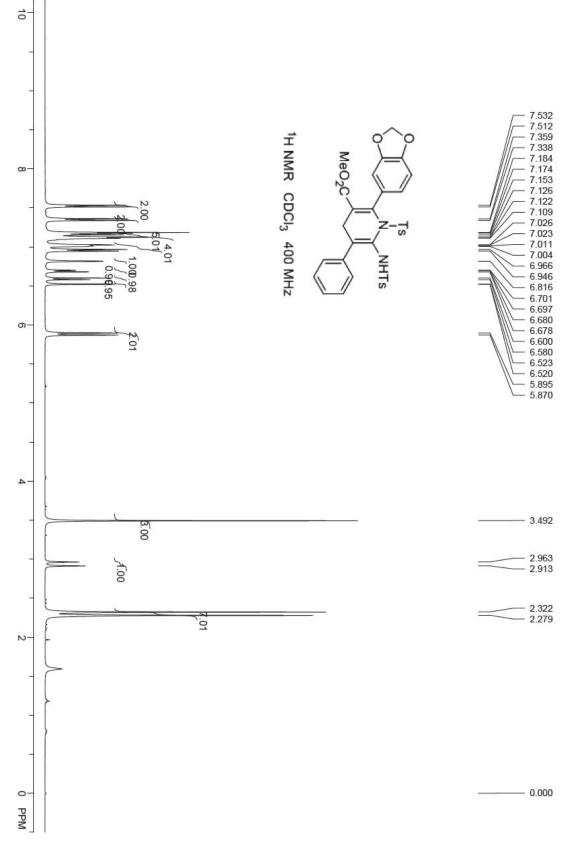


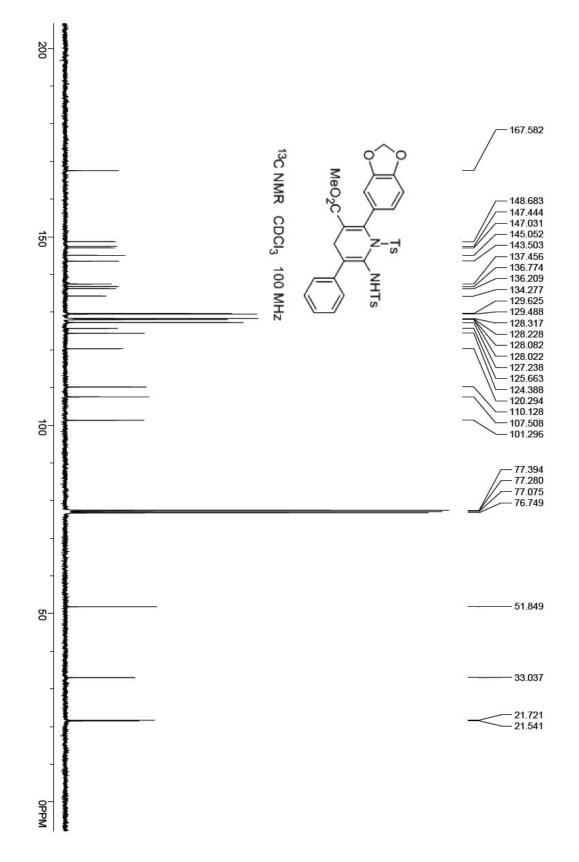


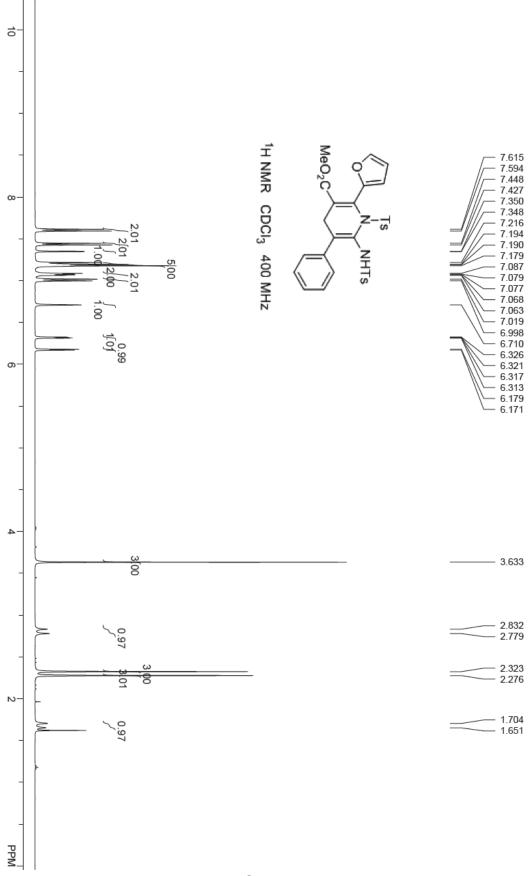


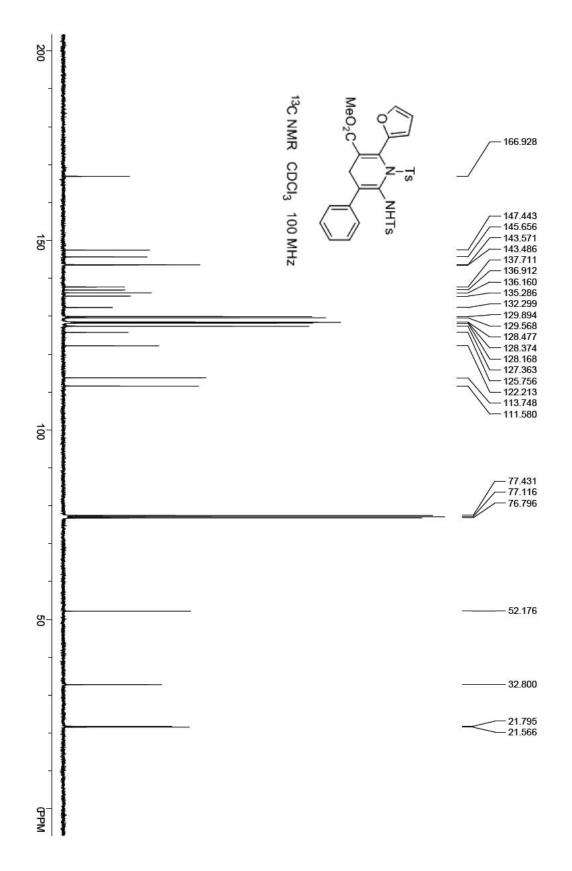


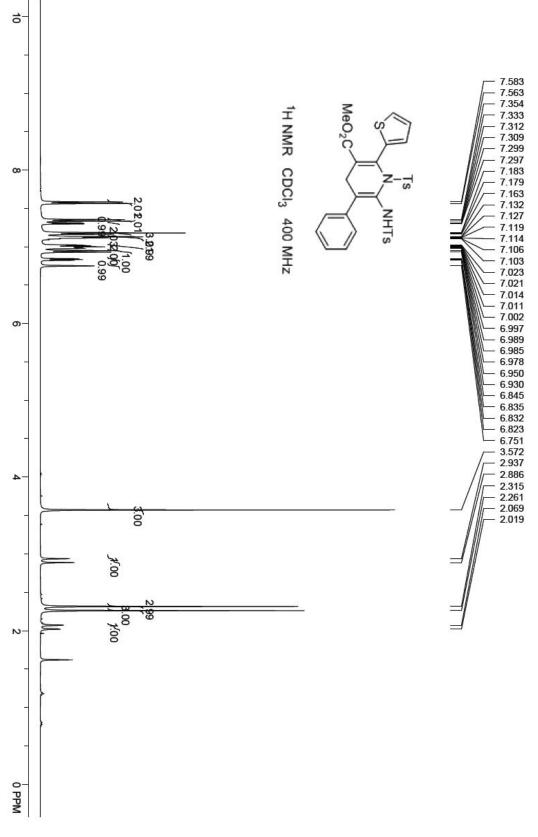


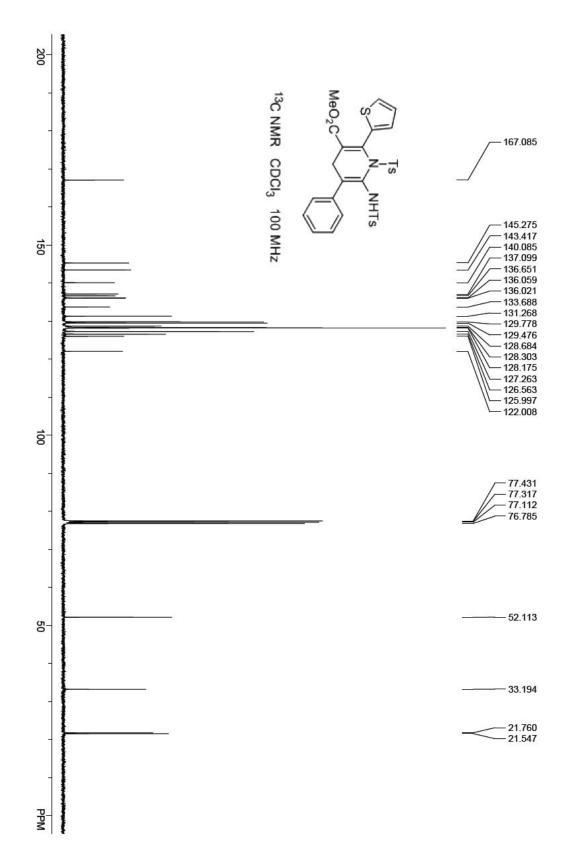


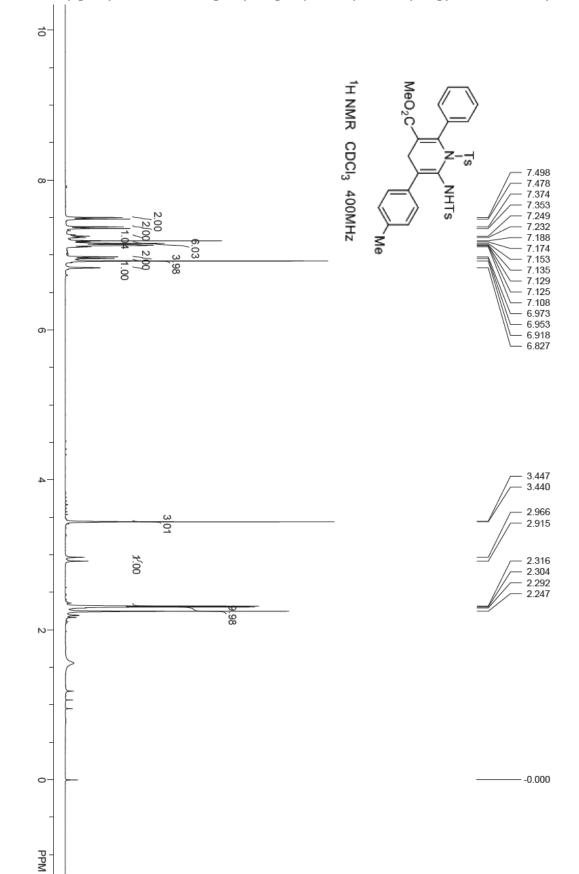


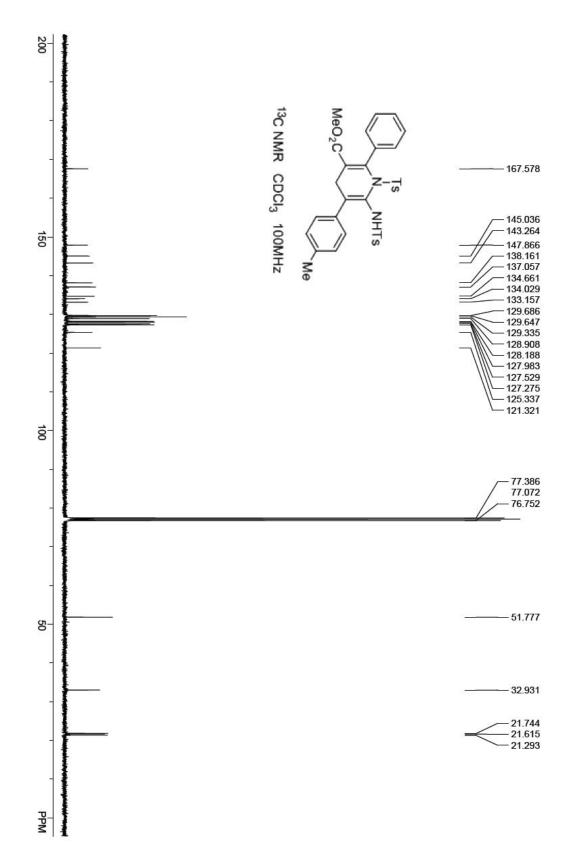


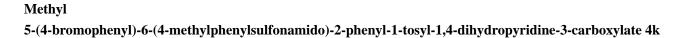

2-(Benzo[d][1,3]dioxol-5-yl)-6-(4-methylphenylsulfonamido)-5-phenyl-1-tosyl-1,4-dihydropyridine-3-carboxy late 4g

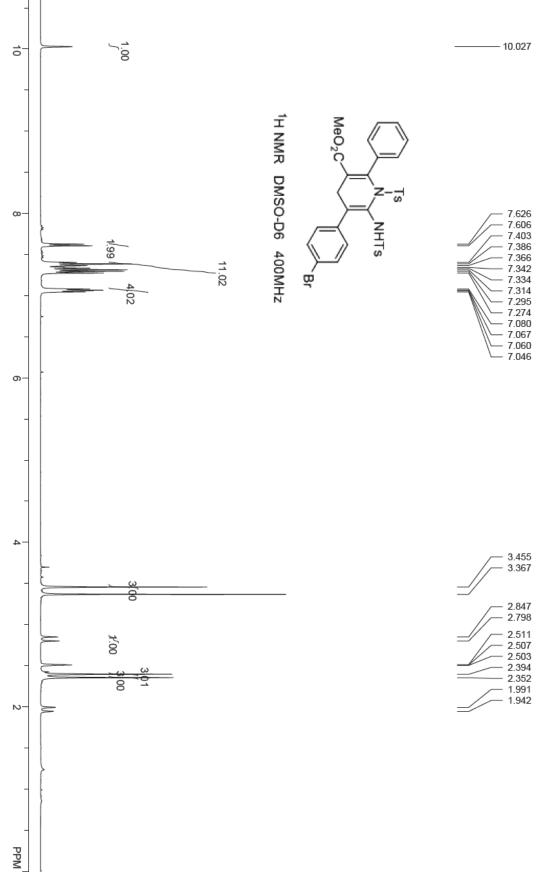


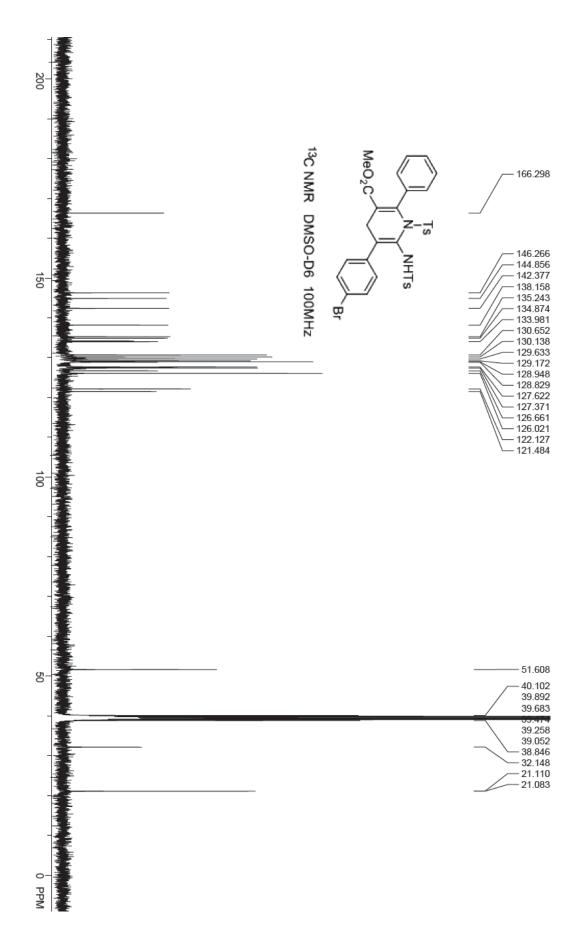

Methyl 2-(furan-2-yl)-6-(4-methylphenylsulfonamido)-5-phenyl-1-tosyl-1,4-dihydropyridine-3-carboxylate 4h

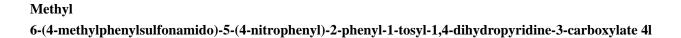


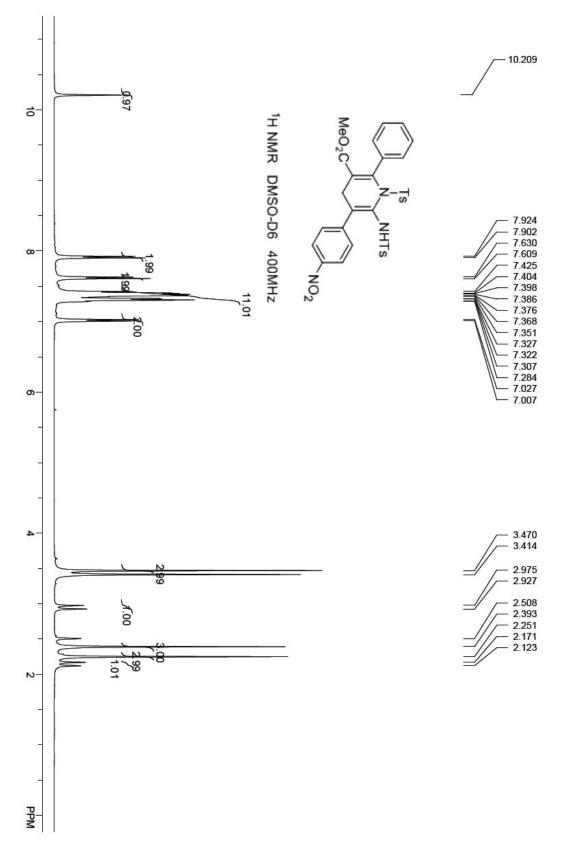

Methyl6-(4-methylphenylsulfonamido)-5-phenyl-2-(thiophen-2-yl)-1-tosyl-1,4-dihydropyridine-3-carboxylate 4i

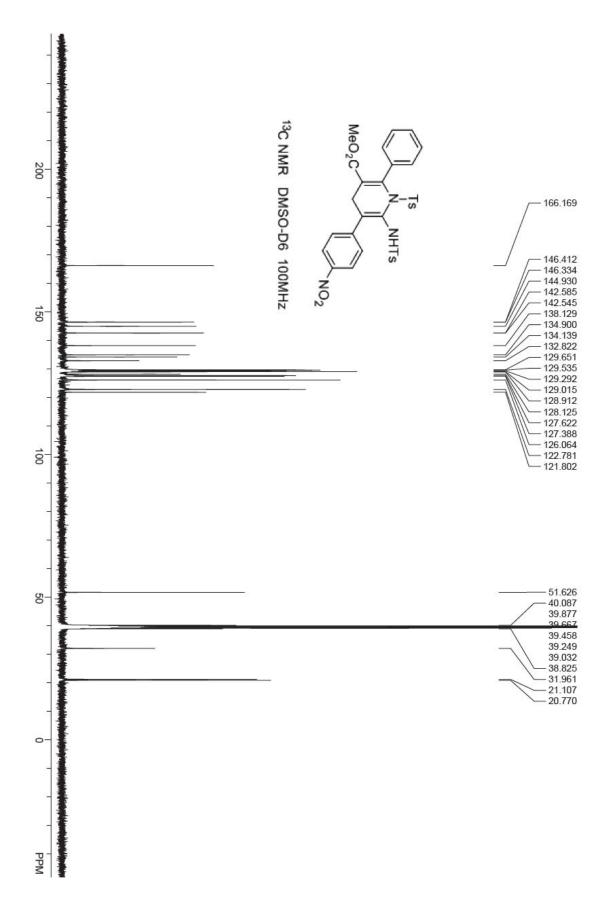


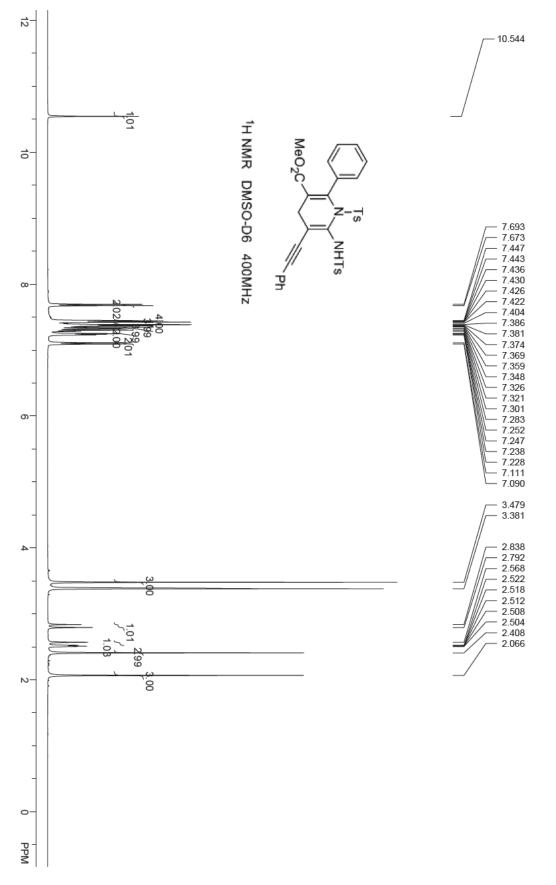


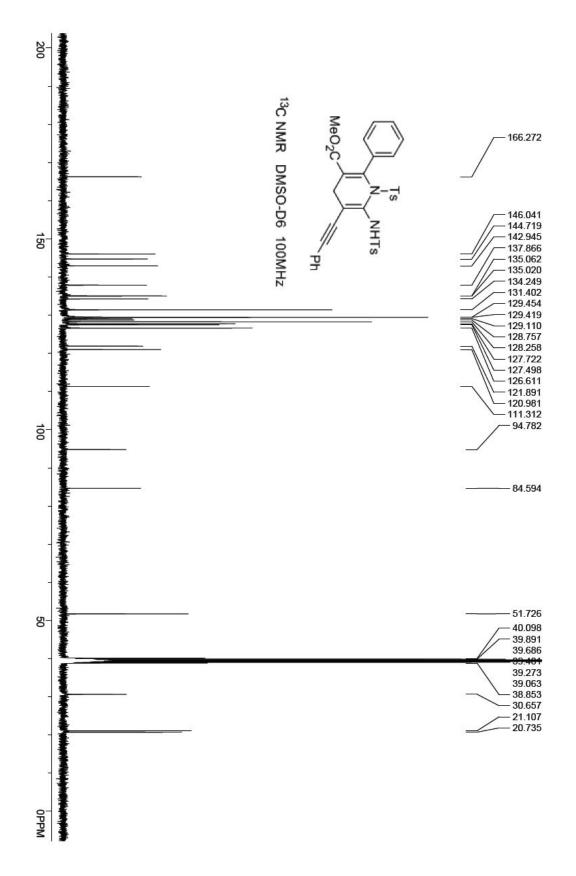


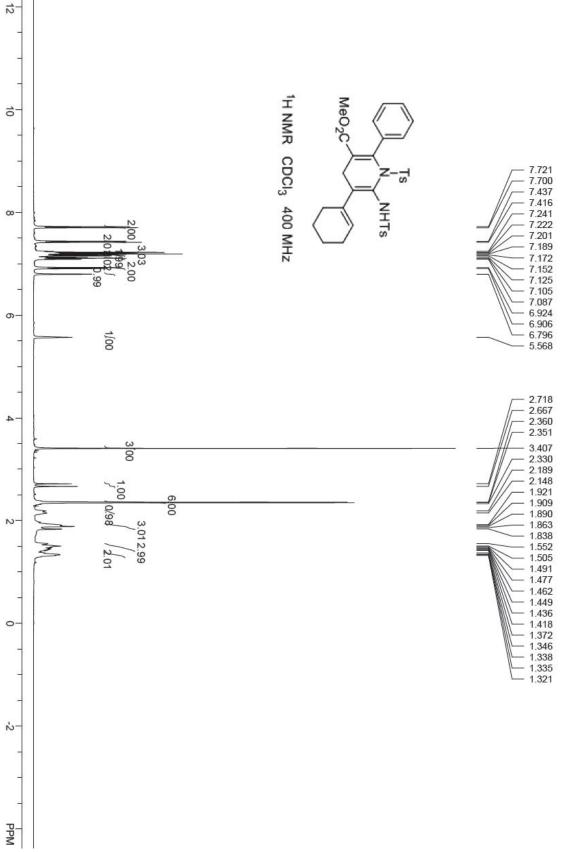

Methyl 6-(4-methylphenylsulfonamido)-2-phenyl-5-(p-tolyl)-1-tosyl-1,4-dihydropyridine-3-carboxylate 4j

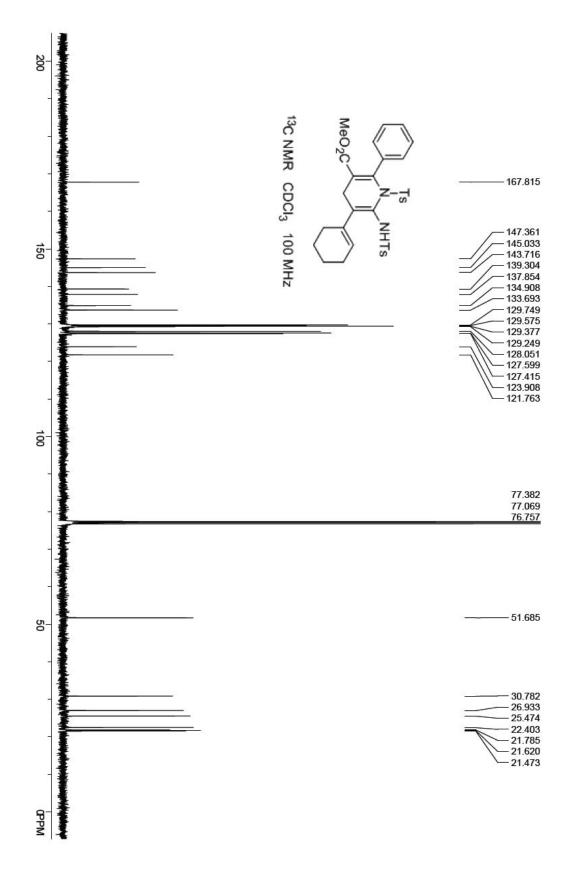


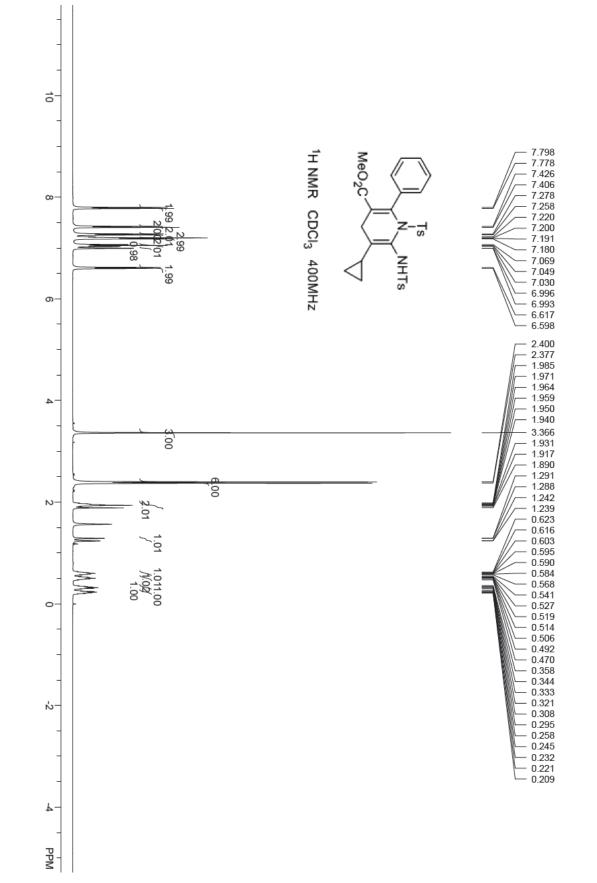




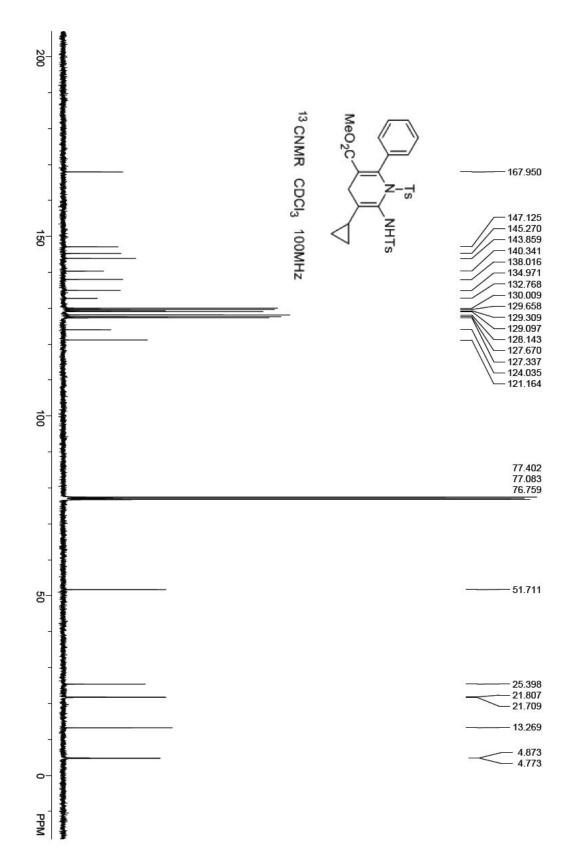


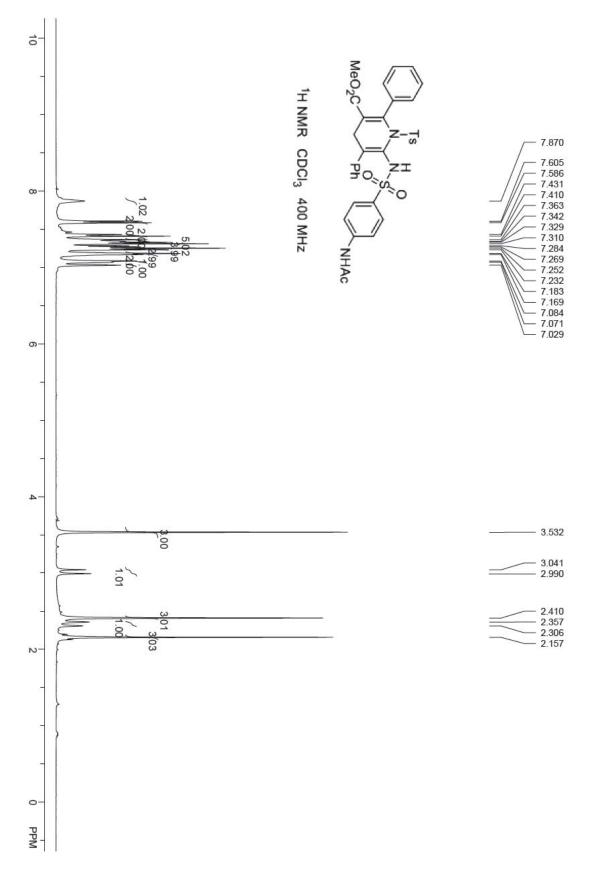

Methyl

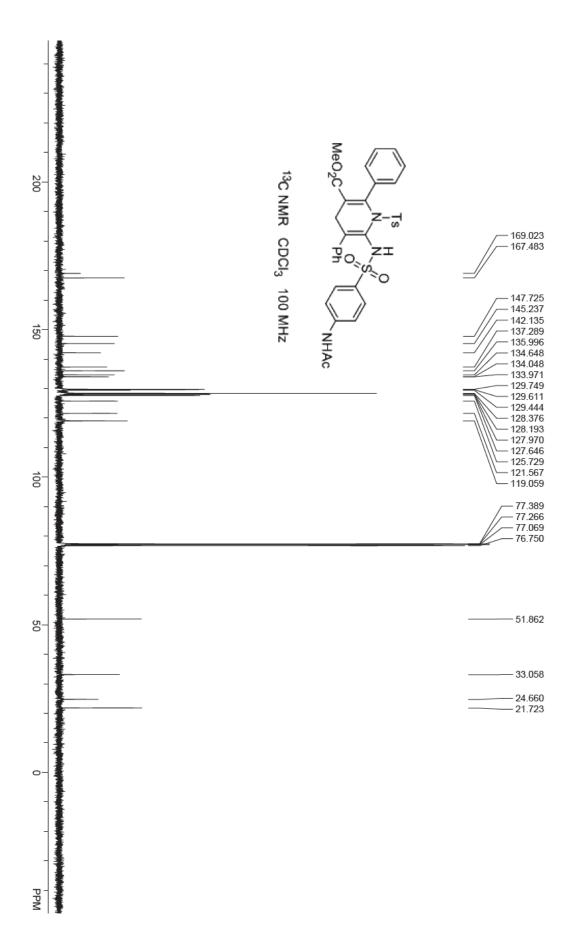


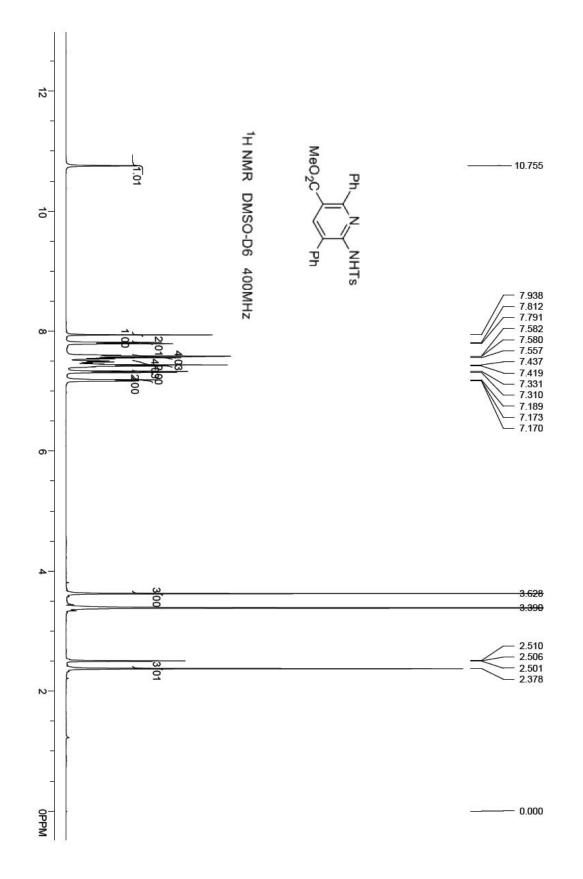


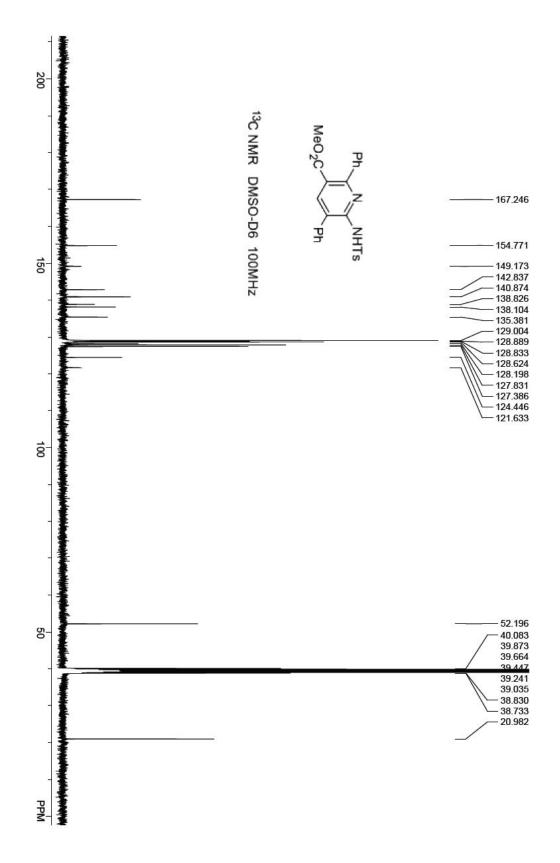
 $Methyl 5-(cyclohex-1-en-1-yl)-6-(4-methylphenyl sulfon amido)-2-phenyl-1-tosyl-1, 4-dihydropyridine-3-carboxylate \ 4n$

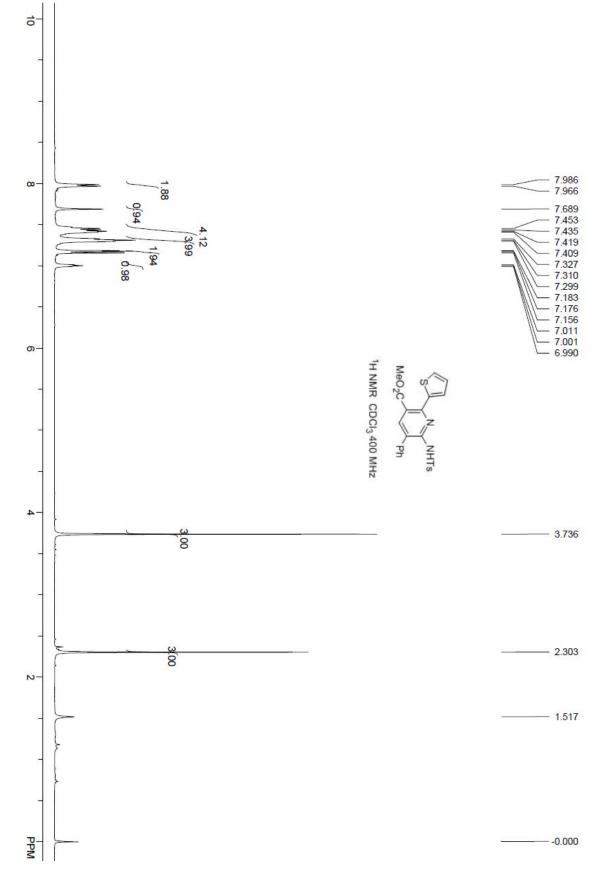


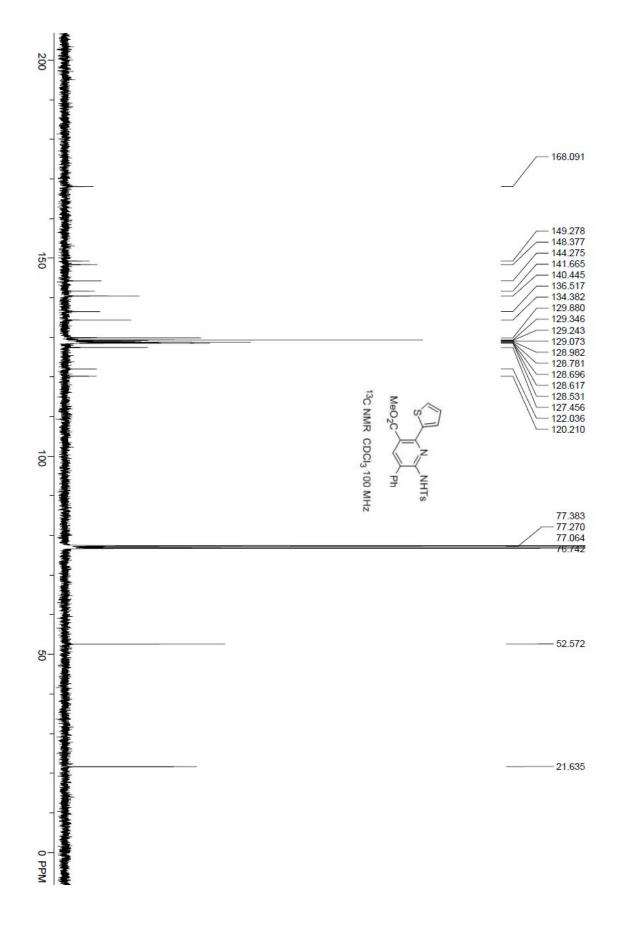

S37

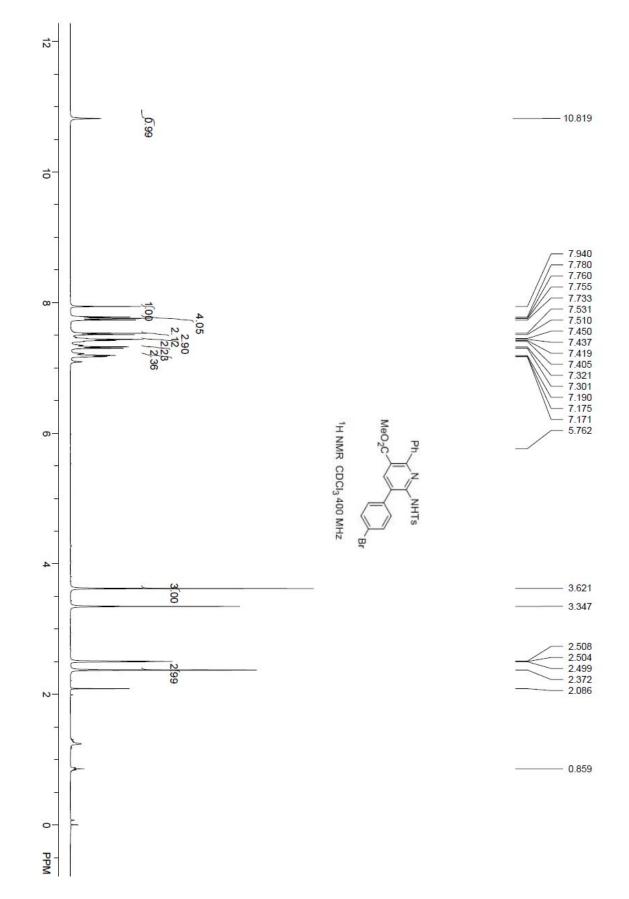


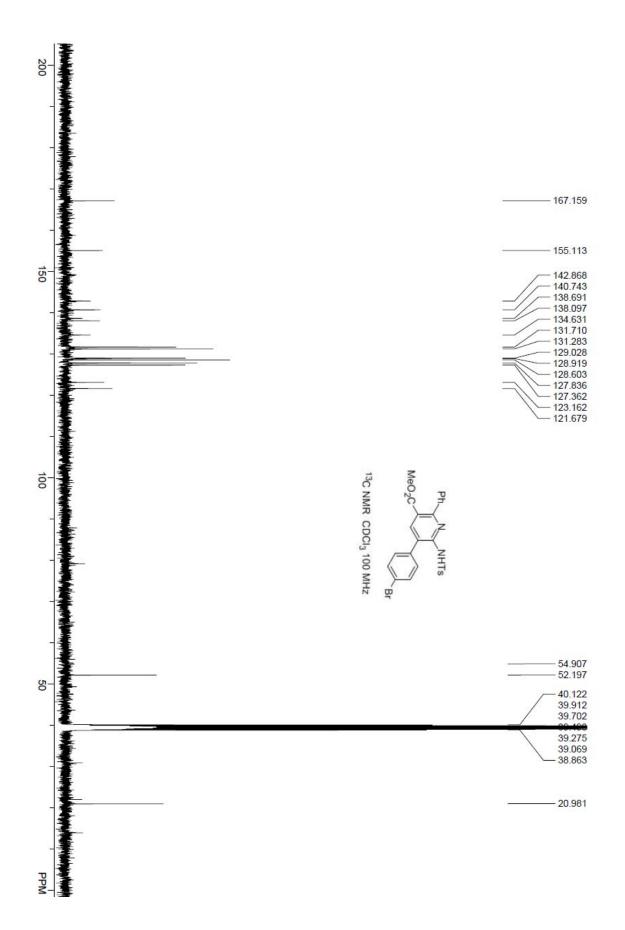

 $Methyl 5-cyclopropyl - 6- (4-methylphenyl sulfon amido) - 2-phenyl - 1-tosyl - 1, 4-dihydropyridine - 3-carboxylate\ 4o-correct amido) - 2-phenyl - 1-tosyl - 1, 4-dihydropyridine - 3-carboxylate\ 4o-correct amido) - 2-phenyl - 1-tosyl - 1, 4-dihydropyridine - 3-carboxylate\ 4o-correct amido) - 2-phenyl - 1-tosyl - 1, 4-dihydropyridine - 3-carboxylate\ 4o-correct amido) - 2-phenyl - 1-tosyl - 1, 4-dihydropyridine - 3-carboxylate\ 4o-correct amido) - 2-phenyl - 1-tosyl - 1, 4-dihydropyridine - 3-carboxylate\ 4o-correct amido) - 2-phenyl - 1-tosyl - 1, 4-dihydropyridine - 3-carboxylate\ 4o-correct amido) - 2-phenyl - 1-tosyl - 1, 4-dihydropyridine - 3-carboxylate\ 4o-correct amido) - 2-phenyl - 1-tosyl - 1, 4-dihydropyridine - 3-carboxylate\ 4o-correct amido) - 2-phenyl - 1-tosyl - 1, 4-dihydropyridine - 3-carboxylate\ 4o-correct amido) - 2-phenyl - 1-tosyl - 1, 4-dihydropyridine - 3-carboxylate\ 4o-correct amido) - 2-phenyl - 1-tosyl - 1, 4-dihydropyridine - 3-carboxylate\ 4o-correct amido) - 2-phenyl - 1-tosyl - 1, 4-dihydropyridine - 3-carboxylate\ 4o-correct amido) - 2-phenyl - 1-tosyl - 1, 4-dihydropyridine - 3-carboxylate\ 4o-correct amido) - 2-phenyl - 1-tosyl - 1, 4-dihydropyridine - 3-carboxylate\ 4o-correct amido) - 2-phenyl - 1-tosyl - 1, 4-dihydropyridine - 3-carboxylate\ 4o-correct amido) - 2-phenyl - 1-tosyl - 1, 4-dihydropyridine - 3-carboxylate\ 4o-correct amido) - 2-phenyl - 1-tosyl - 1, 4-dihydropyridine - 3-carboxylate\ 4o-correct amido) - 2-phenyl - 1-tosyl - 1, 4-dihydropyridine - 3-carboxylate\ 4o-correct amido) - 2-phenyl - 1-tosyl - 1, 4-dihydropyridine - 3-carboxylate\ 4o-correct amido) - 2-phenyl - 1-tosyl - 1, 4-dihydropyridine - 3-carboxylate\ 4o-correct amido) - 2-phenyl - 1-tosyl - 1, 4-dihydropyridine - 3-carboxylate\ 4o-correct amido) - 2-phenyl - 1-tosyl - 1, 4-dihydropyridine - 3-carboxylate\ 4o-correct amido) - 2-phenyl - 1-tosyl - 1-tosyl - 1, 4-dihydropyridine - 3-carboxylate\ 4o-correct amido) - 2-phenyl - 1-tosyl -$

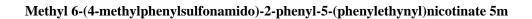

Methyl1-(4-acetamidophenyl)-6-(4-methylphenylsulfonamido)-2,5-diphenyl-1,4-dihydropyridine-3-carboxyla te 4p

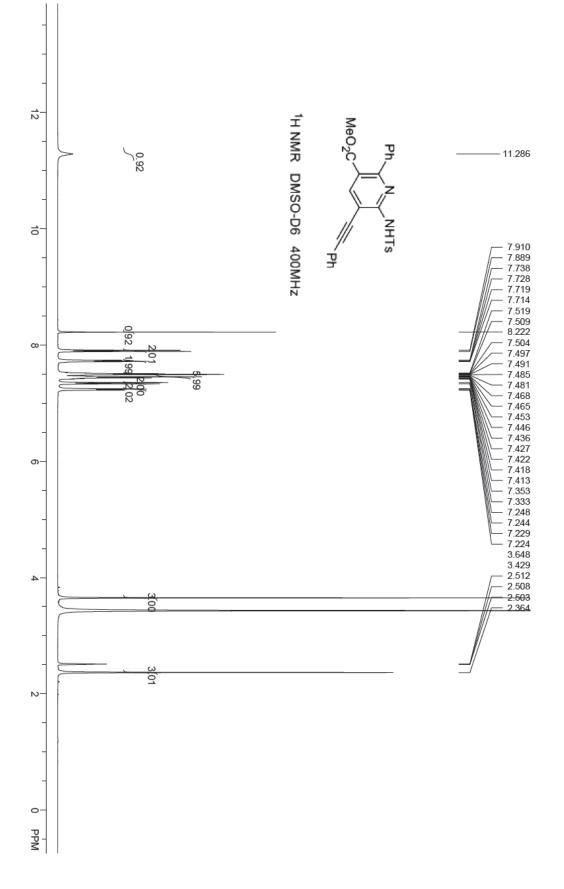


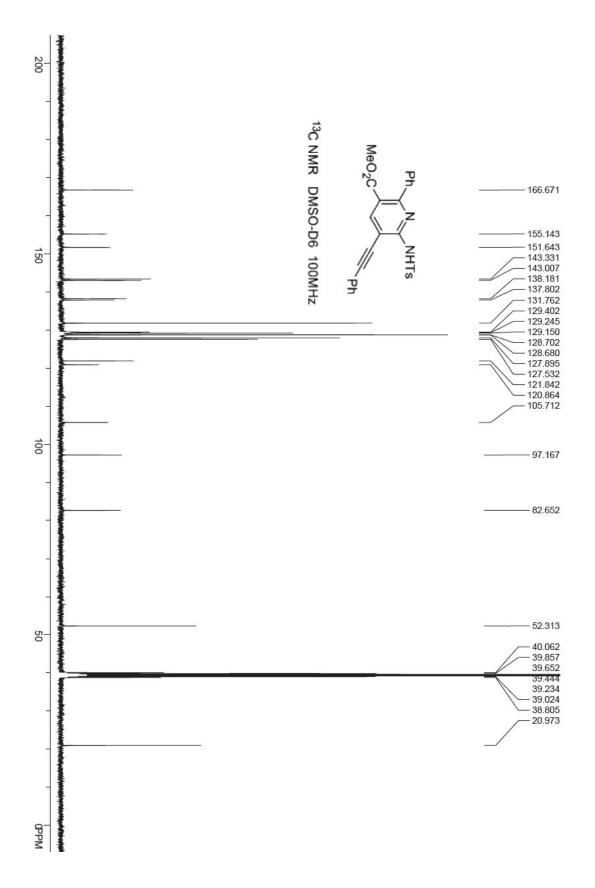

Methyl 6-(4-methylphenylsulfonamido)-2,5-diphenylnicotinate 5a

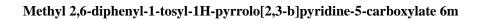


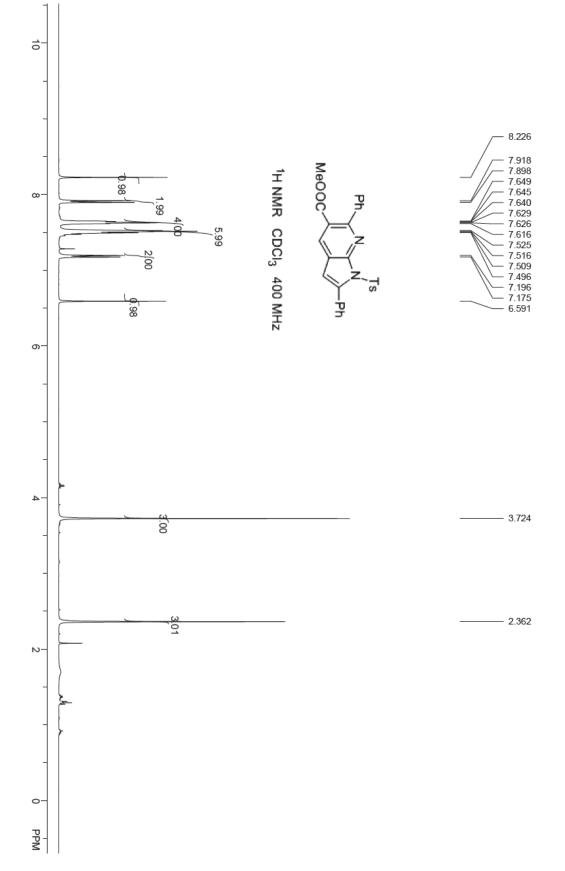

Methyl 6-(4-methylphenylsulfonamido)-5-phenyl-2-(thiophen-2-yl)nicotinate 5i

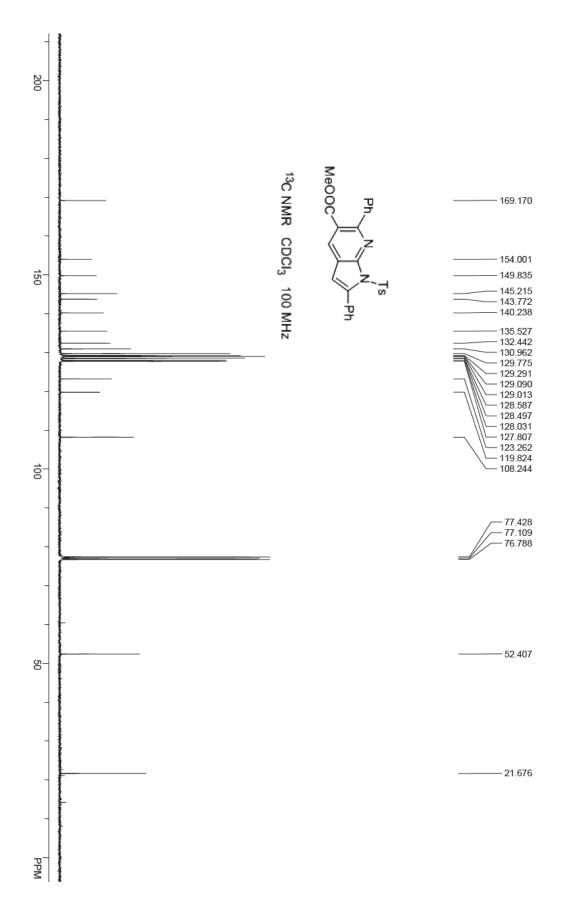

S44

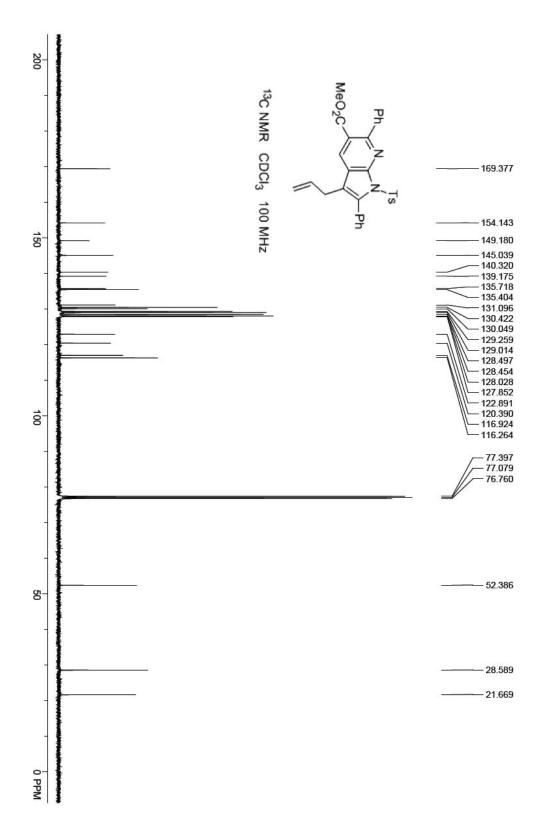





Methyl 5-(4-bromophenyl)-6-(4-methylphenylsulfonamido)-2-phenylnicotinate 5k







Methyl 3-allyl-2,6-diphenyl-1-tosyl-1H-pyrrolo[2,3-b]pyridine-5-carboxylate 7m

