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Supporting Information:

Figure S1. Purification and identification of the major reaction product of salicylamine (SA) and
methylglyoxal (MGO).

Figure S2. Detection of products of reaction between MGO and bzArg.
Figure S3. Detection of products of reaction between glucose and bzArg.
NMR Experiments

Table S1 NMR Assignments

Scheme S1. Possible Pathways for the Reaction Between Pyridoxamine and Methylglyoxal
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Figure S1. Purification and identification of the major reaction product of salicylamine (SA)
and methylglyoxal (MGO). Reaction mixture containing SA and MGO was prepared and
incubated as described under Experimental procedures. The mixture was analyzed using HPLC
(A) and the major SA-MGO adduct identified using tandem mass-spectrometry (B).
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Figure S2. Detection of products of reaction between MGO and bzArg. Reaction mixture
containing 5 mM MGO and 5 mM bzArg was incubated at 37°C for 2 h and analyzed using
HPLC as described under Experimental procedures.
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Figure S3. Detection of products of reaction between glucose and bzArg. Reaction mixture
containing 100 mM D-glucose and 2 mM bzArg either without (A) or with (B) 2 mM hexyl-PM
was incubated at 37°C for 40 d and analyzed using HPLC as described under Experimental
procedures.



NMR experiments

NMR runs were acquired using a 14.0 T Bruker magnet equipped with a Bruker AV-III console
operating at 600.13 MHz. All spectra were acquired in 3mm NMR tubes using a Bruker 5 mm
TCI cryogenically cooled NMR probe. Chemical shifts were referenced internally to DMSO-d;
(2.49 ppm) which also served as the *H lock solvent. For 1D 'H NMR, typical experimental
conditions included 32K data points, 13 ppm sweep width, a recycle delay of 1.5 seconds and 32
scans. Parameters for 1D 13C NMR included 32K data points, 240 ppm sweep width, 1.5
second recycle delay and 15,000 scans. For 2D 'H-'"H COSY, experimental conditions included
2048 x 1024 data matrix, 13 ppm sweep width, recycle delay of 1.5 seconds and 4 scans per
increment. The data was processed using squared sinebell window function, symmetrized, and
displayed in magnitude mode. Multiplicity-edited "H-">C HSQC experiment was acquired using
a 1024 x 256 data matrix, a J(C-H) value of 145 Hz which resulted in a multiplicity selection
delay of 34 ms, a recycle delay of 1.5 seconds and 8 scans per increment along with GARP
decoupling on "*C during the acquisition time (150 ms). The data was processed using a [1/2
shifted squared sine window function and displayed with CH/CHj signals phased positive and
CHj signals phased negative. J;(C-H) filtered 'H-">C HMBC experiment was acquired using a
2048 x 256 data matrix, a J(C-H) value of 9 Hz for detection of long range couplings resulting in
an evolution delay of 55ms, J;(C-H) filter delay of 145 Hz (34 ms) for the suppression of one-
bond couplings, a recycle delay of 1.5 seconds and 16 scans per increment. The HMBC data was
processed using a [1/2 shifted squared sine window function and displayed in magnitude mode.
'H NMR (DMSO, 600MHz) & 1.18 (d, J = 6.63 Hz, 3H), 3.79 (m, 1H), 5.22 (s, 4H), 6.76 (t, ] =

3.98 Hz, 1H), 6.82 (d, J = 8.20 Hz, 1H), 6.95 (t, J = 8.56 Hz, 2H), 7.13 (t, J = 7.98 Hz, 1H), 7.17
(d, J=7.23 Hz, 2H), 7.27 (d, J = 7.59 Hz, 1H)

C NMR (DMSO, 150 MHz) § 21.06, 46.13, 48.19, 67.20, 77.92, 115.61, 115.68, 118.52,
119.70, 120.60, 129.39, 130.11, 130.22, 156.45, 156.48, 177.84
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Table ST NMR Assignments

1 N/A N/A N/A

N/A
2 N/A 177.84  N/A 1.18,3.79
3 N/A N/A N/A N/A
4 5.22 48.19 N/A 120.6,130.22,156.48
4a N/A 120.6 N/A 5.22,6.74,6.95, 7.17
5 7.27 130.22 6.74 48.19,115.68,156.48
6 6.76 118.52 6.95,7.27 115.68,120.6,
130.11
7 6.95 115.68 6.74,7.17 118.52,120.6,156.45
8 7.17 130.11 6.95 115.68, 118.52,
120.6,156.48
8a N/A 156.48 N/A 5.22,6.95,7.17,7.27
9 N/A 77.92 N/A 3.79

10 1.18 21.06 N/A 67.20,177.84



r N/A N/A N/A N/A

2 3.79 67.20 N/A 77.92,177.84

3 N/A N/A N/A N/A

4 5.22 46.13  N/A 119.7,130.11,156.45
4a’ N/A 119.7 N/A 522

5’ 7.17 130.11 6.76 46.13,129.39,156.45
6’ 6.95 115.68 7.13,7.17 119.7

7 7.13 129.39 6.76,6.82 130.11,156.45

8 6.82 115.61 7.13 119.7, 156.45

8a’ N/A 156.45 N/A 5.22,7.13,7.17



Scheme S1. Possible Pathways for the Reaction Between Pyridoxamine and Methylglyoxal
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