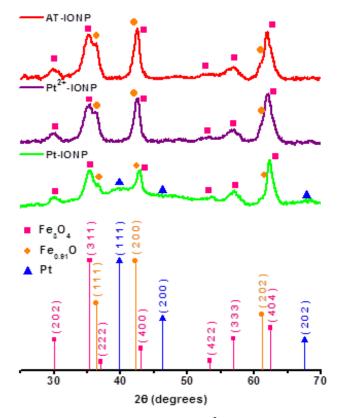
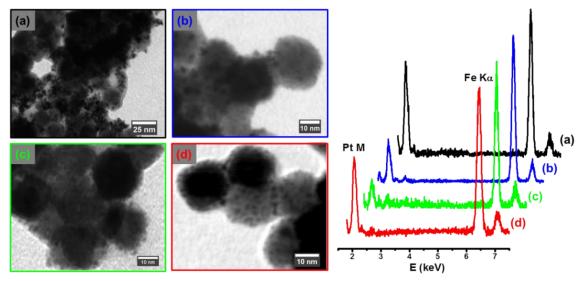
Supporting Information

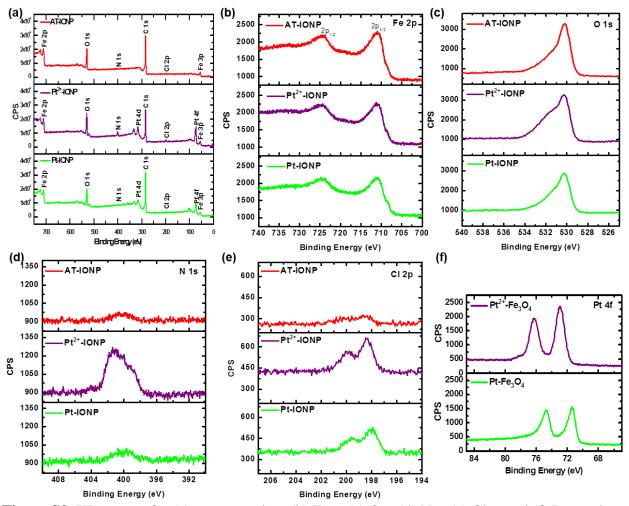
Increasing the Collision Rate of Particle Impact Electroanalysis with Magnetically Guided Pt-Decorated Iron Oxide Nanoparticles

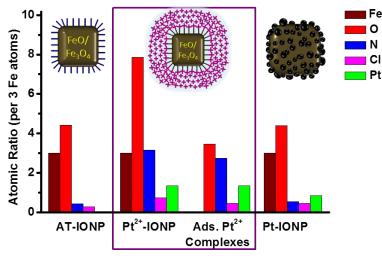

Donald A. Robinson, Jason J. Yoo, Alma D. Castañeda, Radhika Dasari, Brett Gu, Richard M. Crooks, and Keith J. Stevenson*

Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States.


*stevenson@cm.utexas.edu

SI Contents	Page #
Figure S1. (a) Powder XRD patterns for AT-IONP, Pt^{2+} -IONP, and Pt-IONP along with (b) corresponding diffraction lines for Fe ₃ O ₄ , Fe _{0.91} O, and Pt.	S2
Figure S2. STEM images and corresponding EDX spectra for different hybrid Pt-IONP samples synthesized under different reaction conditions.	S2
Figure S3. XP spectra for (a) survey region, (b) Fe_{2p} , (c) O_{1s} , (d) N_{1s} , (e) Cl_{2p} , and (f) Pt_{4f} regions for AT-IONP, Pt^{2+} -IONP, and Pt-IONP.	S3
Figure S4. Summary of XPS quantitative analysis with relative elemental composition.	S 3
Figure S5. Electrocatalytic activity of Pt-IONPs for hydrazine oxidation: (a) Linear sweep voltammetry ($v = 20 \text{ mV/s}$) at various rotation rates for Pt-IONP catalyst film on GC RDE in the presence of 1.5 mM N ₂ H ₄ and 50 mM SPB, (b) corresponding Koutecky-Levich plot from electrocatalytic current at 0 V vs. Ag/AgCl, (c) cyclic voltammograms of Pt-IONP catalyst film in N ₂ -purged 0.1 M KOH before (dashed line) and after (solid line) exposure to 650 s of CO bubbling while held at a constant potential of -0.6 V vs Hg/HgSO ₄ , and (d) background corrected CO stripping peak that was integrated to determine Pt ECSA.	S4
Figure S6. NTA results for a Pt-IONP sample diluted in ultra-high purity water to a concentration of 400 fM (by Pt-IONP aggregate).	S5
Figure S7. Chronoamperometry of Pt-IONP collisions in microfluidic device without the application of a magnetic field.	S6
Figure S8. Digital photographs of (a) magnetic lens and (b) microfluidic device sitting atop the magnetic lens.	S 7
Figure S9. Digital photographs of Pt-IONP accumulation resulting from attraction to the magnetic lens.	S7
Figure S10. (a) Histograms of EA collision current magnitudes and (b) corresponding average Pt ECSA for particle impact experiments of 60 fM Pt-IONPs in 15 mM N_2H_4 and 50 mM SPB (pH 7.5) with and without the magnetic lens applied.	S 8
Table S1. Nanoparticle tracking analysis summary for Pt-IONPs.	S 5
Movie S1. Time-lapse TEM video of Pt nucleation upon reduction induced by electron beam. Video	


speed is increased by a factor of 12 from real time. AVI file is available for download at http://pubs.acs.org.


Figure S1. (a) Powder XRD patterns for AT-IONP, Pt^{2+} -IONP, and Pt-IONP along with (b) corresponding diffraction lines for Fe₃O₄, Fe_{0.91}O, and Pt.^{1–3}

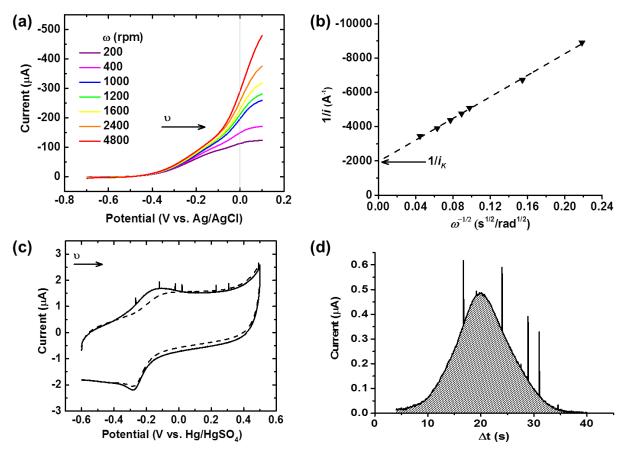

Figure S2. (*left panel*) STEM images and (*right panel*) corresponding EDX spectra for different hybrid Pt-IONP samples synthesized under different reaction conditions: (a) using naked IONPs without hydroxylamine, (b) using naked IONPs with hydroxylamine, (c) using AT-IONPs without hydroxylamine, and (d) using AT-IONPs with hydroxylamine. All EDX spectra were normalized by the Fe K_{α} peak intensity.

Figure S3. XP spectra for (a) survey region, (b) Fe_{2p} , (c) O_{1s} , (d) N_{1s} , (e) Cl_{2p} , and (f) Pt_{4f} regions for AT-IONP, Pt^{2+} -IONP, and Pt-IONP.



Figure S4. Summary of XPS quantitative analysis with relative elemental composition normalized by Fe atomic % and multiplied by 3 to relate to stoichiometry of Fe₃O₄. The data for the adsorbed species is simply the difference between that of Pt^{2+} -IONP and AT-IONP.

Figure S5: Electrocatalytic activity of Pt-IONPs for hydrazine oxidation: (a) Linear sweep voltammetry (v = 20 mV/s) at various rotation rates for Pt-IONP catalyst film on GC RDE in the presence of 1.5 mM N₂H₄^{*} and 50 mM SPB, (b) corresponding Koutecky-Levich plot from electrocatalytic current at 0 V vs. Ag/AgCl, (c) cyclic voltammograms of Pt-IONP catalyst film in N₂-purged 0.1 M KOH before (dashed line) and after (solid line) exposure to 650 s of CO bubbling while held at a constant potential of -0.6 V vs Hg/HgSO₄, and (d) background corrected CO stripping peak that was integrated to determine Pt ECSA.

^{*}RDE voltammetry of Pt-IONP/C catalyst was performed in 1.5 mM N_2H_4 instead of the 15 mM concentration used later for collision experiments. It was necessary to use a lower concentration of N_2H_4 for RDE experiments in order to avoid excessive N_2 bubble formation. In 15 mM N_2H_4 , excessive gas bubbles were observed on the electrode surface and the resulting Koutecky-Levich plot was nonlinear (data not shown).

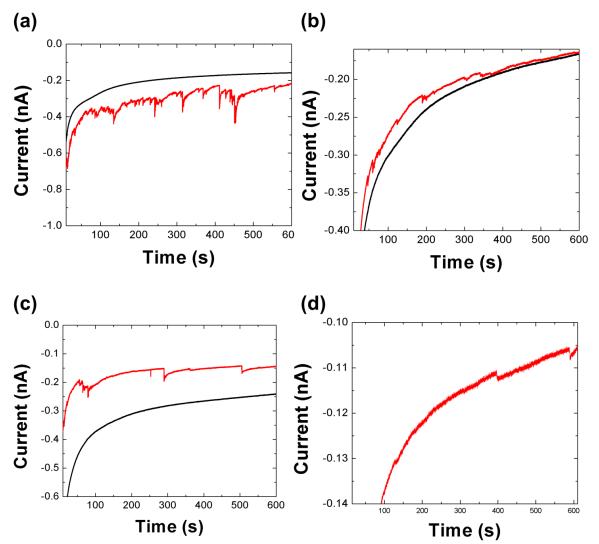


Figure S6. NTA results for a Pt-IONP sample diluted from a stock solution by a factor of 100 in ultra-high purity water to a concentration of 400 fM (by Pt-IONP aggregate): (a) snapshot from video acquired to track NP Brownian motion, (b) nanoparticle diffusion coefficient (D_{NP}) and equivalent spherical diameter (ESD) distributions.

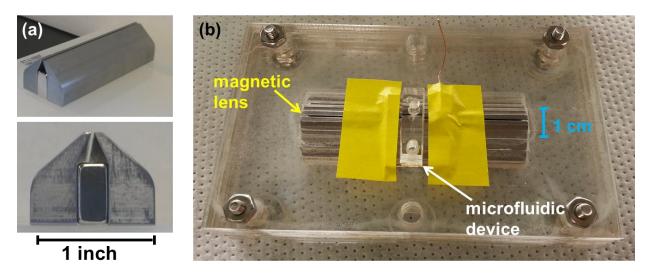
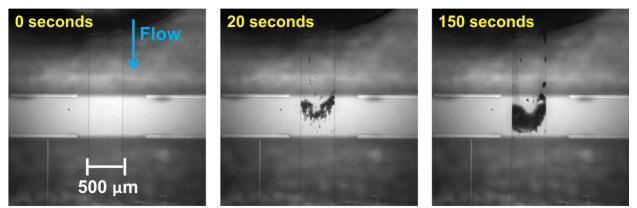

Solution Conditions	ESD	D_{NP}	C _{NP}		
	Mean (±s.d.)	Mean (±s.d.)	Diluted Sample	Stock	
	(nm)	(×10 ⁻⁸ cm ² /s)	(×10 ⁶ NPs/mL)	(pM)	
Pure water	110 (±30)	4 (±2)	240	40.	
50 mM SPB	110 (±40)	4 (±2)	310	51	
$50 \text{ mM SPB} + 15 \text{ mM N}_2\text{H}_4$	110 (±40)	4 (±2)	240	^ψ 40.	

Table S1. Nanoparticle Tracking Analysis Summary for Pt-IONPs	Table S1.	Nanoparticle	Tracking	Analysis	Summary	for Pt-IONPs
---	-----------	--------------	----------	----------	---------	--------------


^vStock Pt-IONP concentration for EA

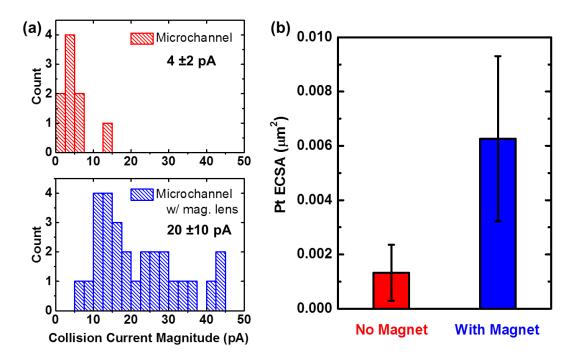

Figure S7: Chronoamperometry of Pt-IONP collisions in microfluidic device without the application of a magnetic field in the presence of 15 mM N_2H_4 in 50 mM SPB (pH 7.5). Black traces correspond to control scan without any Pt-IONPs added and red traces refer to Pt-IONP concentrations of (a) 702 fM, (b) 280 fM, (c) 140 fM, and (d) 57 fM.

Figure S8: Photographs of (a) magnetic lens and (b) microfluidic device sitting atop the magnetic lens.

Figure S9: Photographs of Pt-IONP accumulation resulting from attraction to the magnetic lens. The channel width is 500 μ m and the Pt-IONP concentration is 40 pM. Gravity-driven flow was accomplished by adding 60 μ L of solution in the inlet and 20 μ L in the outlet.

Figure S10: (a) Histograms of EA collision current magnitudes and (b) corresponding average Pt ECSA for particle impact experiments of 60 fM Pt-IONPs in 15 mM $N_2H_4^*$ and 50 mM SPB (pH 7.5) with and without the magnetic lens applied.

^{*}Recall that the Pt specific activity in the presence of 1.5 mM N_2H_4 in 50 mM SPB was found to be 34.9 mA/cm². Assuming the Pt activity is directly proportional to N_2H_4 concentration, the Pt specific activity in 15 mM N_2H_4 was therefore approximated as 350 mA/cm² (due to 10-fold increase in N_2H_4 concentration). The Pt ECSA values presented in Figure S10b were estimated by dividing the averaged data shown in Figure S10a by 350 mA/cm².

REFERENCES

(1) Grazulis, S.; Chateigner, D.; Downs, R. T.; Yokochi, A. F. T.; Quiros, M.; Lutterotti, L.; Manakova, E.; Butkus, J.; Moeck, P.; Le Bail, A. Crystallography Open Database - An Open-Access Collection of Crystal Structures. *J. Appl. Crystallogr.* **2009**, *42*, 726–729.

(2) Gražulis, S.; Daškevič, A.; Merkys, A.; Chateigner, D.; Lutterotti, L.; Quirós, M.; Serebryanaya, N. R.; Moeck, P.; Downs, R. T.; Le Bail, A. Crystallography Open Database (COD): An Open-Access Collection of Crystal Structures and Platform for World-Wide Collaboration. *Nucleic Acids Res.* **2012**, *40*, D420–D427.

(3) Downs, R. T.; Hall-Wallace, M. The American Mineralogist Crystal Structure Database. *Am. Mineral.* **2003**, *88*, 247–250.