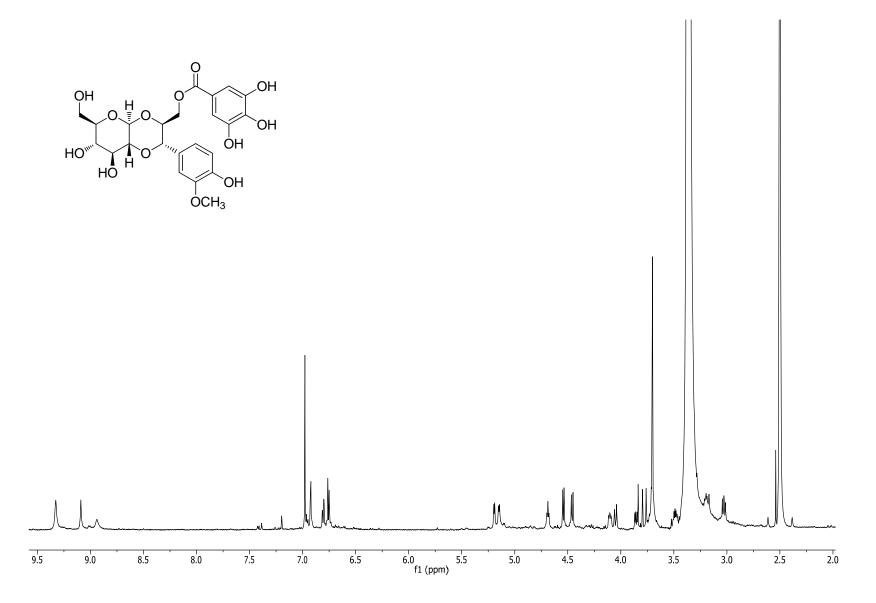
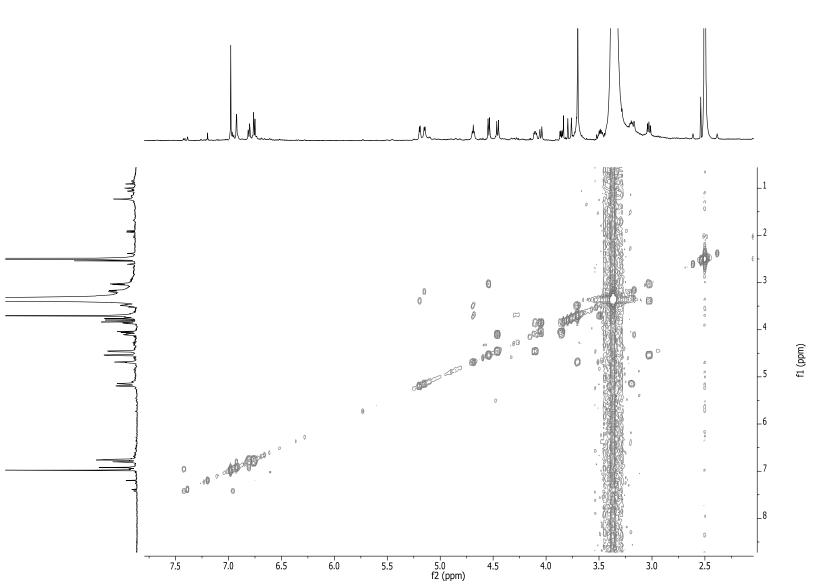
S1 Supporting Information

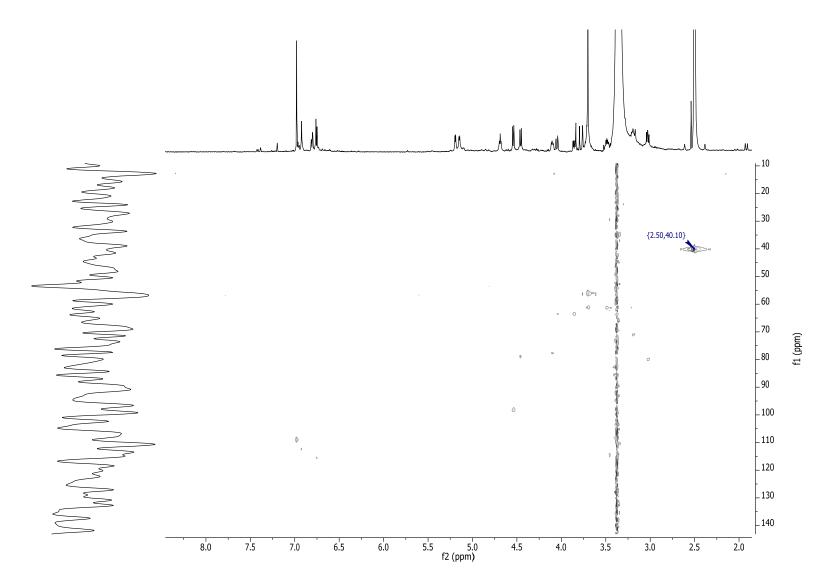
Tyrosyl-DNA Phosphodiesterase I Inhibitors from an Australian Plant Macropteranthes leichhardtii

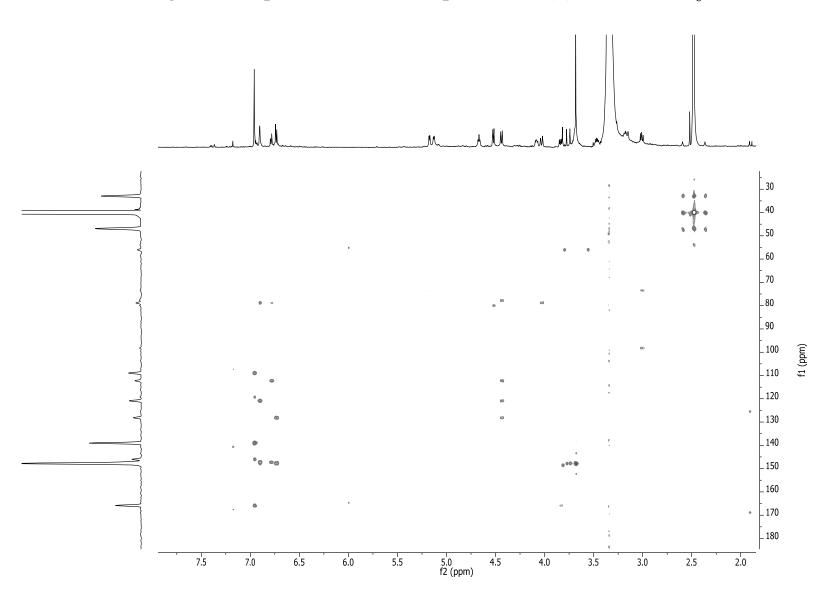

- Li-Wen Tian,[†] Yunjiang Feng,[†] Trong D. Tran,[†] Yoko Shimizu,[‡] Tom Pfeifer,[‡] Paul I. Forster,[§] and Ronald J. Quinn^{†,*}
- [†]Eskitis Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia;
- [‡]Centre for Drug Research and Development, Vancouver, BC, 2405, Canada;
- §Queensland Herbarium, Toowong, QLD, 4066, Australia


*E-mail: r.quinn@griffith.edu.au Tel. +61-7-3735-6006. Fax: +61-7-3735-6001.

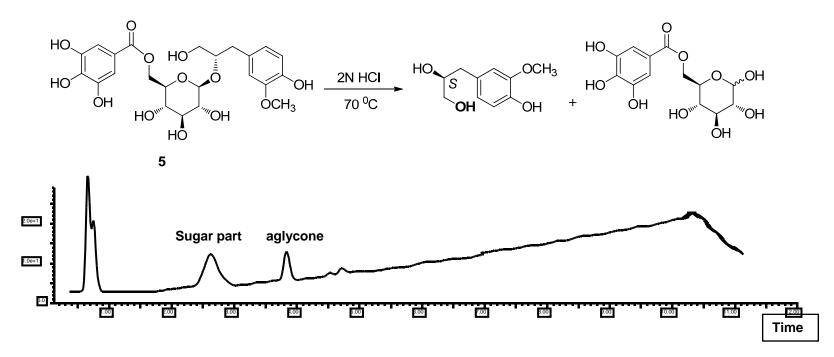
Contents:

- **S2** ¹H NMR spectrum for macropteranthol (1) in DMSO- d_6
- **S3** gCOSY spectrum for macropteranthol (1) in DMSO- d_6
- **S4** gHSQC spectrum for macropteranthol (1) in DMSO- d_6
- **S5** gHMBC spectrum for macropteranthol (1) in DMSO- d_6
- **S6** Calculated Boltzmann distributions and optical rotations for each conformer of **1**
- **S7** Acid hydrolysis for compound **5**


S2 ¹H NMR spectrum for macropteranthol (1) in DMSO- d_6



S3 gCOSY spectrum for macropteranthol (1) in DMSO- d_6


S5 gHMBC spectrum for macropteranthol (1) in DMSO- d_6

Conformer	HF		DFT	
	Boltzmann distribution (%)	Optical rotation	Boltzmann distribution (%)	Optical rotation
2	16.23	27.38	2.70	13.68
3	0.36	49.71	0.16	61.11
4	0.76	-6.82	79.93	0.03
5	4.55	36.88	1.49	98.34
6	0.66	7.81	0.25	-39.2
7	13.84	26.11	2.46	107.21
8	24.61	-7.92	3.49	-29.85
9	1.68	25.53	0.93	262.96
10	2.27	79.34	0.96	202.4
11	2.11	88.87	0.91	219.66
12	10.14	16.23	1.87	17.07
13	5.59	49.93	1.23	101.82
14	0.99	123.19	0.93	262.68
Weighted optical				
rotation		22.17		14.21

S6 Calculated Boltzmann distributions and optical rotations for each conformer of 1

S7 Acid hydrolysis of compound (5)

In a typical hydrolysis, compound **5** (0.3 mg) was heated in 2 N HCl (1 mL) at 70 °C for 4 h. The resulting hydrolysate was analyzed by LC-MS. The LC-MS result revealed that compound **5** was not detected and the aglycone {+ESIMS m/z 199 [M + H]⁺} and sugar part {+ESIMS m/z 333 [M + H]⁺} were appeared. The hydrolysate was dried under vacuum and then was preadsorbed to cotton, following by packing into a stainless steel cartridge (10 × 30 mm) that was subsequently attached to a C₁₈ preparative HPLC column. Isocratic HPLC conditions of 90% H₂O (0.1% TFA)/10% MeOH (0.1% TFA) were initially employed for the first 10 min, then a linear gradient to 100% MeOH (0.1% TFA) was run over 40 min, followed by isocratic conditions of 100% MeOH (0.1% TFA) for a further 10 min, all at a flow rate of 9.0 mL/min. Fraction 5 contained the aglycone (0.1 mg) which gave an $[\alpha]_D$ -6.2, (*c* 0.005, MeOH), while standard 8(*S*)-1,2-diol-3-(4-hydroxy-3-methoxy-phenyl) propane hand an $[\alpha]_D$ -23, (*c* 0.69, EtOH) and 8(*R*)-isomer an $[\alpha]_D$ +18, (*c* 0.73, EtOH).

