Supporting Information for

Efficient Electrochemical CO₂ Conversion Powered by Renewable Energy

Douglas R. Kauffman,^{1,*} Jay Thakkar,¹ Rajan Siva,¹ Christopher Matranga,¹ Paul R. Ohodnicki,¹ Chenjie Zeng² and Rongchao Jin²

¹National Energy Technology Laboratory, United States Department of Energy, Pittsburgh, Pennsylvania, USA. *<u>Email</u>: Douglas.Kauffman@NETL.DOE.GOV

²Dept. of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

Content	s P	ages
Experime	ntalS	\$2 - \$3
Equation	S1. Faradaic efficiency (FE) calculation	S4
Equations	s S2-S5. Required electrical input for CO ₂ Reduction Reaction (CO ₂ RR)	S5
Table S1.	Ideal Energy requirements (MWh/tonne CO ₂) for converting CO ₂ into various products at zero overpotential and 100% Faradaic efficiency (FE)	S6
Table S2.	Energy requirements (MWh/tonne CO ₂) for selected catalyst systems to convert one tonne CO ₂ in to various products	S7
Figure S1	. Electron Microscopy of Au ₂₅ /CB electrodes	S8
Figure S2	. CO ₂ RR product distribution from catalyst-free carbon electrodes	S9
Figure S3	. Potential-Dependent CO ₂ reduction at Au ₂₅ /CB electrode	S10
Figure S4	. CO ₂ flow rate-dependent CO ₂ reduction at Au ₂₅ /CB electrode	S11
Figure S5	. Post-reaction TEM of Au ₂₅ /CB after 36 hours of electrolysis	S12
Figure S6	. XPS of Au ₂₅ /CB electrode before and after 36 hours of electrolysis	S13
Figure S7	. Raw CO ₂ reduction current over 36 hours at Au ₂₅ /CB electrode	S14
Figure S8	Photograph of the solar-rechargeable battery	S15
Reference	s	5-817

Experimental Section

General. Au₂₅(C₂H₄Ph)₁₈ nanoclusters were synthesized following previously published methods.^{1,2} Absorbance spectroscopy was conducted on an Agilent 8453 diode array spectrophotometer. All electrochemical experiments were conducted in 0.1M KHCO₃ using a Ag/AgCl reference electrode and a Pt mesh counter electrode. The Ag/AgCl reference electrode was regularly calibrated against a Hydroflex reversible hydrogen electrode in CO₂ saturated 0.1M KHCO₃. Purified water (17-18 M Ω , Barnstead Easypure) was used to prepare all aqueous solutions and to clean all glassware. A Basi Epsilon potentiostat was used for potentiostatcontrolled experiments. A 6V, 1.5W solar panel (RadioShack; model 2770052) was used for solar cell-powered experiments. A rechargeable 6V battery (Universal Power Group; model UB645k) was charged with a 6V solar charger (American Hunter; Model BL-66-S) and used for battery-powered experiments.

Electrode Preparation. A small amount of Au₂₅ was dissolved in 3 mL acetone and the UV-Vis absorbance spectrum was collected in a 1 cm quartz cuvette. The concentration of Au₂₅ (mol L⁻¹) was determined using the known molar absorptivity at 670 nm (8800 L mol⁻¹ cm⁻¹).³ Specific electrode loadings were obtained by mixing precise volumes of Au₂₅ solution with 2 mg of carbon black (CB) dispersed in 2 mL methanol. The mixture was sonicated for approximately 1 minute to ensure complete mixing. Au₂₅ is not soluble in methanol and this process precipitates Au₂₅ onto the CB support. The mixture was diluted with ultrapure water and centrifuged twice to remove the methanol. The centrifuged Au₂₅/CB material was dried under N₂ and then suspended in 2 ml H₂O by adding 75 μ l Nafion solution and sonicating. The resulting Au₂₅/CB suspension was dropcast onto 25 cm² carbon paper electrodes heated at 135 C. This temperature was high

enough to evaporate water but lower than the ~ 200 C required for ligand desorption.⁴ The Au₂₅/CB material occupied approximately 13 cm² of the electrode surface, and the edges of the carbon paper electrodes remained bare.

Reactor Design and Operation. A continuous flow, glass reactor was used to study the electrocatalytic reduction of CO₂. The reactor was an H-cell design constructed from two 150 mL chambers (Addams & Chittenden Scientific Glassware; microbial fuel cell model 100.25.3). The cathode chamber contained the Au₂₅/CB coated carbon paper electrode and a Ag/AgCl reference electrode. The anode half-cell compartment contained the platinum mesh counter electrode. The two chambers were separated by a 0.007 inch thick Nafion 117 cation exchange membrane. Ultrahigh purity CO₂ (UHP; 99.999%) was continuously purged at a constant rate through the cathode compartment electrolyte. A constant potential was applied to the cathode with a potentiostat, solar cell or solar-rechargeable battery. The effluent gas was collected in a gas-tight 1 liter Tedlar bag (Supelco) and products were quantified using a Perkin Elmer Arnel Clarus 600 gas chromatograph (GC). The GC was equipped with a 15' x 1/8" (2.1 mm inner diameter) Supelco 60/80 Carboxen 1000 column. The GC was calibrated with a multicomponent standard gas mixture containing certified concentrations of H₂, N₂, O₂, CO, CO₂, and CH₄. The mixture was balanced with He. Each calibration point was conducted in triplicate to ensure reproducibility. The column can also detect other common CO₂ reduction products including acetylene, ethane, ethylene and methanol, but we only detected CO and H₂. Faradaic efficiency calculations show that the detected products (CO and H₂) account for ~100% of the electrochemical current, which provides further evidence that our product analysis is accurate. These result is consistent with previous work by our group and others that Au species selectivity convert CO_2 into CO_2^{5-9} The anode compartment electrolyte was purged with N_2 and continuously exchanged from a larger 1 liter reservoir with peristaltic pumps.

Faradaic Efficiency. Faradaic efficiency (FE) estimates the fraction of electrons used in the CO₂RR. Ideally, all electrons passed through the electrode are used in the CO₂RR reaction and the system shows 100% FE. FE values were calculated from the detected reaction products and the integrated electrolysis charge. In a continuous flow reactor the amount of products contained in the effluent gas *per* unit time can be determined from the flow rate, sampling time, and GC injection volume. For example, we collected 500 mL of effluent gas in a sampling bag every 10 minutes (50 mL min⁻¹ flow rate). We injected 0.5 mL of this gas into the GC to quantify the amount of products. The GC injection volume was 1/1000th the sample volume, so the detected products represented 1/1000th the total amount of gas produced during the 10 min sampling period. Faradaic efficiencies were then determined from the amount of charge passed during the sampling period. FE values for multi-hour and multi-day runs were calculated from the average daily charge per minute passing through the cathode.

Equation S1. Faradaic Efficiency Calculation.

$$FE (\%) = \frac{\text{Detected Products (mol CO)} \times \frac{2 \text{ mol } e^-}{\text{mol CO}}}{\frac{\text{Electrolysis Charge (C)}}{96485 \frac{C}{\text{mol } e^-}}} = \frac{\text{mol } e^-\text{consumed by products}}{\text{mol } e^-\text{ passed through electrode}}$$

Calculating the electrical input required for CO_2 Conversion. The electrical input (MWh) that is required to convert one metric tonne (1000 kg) of CO_2 into CO (or any other product) can be calculated as follows:

Equation S2. One metric tonne (1000 kg) CO₂ is equal to 22727.3 mol CO₂.

1 tonne CO₂
$$\left(\frac{1000 \text{ kg}}{\text{tonne}}\right) \left(\frac{\text{mol CO}_2}{0.044 \text{ kg}}\right) = 22727.3 \text{ mol CO}_2$$

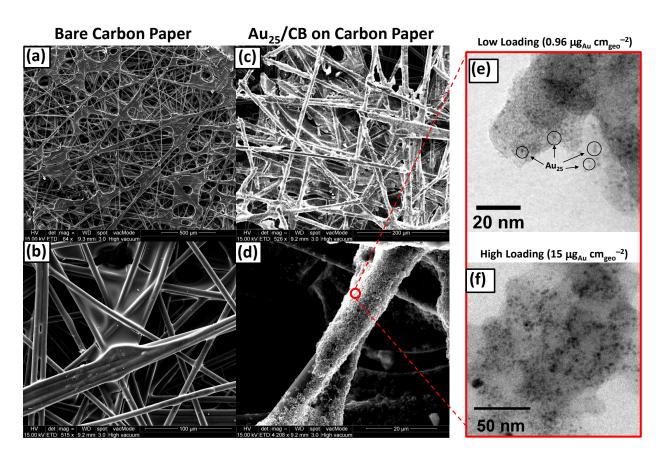
Equation S3. 4.3857x10⁹ Coulombs of charge are required to convert 22727.3 mol CO₂ into CO (2 e⁻ process) assuming 100% Faradaic efficiency (FE).

22727.3 mol CO₂
$$\left(\frac{2 \text{ e}^{-}}{\text{CO}_{2}}\right) \left(\frac{96485 \text{ C}}{\text{mol e}^{-}}\right) \left(\frac{1}{100\% \text{ FE}}\right) = 4.3857 \times 10^{9} \text{ C}$$

Equation S4. 3600 C are equivalent to 1 ampere hour (Ah).

$$4.3857 \times 10^{9} \text{C} \left(\frac{\text{A} \cdot \text{s}}{\text{C}}\right) \left(\frac{\text{h}}{3600 \text{s}}\right) = 1.2182 \times 10^{6} \text{Ah}$$

Equation S5. Electricity is typically reported in units of watt hours ($W = A \cdot V$). The formal potentials for CO formation and water oxidation are -0.106V and +1.23 V vs RHE, respectively. At zero overpotential (η =0V) the total cell voltage would be 1.336 V and it would require 1.628 MWh of electricity to convert one tonne of CO₂ into CO. Energy requirements for additional products and non-ideal, real-world systems are summarized in tables S1 and S2.


$$1.2182 \times 10^{6}$$
Ah * 1.336 V $\left(\frac{W}{A \cdot V}\right) = 1.628$ MWh

Product	ne ⁻	FE (%)	Cathode Voltage (V vs. RHE)	Anode Voltage (V vs. RHE)	Total Cell Voltage (V)	Overpotential "η" (V)	MWh / tonne CO ₂
CO	2	100	-0.106	1.23	1.34	0	1.628
HCOOH	2	100	-0.250	1.23	1.41	0	1.803
HCHO	4	100	-0.070	1.23	1.38	0	3.167
CH₃OH	6	100	0.016	1.23	1.23	0	4.437
CH_4	8	100	0.169	1.23	1.06	0	5.170
C_2H_4	12	100	0.064	1.23	1.16	0	8.523

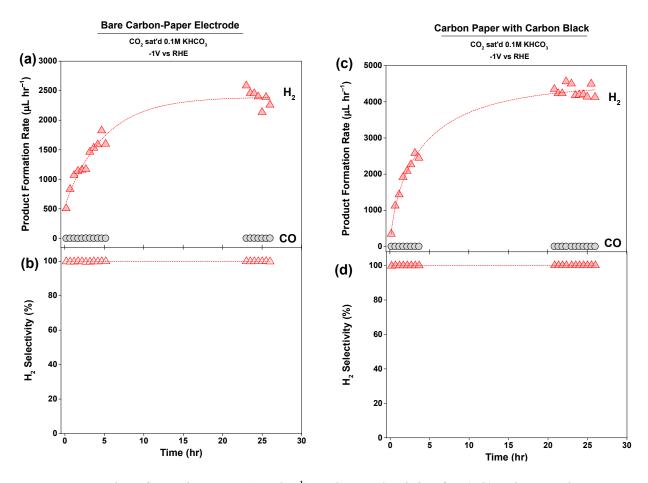
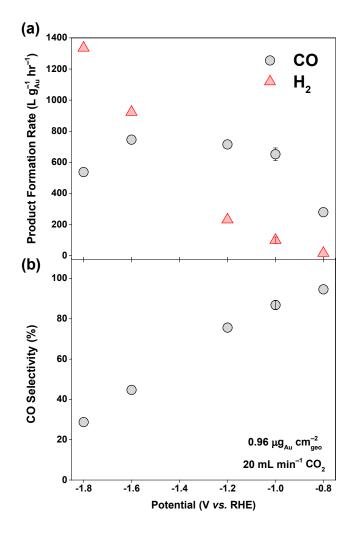
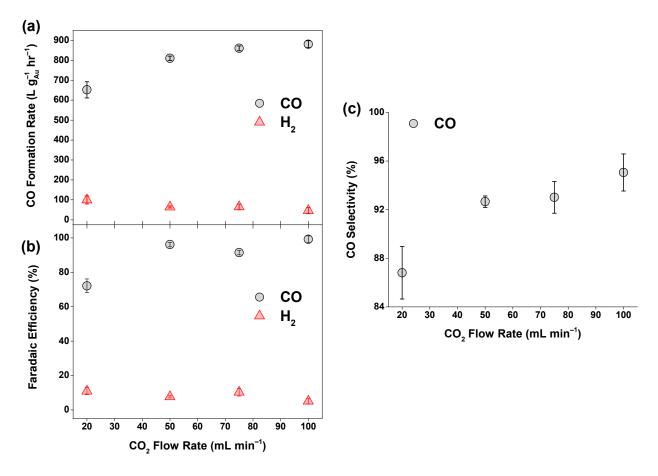
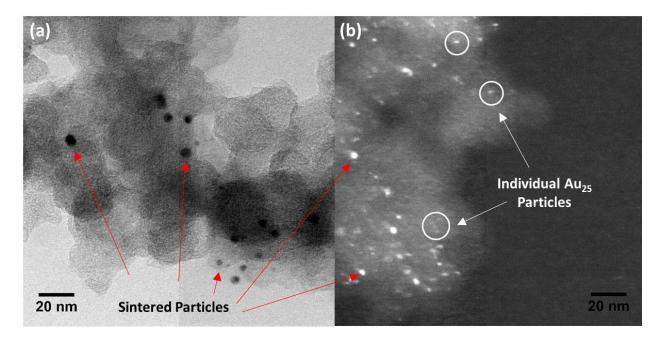

Table S1. Ideal Energy requirements (MWh/tonne CO₂) for converting CO₂ into various products at zero overpotential and 100% Faradaic efficiency (FE). Values were calculated using equations S1-S4.

Table S2. Energy requirements (MWh/tonne CO₂) for selected catalyst systems to convert one tonne CO₂ in to various products. We assumed 500 mV overpotential for anodic OER and all voltages are in the RHE scale.


			Cathode	Anode	Cell	MWh /	
Sample	Product	FE	Voltage	Voltage	Voltage	tonne CO ₂	Ref.
Au ₂₅	CO	0.99	-1	1.73	2.73	3.36	5,6
Au ₂₅	CO	0.87	-1	1.73	2.73	3.82	This work
4nm Au NP	CO	0.90	-0.9	1.73	2.63	5.17	7
6 nm Au NP	CO	0.71	-0.9	1.73	2.63	4.51	7
8 nm Au NP	CO	0.71	-0.9	1.73	2.63	4.51	7
10 nm Au NP	CO	0.89	-0.9	1.73	2.63	3.60	7
Au NWs	CO	0.9	-0.55	1.73	2.28	3.09	8
Au-oxide NPs	CO	0.99	-0.5	1.73	2.23	2.74	9
CuOx NPs	CO	0.61	-1.0	1.73	2.43	5.45	10
Ag	CO	0.99	n/a	n/a	2.5	3.08	11
Ag/CN	CO	0.90	-1.15	1.73	2.88	3.90	12
Bulk CuOx	CO + HCOOH	0.69	-0.5	1.73	2.23	3.94	13
SnO ₂	CO + HCOOH	0.99	-0.7	1.73	2.43	2.99	14
PbO ₂	нсоон	1	-0.75	1.73	2.48	3.02	15
5nm SnO₂ NPs	нсоон	0.86	-1.6	1.73	3.33	4.72	16
PEI-NCNT	нсоон	.85	-1.19	1.73	2.92	4.19	17
Boron-doped diamond	НСОН	0.62	-0.877	1.73	2.607	10.25	18
RuO ₂	CH₃OH	0.6	-0.6	1.73	2.33	14.19	19
Cu-oxide	CH₃OH	0.38	-0.5	1.73	2.23	21.45	20
Мо	CH₃OH	0.5	-0.364	1.73	2.094	15.31	20
RuO_2 -Ti O_2	CH₃OH	0.46	-0.364	1.73	2.094	16.64	20
Cu	CH ₄	0.723	-1.05	1.73	2.78	18.74	21
Cu NPs	CH_4	0.77	-1.35	1.73	3.08	19.49	22
Bulk Cu	C_2H_4	0.481	-1.052	1.73	2.782	42.28	20
Bulk Cu	C_2H_4	0.5	-0.927	1.73	2.657	38.84	23


Figure S1. Scanning electron microscope images of (a,b) a bare carbon paper electrode and (c,d) Au₂₅/CB deposited onto a carbon paper electrode. (e,f) Transmission electron microscope (TEM) images showing well dispersed 1.4 ± 0.4 nm Au₂₅ particles in the low loading regime (0.96 µg_{Au} cm⁻²) and aggregated Au₂₅ particles in the high and loading regime (15 µg_{Au} cm⁻²). Au₂₅/CB samples were scraped from the surface of the electrode, sonicated in methanol, and then deposited onto lacey carbon grids for TEM imaging.


Figure S2. Product formation rates (μ L hr⁻¹) and H₂ selectivity for (a,b) a bare carbon paper electrode (99.8 ± 0.1% H₂ selectivity) and (c,d) carbon black on carbon paper electrode (99.95 ± 0.06% H₂ selectivity) operated at -1V *vs*. RHE in 0.1M KHCO₃ bubbled with CO₂ at 50 mL min⁻¹. Both electrodes showed selective H₂ evolution that increased over time; dashed lines serve as a guide for the eye. Increased H₂ evolution over time likely stems from the electrolyte slowly wetting the finely woven carbon paper electrode.

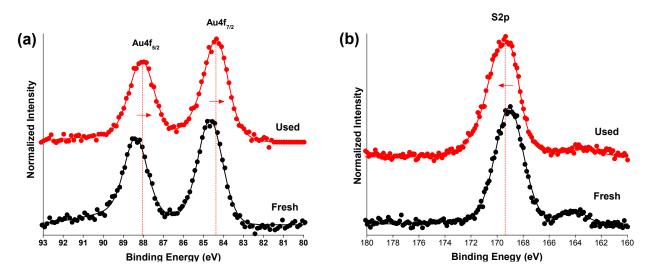

Figure S3. (a) Product formation rates and (b) CO selectivity for an Au₂₅-containing electrode as a function of applied potential in CO₂ saturated 0.1M KHCO₃. Catalyst loading was 0.96 μ g_{Au} cm_{geo⁻²} and the CO₂ flow rate was 20 mL min⁻¹.

Figure S4. (a) Product formation rates, (b) Faradaic efficiency and (c) CO selectivity as a function of CO₂ flow rate (mL min⁻¹) in 0.1M KHCO₃. Catalyst loading was 0.96 μ g_{Au} cm_{geo}⁻² and the cathode potential was –1V *vs*. RHE.

Figure S5. (a) Brightfield and (b) darkfield TEM images of Au₂₅/CB after 36 hours of CO₂ electrolysis at -1V vs RHE. The TEM images show larger sintered particles and some individual Au₂₅ particles after 36 hours of electrolysis. White circles highlight some of the individual Au₂₅ particles in panel b.

Figure S6. X-ray photoelectron spectroscopy (XPS) of the Au4f (a) and S2p (b) spectral regions before (black) and after (red) 36 hours of CO₂ electrolysis.

A downshift in the Au_{4f} binding energy combined with an upshift in S2p binding energy suggests some particle sintering and/or thiolate desorption from the Au₂₅ nanocluster after extended electrolysis. Specifically, desorption of the electron-withdrawing ligands should return some electron density to the Au nanocluster and induce a downshift in Au 4f binding energy. Furthermore, desorption of thiol groups from Au surfaces produces an upshift in S2p binding energy.²⁴ Ligand desorption can lead to particle sintering, which provides an explanation for the increased post-reaction particle sizes shown in Figure S5.

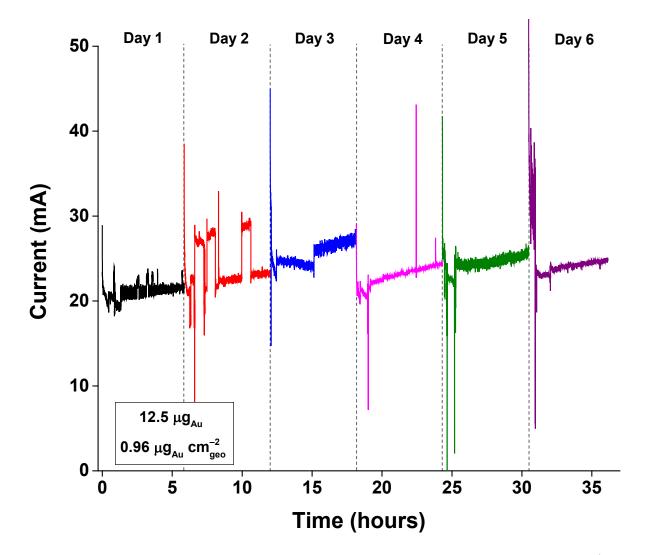


Figure S7. Day-to-day CO₂RR current in 0.1M KHCO₃ bubbled with CO₂ at 50 mL min⁻¹. The electrode was operated at -1V vs RHE and it contained 0.96 μ g_{Au} cm_{geo}⁻² (12.5 μ g total Au loading).

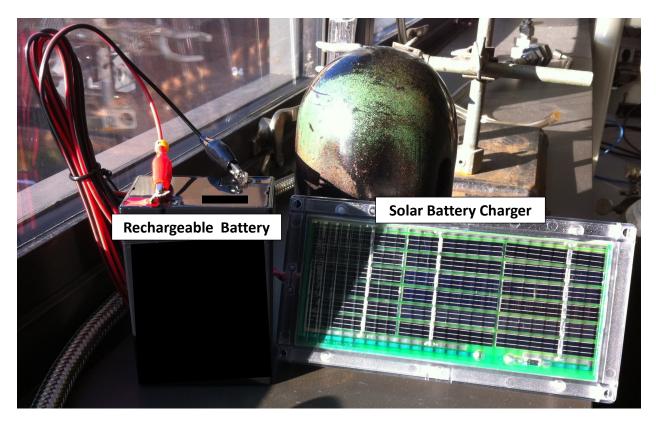


Figure S8. Photograph of solar-rechargeable battery.

REFERENCES

- 1. Zhu, M.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. Correlating the Crystal Structure of a Thiol-Protected Au₂₅ Cluster and Optical Properties. *J. Am. Chem. Soc.* **2008**, *130*, 5883-5885.
- Heaven, M. W.; Dass, A.; White, P. S.; Holt, K. M.; Murray, R. W. Crystal Structure of the Gold Nanoparticle [N(C₈H₁₇)₄][Au₂₅(SCH₂CH₂Ph)₁₈]. J. Am. Chem. Soc. 2008, 130, 3754-3755.
- 3. Negishi, Y.; Nobusada, K.; Tsukuda, T. Glutathione-Protected Gold Clusters Revisited: Bridging the Gap between Gold(I)–Thiolate Complexes and Thiolate-Protected Gold Nanocrystals. J. Am. Chem. Soc. 2005, 127, 5261-5270.
- 4. Nie, X.; Qian, H.; Ge, Q.; Xu, H.; Jin, R. CO Oxidation Catalyzed by Oxide-Supported Au₂₅(SR)₁₈ Nanoclusters and Identification of Perimeter Sites as Active Centers. *ACS Nano* **2012**, *6*, 6014-6022.
- Kauffman, D. R.; Alfonso, D.; Matranga, C.; Ohodnicki, P.; Deng, X.; Siva, R. C.; Zeng, C.; Jin, R. Probing active site chemistry with differently charged Au₂₅^q nanoclusters (q = -1, 0, +1). *Chem. Sci.* 2014, *5*, 3151-3157.
- 6. Kauffman, D. R.; Alfonso, D.; Matranga, C.; Qian, H.; Jin, R. Experimental and Computational Investigation of Au₂₅ Clusters and CO₂: A Unique Interaction and Enhanced Electrocatalytic Activity. *J. Am. Chem. Soc.* **2012**, *134*, 10237-10243.
- Zhu, W.; Michalsky, R.; Metin, O. n.; Lv, H.; Guo, S.; Wright, C. J.; Sun, X.; Peterson, A. A.; Sun, S. Monodisperse Au Nanoparticles for Selective Electrocatalytic Reduction of CO₂ to CO. *J. Am. Chem. Soc.* 2013, *135*, 16833-16836.
- 8. Zhu, W.; Zhang, Y.-J.; Zhang, H.; Lv, H.; Li, Q.; Michalsky, R.; Peterson, A. A.; Sun, S. Active and Selective Conversion of CO₂ to CO on Ultrathin Au Nanowires. *J. Am. Chem. Soc.* **2014**, *136*, 16132-16135.
- 9. Chen, Y.; Li, C. W.; Kanan, M. W. Aqueous CO₂ Reduction at Very Low Overpotential on Oxide-Derived Au Nanoparticles. J. Am. Chem. Soc. **2012**, 134, 19969-19972.
- 10. Kauffman, D. R.; Ohodnicki, P. R.; Kail, B. W.; Matranga, C. Selective Electrocatalytic Activity of Ligand Stabilized Copper Oxide Nanoparticles.pdf. *J. Phys. Chem. Lett.* **2011**, *2*, 2038-2043.
- Rosen, B. A.; Salehi-Khojin, A.; Thorson, M. R.; Zhu, W.; Whipple, D. T.; Kenis, P. J. A.; Masel, R. I. Ionic Liquid-Mediated Selective Conversion of CO₂ to CO at Low Potentials. *Science* 2011, 334, 643-644.
- R.; Ma, S.; Gewirth, A. A.; Kenis, P. J. A. Nitrogen-Based Catalysts for the Electrochemical Reduction of CO₂ to CO. J. Am. Chem. Soc. **2012**, 134, 19520-19523.

- 13. Li, C. W.; Kanan, M. W. CO₂ Reduction at Low Overpotential on Cu Electrodes Resulting from the Reduction of Thick Cu₂O Films. *J. Am. Chem. Soc.* **2012**, *134*, 7231-7234.
- 14. Chen, Y.; Kanan, M. W. Tin Oxide Dependence of the CO2 Reduction Efficiency on Tin Electrodes and Enhanced Activity for Tin/Tin Oxide Thin-Film Catalysts. J. Am. Chem. Soc. 2012, 134, 1986-1989.
- 15. Lee, C. H.; Kanan, M. W. Controlling H⁺ vs CO₂ Reduction Selectivity on Pb Electrodes. *ACS Catal.* **2014**, *5*, 465-469.
- 16. Zhang, S.; Kang, P.; Meyer, T. J. Nanostructured Tin Catalysts for Selective Electrochemical Reduction of Carbon Dioxide to Formate. J. Am. Chem. Soc. 2014, 136, 1734-1737.
- Zhang, S.; Kang, P.; Ubnoske, S.; Brennaman, M. K.; Song, N.; House, R. L.; Glass, J. T.; Meyer, T. J. Polyethylenimine-Enhanced Electrocatalytic Reduction of CO₂ to Formate at Nitrogen-Doped Carbon Nanomaterials. *J. Am. Chem. Soc.* **2014**, *136*, 7845-7848.
- Nakata, K.; Ozaki, T.; Terashima, C.; Fujishima, A.; Einaga, Y. High-Yield Electrochemical Production of Formaldehyde from CO₂ and Seawater. *Angew. Chem. Int. Ed.* 2014, *53*, 871-874.
- 19. Herron, J. A.; Kim, J.; Upadhye, A. A.; Huber, G. W.; Maravelias, C. T. A general framework for the assessment of solar fuel technologies. *Energy Environ. Sci.* 2015, *8*, 126-157.
- 20. Qiao, J.; Liu, Y.; Hong, F.; Zhang, J. A Review of Catalysts for the Electroreduction of Carbon Dioxide to Produce Low-Carbon Fuels. *Chem. Soc. Rev.* **2014**, *43*, 631-675.
- 21. Peterson, A. A.; Nørskov, J. K. Activity Descriptors for CO₂ Electroreduction to Methane on Transition-Metal Catalysts. *J. Phys. Chem. Lett.* **2012**, *3*, 251-258.
- 22. Manthiram, K.; Beberwyck, B. J.; Alivisatos, A. P. Enhanced Electrochemical Methanation of Carbon Dioxide with a Dispersible Nanoscale Copper Catalyst. J. Am. Chem. Soc. 2014, 136, 13319-13325.
- 23. Gattrell, M.; Gupta, N.; Co, A. A review of the aqueous electrochemical reduction of CO₂ to hydrocarbons at copper. *J. Electroanal. Chem.* **2006**, *594*, 1-19.
- Castner, D. G.; Hinds, K.; Grainger, D. W. X-ray Photoelectron Spectroscopy Sulfur 2p Study of Organic Thiol and Disulfide Binding Interactions with Gold Surfaces. *Langmuir* 1996, 12, 5083-5086.