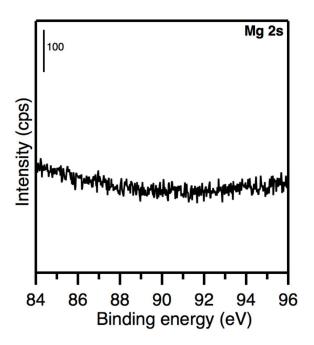
Synthesis and Characterization of Atomically

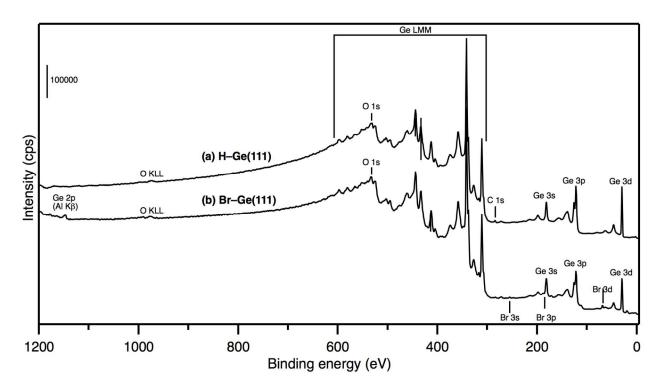
Flat Methyl-Terminated Ge(111) Surfaces

Keith T. Wong¹, Youn-Geun Kim², Manuel P. Soriaga², Bruce S. Brunschwig²⁻³, and Nathan S. Lewis¹⁻⁴*

¹Division of Chemistry and Chemical Engineering


²Joint Center for Artificial Photosynthesis

³Beckman Institute


⁴Kavli Nanoscience Institute

California Institute of Technology, Pasadena, California 91125, United States

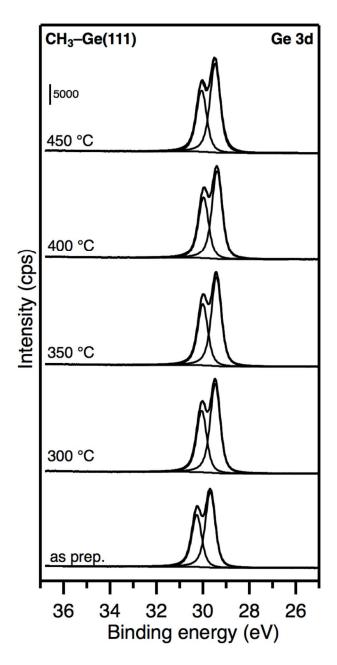

*E-mail: nslewis@caltech.edu

Figure S1. High-resolution XP spectrum of the Mg 2s region of a CH_3 –Ge(111) surface. No Mg from the $(CH_3)_2$ Mg used for methylation was detected after sonication of methylated surfaces in THF, methanol, and water.

Figure S2. XP survey spectra of (a) an H–Ge(111) surface and (b) a Br–Ge(111) surface. No contaminant elements were detected in either spectrum. Note that spectrum b was collected using a non-monochromatic Al X-ray source, leading to the small peak at 1147 eV from Al K β excitation of Ge 2p photoelectrons.

Figure S3. High-resolution XP spectra of the Ge 3d photoelectron region of a CH_3 –Ge(111) surface (bottom to top) as prepared and after sequential 60 min anneals in UHV at 300, 350, 400, and 450 °C. No significant shift of the Ge 2p peaks or oxidation was detected upon annealing.