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Figure S1. Detailed procedures used (1) to determine the initial quantity of grafted DDT, and
(2) to measure the optical properties of the suspensions and evaluate the composition of the
ligand shell after exchange.

In point (1), an aliquot of gold nanoparticles covered with DDT and dispersed in a known
volume of CHCI; is taken from a given batch and a UV-visible spectrum is acquired to
measure Amax. Then, this same aliquot of nanoparticles is concentrated by evaporation,
redispersed in CDCl3 and transferred in an NMR tube with no loss. lodine is added into the
tube to oxidize all the DDT molecules into the corresponding disulfides, which are released
from the gold surface. Then the NMR spectrum is acquired and compared to a reference tube
of known concentration to determinate nppr initiai. EXperiments show that for different aliquots
of the given batch, all the nanoparticles have the same size and grafting density. Thus, point
(1) allows us to correlate Amax t0 Nppr initial fOr each aliquot coming from the same synthesis
batch.



Point (2) describes the determination of the surface composition. Gold nanoparticles covered
with DDT are dispersed in a known volume of CHCI; and Anax of the sample is measured.
Thanks to point (1), Amax allows the determination of nppr initial. A known quantity of
aromatic ligands is then added and the UV-visible spectra are recorded until they reach
stability. The reaction medium is then concentrated, the nanoparticles are separated from the
supernatant by centrifugation after precipitation with ethanol and they are washed several
times to get rid of the free ligands. Then, the particles are redispersed in CDClz and
transferred into an NMR tube with no loss. After iodine addition, the NMR spectrum is
acquired and allows the gquantification of the grafted DDT at the end of the ligand exchange,
NpDT grafted. Because iodine reacts with the aromatic groups, the amount of grafted aromatic
ligands cannot be directly determined. Knowing the initial quantity of DDT before ligand
exchange and because the exchange occurs in a 1:1 stoichiometry, we can determine the final
quantity of aromatic ligand grafted on the surface thanks to the relation:

NAromatic grafted — NpbTinitial — NDDT grafted
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Figure S2. a) TEM picture of nanoparticles synthesized with DDT and b) the corresponding
size distribution. c) TEM picture of the same particles with 52% of TerPh on the surface after
ligand exchange and d) the corresponding size distribution. The size and polydispersity
remain unchanged after ligand exchange and the particles are well dispersed on the TEM grid.
Accordingly, after ligand exchange for shells containing up to 55 % of aromatic thiol, the
particles size and the dispersion state remain unchanged.

Therefore, digestive ripening and concomitant size evolution (Jana, N. R.; Gearheart,
L.; Murphy, C. J. Seeding Growth for Size Control of 5-40 Nm Diameter Gold
Nanoparticles. Langmuir 2001, 17, 6782-6786 ; and Link, S.; El-Sayed, M. a. Size and
Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles. J.
Phys. Chem. B 1999, 103, 4212-4217) as well as aggregation (Ajzik, A.; Patakfalvi, R.;
Hornok, V.; Dékany, 1. Growing and Stability of Gold Nanoparticles and Their
Functionalization by Cysteine. Gold Bull. 2009, 42, 113-123 ; and Wei, Y.; Han, S.; Kim, J,;
Soh, S.; Grzybowski, B. a. Photoswitchable Catalysis Mediated by Dynamic Aggregation of
Nanoparticles. J. Am. Chem. Soc. 2010, 132, 11018-11020) can be safely ruled out as causes
for the observed red shift.

Noteworthy, as aggregation and ripening are observed for higher contents of ArSH
(not shown), the study on 5 nm particles was focused on bi-ligand corona with a composition
in aromatic ligand below 55%.
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Figure S3. a) 2D-mapping of a NOESY experiment with a mixing time of 400 ms, done on
5 nm particles with a shell composition DDT:TerPh 50:50. b) Positive projection in 1D of the
grey zone shown in a). The grafted and bonded aromatic ligands can be easily identified
thanks to the peaks width (Kohlmann, O.; Steinmetz, W. E.; Mao, X.; Wuelfing, W. P.;
Templeton, A. C.; Murray, R. W.; Johnson, C. S. NMR Diffusion, Relaxation, and
Spectroscopic Studies of Water Soluble, Monolayer-Protected Gold Nanoclusters. J. Phys.
Chem. B 2001, 105, 8801-8809). The bonded aromatic protons signal and the correlation peak
are fitted with mixed Gaussian/Lorentzian curves and their respective areas are compared.
The correlation peak area is normalized with the bonded aromatic protons area. ¢) Normalized
intensity of the correlation peak area for different mixing times.

NOESY NMR has already been used in the literature to investigate the phase segregation of
the ligands on gold nanoparticles (Liu X.; Yu M.; Kim H.; Mameli M.; Stellacci F. Synthesis
and Characterization of Janus Gold Nanoparticles. Nat. Commun. 2012, 3, 1182). It is known
that the mixing time can influence the intensity of the correlation peak (Claridge T. D. W.
High-resolution NMR techniques in organic chemistry Second edition; Tetrahedron Organic
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Chemistry Series, 2009, 27, 1-383) so it is necessary to investigate several ones. Here,
whatever the mixing time, a strong correlation peak between aliphatic and aromatic protons is
observed, showing that the two kinds of protons are spatially close to each other, thus
suggesting homogeneous mixed shells: phase separation of the ligands can be ruled out.
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Figure S4. TEM picture of ~2-3 nm nanoparticles synthesized by Brust method with a) DDT
and b) TerPh. ¢) UV-visible spectra of the particles suspensions in chloroform. With DDT,
Amax = 510 nm, with TerPh , Amax = 550 nm. d) Size distribution of the particles.



Figure S5. TEM picture of nanoparticles a) initially synthesized with DDT and a diameter of
5nm and after completion of ligand exchange with aromatic thiols, reaching the following
compositions: b) DDT:Ph 59:41 after 48h of exchange, c) DDT:BiPh 50:50 after 48h of
exchange and d) DDT:TerPh 45:55 after 75h of exchange. No size modification neither
aggregation is observed.
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Figure S6. Time evolution of the maximum absorbance at Amax during exchange of DDT with
Ph, BiPh and TerPh. The indicated percentage is the final proportion of the aromatic ligand on
the gold nanoparticles surface.
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Figure S7. Raw ellipsometric data for the TerPh ligand SAM and fits with (top) only two
layers with Cauchy description of the organic layer, (middle) only 2 layers with a Wavelength

by wavelength model, (down) a 3 layer model. Interpretation in Table S1.
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Figure S8. Raw ellipsometric data for the DDT ligand SAM and fits with (top) only two
layers with Cauchy description of the organic layer, (middle) only 2 layers with a Wavelength

by wavelength model, (down) a 3 layer model. Interpretation in Table S1.
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Table S1. Summary of ellipsometric modeling (Figures S6 and S7) of terphenylthiol and
dodecanethiol SAMs.

SAM Fit quality SAM thickness SAM

composition Optical
properties

Terphenylthiol Dielectric Bad Unrealistic Unrealistic
Gold substrate

Terphenylthiol Wvl by Wyl Good Good Unrealistic
Gold substrate
Terphenylthiol Dielectric Good Good Good

Modified gold
Gold substrate

Dodecanethiol Dielectric Bad Unrealistic Unrealistic
Gold substrate

Dodecanethiol Wvl by Wyl Good Good Unrealistic
Gold substrate
Dodecanethiol Dielectric Good Good Good

Modified gold
Gold substrate

Ellipsometric modeling using two optical layers either fail describing experimental data or
release unrealistic description of SAMs layers. In such a case, optical properties of SAM layer
are unrealistic and/or SAM thickness is beyond the maximum length of the fully extended
SAM molecule). The direct inversion of SAMs optical properties from a Wavelength-by-
wavelength model indicates that the SAM/gold substrate stack presents metallic properties
different from that of bare gold substrate.

By adding an intermediate layer (in between SAM and gold substrate) with metallic
properties, both optical properties and thickness of SAMs layers obtained by modelling are
physically realistic and coherent with data of the literature. Only these experimental SAMs
data (optical dispersion of SAMs layers n=F(wavelength) and thicknesses) were used for
modelling UV-Vis experiments.

11
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Figure S9. a) Density of charge carriers, corresponding Drude plasma frequency (from

equation (4) in the main text wp = "S—ez), b) charge carrier mobility and corresponding

Me€o
damping rate /p in the bare gold substrate and gold buffer layers modified with each ligand.
These data are calculated from the free-electron Drude model applied to ellipsometry
measurements, where

—h2.q%ng.u
go(u.my.E? —i.q.E.h )

eprupe(E) =

Corresponds to the first 2 parts of equation (3) in the main text:

wh

gg(w) =& — D + G (w) + Gy(w) (3)

w?—iw

With 7 the Planck constant/2x, q the electron charge, ns the carrier concentration in cm™, u
the carrier mobility in cm?Vis? g the vacuum dielectric constant and m is the electron rest
mass.
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Table S2. Parameters obtained ® from the fit detailed in Etchegoin (ref. 44 Etchegoin, P. G.;
Le Ru, E. C.; Meyer, M. An Analytic Model for the Optical Properties of Gold. J. Chem.
Phys. 2006, 125, 1-4) of the dielectric function of gold reported in ref 36 and ® from the fit of
the experimental data reported in Figure S10.

Fit c ko, hr, ke, | &1 | ho, hr; ke, | ¢ | Ro, | B
range | | ev) | ev) | (V) | O] ev) | ev) | Ml e | O | v | ev | P2
12—
Fit of (n,k) ® 62 | 1.53 | 85506 | 0.0729 | 2.49 | -a5 | 2.6490 | 0.5390 | 1 | 5.003 | -45 | 3.745 | 1.319 | 1
eV
Fit of (g4, &) 1.2-
Data of bulk 33 | 1.49 | 8218 | 0.0818 | 2.287 | -45 | 2.6650 | 0.5400 | 1 | 4.963 | -45 | 3.779 | 1.261 | 1
gold Au(111) ™ eV

14
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compositions, and fitted spectra by adjusting the contribution of only s electrons (Drude
model) or both s and d electrons (Drude model and interband transitions).
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Figure S13. Simulation (red line) of the experimental absorbance spectra (open circles) of the
grafted particles over the whole spectral range with the fitted parameters of Table 2. A better
agreement (green line) is obtained by adding the absorbance of the molecules alone in
solution (open square). The weighting prefactor is given by the ratio of concentration. Notice
that above 8, the experimental absorbance is not reliable because of the limited sensitivity of
the spectrometer.

17



Table S3. Reliability factors of fitted spectra shown in figure S12. Definitions of y? and Rg
are shown below.

Ligand shell | x x10° (fit s) Ry (fit 5) X2 x10" (fit s+d) | Rs (fit s+d)
DDT 17.65 2.27% 3.90 1.13%
Ph:DDT 35:65 22.99 2.44% 5.69 1.25%
B'EQ::EODT 23.02 2.12% 7.48 1.18%
TerPh:DDT
i 17.50 1.49% 9.26 1.09%
i
= = 3o g
" =1

N N
13“ — Z ]y:;lu _ 'I/;-ulr-l/ Z |,l/;”"\l
i=1 i=1
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