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S1. Estimate of the voltage generated on a BTNP subjected to ultrasounds 

With reference to the experimental conditions detailed in the present study, we aimed at 

assessing whether ultrasounds (US) could induce voltage values up to a few mV, as typically 

required for activating voltage-sensitive membrane channels.
S1

 To the purpose, we estimated the 

maximum voltage generated on the surface of a single barium titanate nanoparticle (BTNP), so 

as to possibly recall the superposition principle for those regions on the cell membrane where 

nanoparticles cluster (see Figure 2b). We hereafter report a simple electro-elastic model that 

permits to estimate the sought voltage. We also show that, based on the model predictions, 

channel activation can be effectively achieved by using higher US intensities (namely 0.8 

W/cm
2
), in full agreement with the experimental observations. 

Modeling approach and working assumptions 

In light of the involved length-scales (10
3
 μm for the US transducer and for the cell-transducer 

distance; 10 μm for the cell diameter; 1 μm for the cell thickness; 10
-1

 μm for the BTNP 

diameter) and time-scales (1 MHz for the US waves), the cell is essentially subjected to a plane 

wave (so that no major conformational changes are expected on the membrane due to the US 

action), and each BTNP “feels” a uniform – yet time-varying – pressure on its surface. 

Moreover, the pressure variation can be regarded to as quasi-static, since the US frequency is 

several orders of magnitude smaller than the resonance frequency of the BTNP. Indeed, the 

fundamental frequency for a free spherical nanoparticle (NP) with radius R is 
R
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f
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2
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E and ρ respectively denote the Young modulus and the density of the NP.
S2-S3

 For the present 
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study R = 1.5·10
-7

 m. Moreover, ρ   6·10
3
 kg/m

3
 

S4
 and E   70 GPa;

S5-S6
 both values are 

derived from the ones of bulk barium titanate, and the adopted Young modulus was used in 

previous studies specifically addressing piezoelectric nanostructures. Hence, for our BTNP we 

obtain f ≈ 1 GHz, and this value is not significantly altered by the contact with the cell 

membrane.
S3

 

Based on the above considerations, let us simplify the problem by studying the voltage 

induced on a free BTNP by an external pressure pUS. To the purpose, we assume the BTNP to be 

spherical, homogeneous, isotropic, and linearly elastic. This way, we can tackle a simplified 

spherical symmetric problem and look for an analytical solution (which is hardly viable without 

invoking symmetry
S7-S9

). Indeed, in spite of the inherent simplifications, we look for an explicit 

solution able to account for the physically-representative effects. 

Model formulation 

Let us invoke the spherical symmetry to simplify the formulation. As regards the stress tensor 

(and with reference to the standard spherical coordinates r, θ and ϕ), we need to only consider 

σr(r) and σθ(r), and the equilibrium reads:
S10
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where the dot operator hereafter denotes differentiation with respect to r. Furthermore, the 

electric displacement is divergence-free, so that its only component Dr is such that r
2
Dr does not 

depend on r. For the solution not to be singular at r = 0, we have Dr = 0. 

The piezoelectric constitutive equations then read:
S8
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where u denotes the radial displacement (i.e., the only component of the displacement field), and 

φ indicates the electric potential. Moreover, crr, crθ, cθθ and cθϕ are the elastic constants, err and 

erθ denote the piezoelectric coefficients, and εrr represents the dielectric constant. 

Furthermore, by recalling classical relations from linear elasticity,
S10

 the elastic constants 

appearing in Eq. (S2-S3) can be recast as follows: 

)1(
)21)(1(
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where ν represents the Poisson ratio. Hence, the elastic constants are hereafter understood as 

known expressions of E and ν. Moreover, by substituting Dr = 0 in Eq. (S4), we immediately 

obtain the following equation: 

)2(
1

r

u
eue rrrrr  

  . (S7) 

Let us finally remark that we end up with Eq. (S1) as the main governing equation, to be 

solved for the unknown u, so as to subsequently obtain φ by integrating Eq. (S7). 

Model solution 

By using Eq. (S2-S3) and Eq. (S7), we firstly recast Eq. (S1) as follows: 
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Then, by recalling standard techniques, we look for solutions of the form sruu ~ , so that s is 

a root of the characteristic equation s
2
 + s + λ = 0. In our case λ < 0; this can be verified by 

using the parameter values reported below, and could be guessed by observing that λ = -2 for the 

purely elastic case (err = erθ = 0). Hence, the characteristic equation has two real roots, one 

positive and one negative. By discarding the negative root (to avoid the singularity at r = 0), we 

obtain: 

sruu ~ , (S13) 

with 

2

141 



s . (S14) 

Finally, we determine the unknown constant u~  by exploiting the pressure boundary 

condition: once substituted Eq. (S13) in Eq. (S2), we impose σr(r = R) = -pUS, so as to finally 

obtain 

s

R
R

r
uu )( , (S15) 
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denotes the maximum (inward) displacement, occurring on the NP surface. It is worth observing 

that Eq. (S16) correctly reduces to the classical solution ))(21(
E

p
R US  when considering the 

purely elastic case.
S10

 

After substituting the solution provided by Eq. (S15), it is straightforward to integrate Eq. 

(S7) so as to obtain the following expression for the electric potential: 

s

R
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r
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denotes the maximum voltage difference, taking place on the NP surface. We fixed the arbitrary 

integration constant by setting φ(r = 0) = 0; this way, φR provides the electric potential increment 

taking place on the NP surface (r = R) with respect to the stress-free condition for the BTNP. 

Voltage estimate 

Let us now compute φR for a BTNP with radius R = 1.5·10
-7

 m, by exploiting Eq. (S18). To 

the purpose, we obtain the elastic constants from Eq. (S5-S6) by adopting E   70 GPa
S5-S6

 and 

3

1
 .

S4
 Moreover, the piezoelectric coefficients are err ≈ 10 C/m

2
 and erθ ≈ -1 C/m

2
.
 S4, S11-S12

 

Furthermore, the relative dielectric constant (i.e., 
0

 rr , where ε0   8.85·10
-12

 F/m is the vacuum 

dielectric constant) is in the range 10
2
 - 10

3
,
S4, S12-S13

 the extremes of which are derived from the 

ones of (crystal) bulk barium titanate. However, a relative dielectric constant slightly below 10
2
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was measured specifically addressing thin films (thickness on the order of 100 nm).
S13

 Hence, we 

assume 2

0

105 


 rr  (yet keeping in mind that 10
2
 might be a reasonable estimate as well). 

Furthermore, we compute the maximum stimulation pressure as WUSUS ZIp 2 , where ZW 

denotes the impedance of water, and IUS represents the ultrasound intensity (directly controlled 

during the experiments). In more detail, ZW = ρW cW, where ρW   10
3
 kg/m

3
 denotes the water 

density and cW   1.5·10
3
 m/s is the sound speed in water. Furthermore and with reference to the 

carried out tests, we consider both IUS = 10
3
 W/m

2
 and IUS = 8·10

3
 W/m

2
 (i.e., 0.1 and 0.8 

W/cm
2
). 

According to Eq. (S18), when stimulating with 0.1 W/cm
2
 the maximum voltage is φR ≈ 0.07 

mV, while we get φR ≈ 0.19 mV when operating with 0.8 W/cm
2
 (and these voltages respectively 

become 0.29 and 0.82 mV when assuming 10
2
 as relative dielectric constant). 

Based on the above estimate, when using 0.8 W/cm
2
, the local voltage on those regions on the 

cell membrane where BTNPs cluster (from confocal images clusters of about 10 BTNPs in 

average have been quantified) can affect the open probability of the voltage-gated channels. 

Conversely, when using 0.1 W/cm
2
, it is likely that the local voltage does not modify channel 

open probability to produce a detectable response, not even close to the BTNP clusters. 

Of course, we obtained the above estimate in a simplified modeling framework. For instance, 

the local value of the electric potential also depends on the cluster structure, and accurate 

computations should be performed based on more refined physical approximations. However, in 

the absence of a deeper characterization of the involved physical effects (starting with the 

relevant NP properties), our approach seems to be fully commensurate with the available data 

and with the model objective. 
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Moreover and quite remarkably, the above model predictions are fully compatible with the 

experimental observations. Hence, despite its inherent simplifications, our simple approach takes 

a first – yet quantitative – step toward the study of piezoelectric NP-assisted cell stimulation by 

ultrasounds. 
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Figure S1. Evaluation of potential harmful effects of the proposed stimulation approach on SH-

SY5Y cells. Metabolic activity (a) and membrane integrity (b) of cells exposed to US, BTNPs, or 

US + BTNPs compared to control cultures (K). WST-1 was performed after 24 h since the 

stimulation, propidium iodide (PI) staining immediately after the stimulation. 
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Figure S2. The US + BTNP stimulation (0.8 W/cm
2
) evokes Cd

2+
 and TTX-sensitive calcium 

transients. Representative calcium imaging time-lapses of SH-SY5Y-derived neurons stimulated 

by US (a), US + BTNPs (b), US + BTNPs in the presence of Cd
2+

 (c) or TTX (d). The 5-s US 

stimulation was applied at 18 s. 
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Figure S3. The US + BTNP stimulation (0.8 W/cm
2
) induces TTX-sensitive sodium transients. 

Representative sodium imaging time-lapses of SH-SY5Y-derived neurons stimulated by US (a), 

US + BTNPs (b), US + BTNPs in the presence of Cd
2+

 (c) or TTX (d). The 5-s US stimulation 

was applied at 24 s. 
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Figure S4. Calcium sources involved during US and US + BTNP stimulations (0.8 W/cm
2
). 

Representative calcium imaging time-lapses of SH-SY5Y-derived neurons in calcium-free 

conditions stimulated by US (a) and US +BTNPs (b) show in both cases low-amplitude calcium 

transients. Observed transients were completely hindered by depleting the Ca
2+

 flux from the 

endoplasmic reticulum with thapsigargin before both the US (c) and US + BTNP (d) 

stimulations. The 5-s US stimulation was applied at 20 s. 
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Figure S5. US (0.8 W/cm
2
) stimulation increases the temperature of the ER independently from 

the presence of the BTNPs. (a) Specific targeting of the fluorescent nano-thermometer (in red) to 

the endoplasmic reticulum (ER, stained in green with the ER tracker); nuclei are counter-stained 

in blue; the merged image shows the co-localization of the ER thermometer and the ER tracker 

signal. (b) Calibration curve of ER thermometer sensitivity, obtained by heating the ER applying 

a near infrared laser (1064 nm) at progressively shorter distances. The linear fitting of the F/F0 

values measured at different temperatures revealed an ER thermometer sensitivity of -2.0 %/°C. 

The temperature imaging time courses of the SH-SY5Y-derived neurons stimulated by US (c) 

and by US + BTNPs (d) show a comparable temperature increase. Arrows indicate the moment 

when the 5-s US pulse was initiated. In (e) and (f) traces relative to the temperature courses of 

the experiments depicted in (c) and (d) are respectively reported; each trace correspond to a 

single cell measurement in the representative fields. 
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Figure S6. The calcium transients induced by US + BTNP stimulation (0.8 W/cm
2
) are mediated 

by the piezoelectricity of the nanoparticles. Representative calcium imaging time-lapses of SH-

SY5Y-derived neurons stimulated by US (a) and US +BTNPs (b) in the presence of gentamicin, 

a mechanoreceptor blocker which does not affect the voltage-gated Ca
2+

 currents. In (c) the Ca
2+

 

time course of neurons stimulated by US and nonpiezoelectric BTNPs, characterized by a cubic 

crystalline configuration. The 5-s US stimulation was applied at 20 s. 
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Figure S7. XRD crystallography of nonpiezoelectric BTNPs characterized by a cubic crystalline 

configurations: a single peak at 2θ = 45° is highlighted. 
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