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Figure S1. Electrophoretic mobility of oblate spheroids as a function of axial ratio 

for the indicated zeta potentials, relative to that of spheres with radius a, calculated 

with the O’Brien and Ward model.
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2. Polarization of the electrical double layer 

2.1.The dipole moment 

Although the dispersed particles and their EDLs will most likely be apolar, that 

is, will lack a permanent dipole moment, this can be induced by the field. A linear 

response is assumed, and hence the nucleus of our discussion is the dipole coefficient *

0C

, a complex quantity relating the induced dipole moment 
* exp( )d j tω−  to the external 

field, which will be assumed harmonic, with frequency ω , ( )   exp  extE E j tω= − . The 

same frequency dependence will apply to all quantities, and hence we will avoid the 

repeated use of the exponential term. If pV  is the particle volume, the relationship 

between the dipole moment and the dipole coefficient is: 

 
( ) ( ) ( )

* *

0

*

0 1 2

  3

ω ω ω

=

= −

pd V C E

C C jC
 [S.1] 

The complex dipole coefficient has been expressed in terms of its real and imaginary 

components, 1C and 2C , respectively. 

2.2.Consequences. Dielectric relaxation  

The importance of the dipole coefficient can be understood first of all by 

considering how it determines the frequency dispersion of the permittivity of the 

suspension, typically expressed in terms of the relative permittivity (or dielectric 

constant) and the permittivity of vacuum: *

0( )ε ω ε . Because there is no way of directly 

determining the permittivity, it is of interest to relate it to the complex conductivity 

*( )K ω , of easier experimental access, because it can be obtained from impedance 

*( )ωZ  measurements of samples using calibrated conductivity cells: 
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whereλ is the cell constant. The relationship between both quantities is: 
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where DCK  is the electrical conductivity of the suspension at constant (dc) field. Using 

eq [S.3]: 
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K
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 [S.4] 

Maxwell and Wagner independently obtained a mixture formula relating the 

conductivity to the dipole coefficient of individual particles
2
, for cases where the 

volume fraction of solids, ϕ, is low: 

 
( ) ( ) ( )( )* * *

01 3ω ω φ ω= +mK K C
 [S.5] 

where *

mK  is the complex conductivity of the medium (the dispersing liquid without 

particles) which, assuming that the frequency range of interest does not involve any 

relaxation in the polarization of such medium (its relative permittivity mε  is constant), 

can be written *

0m m mK K jωε ε= + . Using equations [S.4] and [S.5], the fundamental 

relationships between the permittivity and the dipole coefficient components are clear: 
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 [S.6]   

 

It is common to use incremental quantities to highlight the weight of the 

particles in the average permittivity. Dielectric increments (both relative to the vacuum 

permittivity), total and specific, will be denoted ( ) ( ) ( )*∆ ∆ ∆ε ω ε ω ε ω′ ′′= − j  and 

( ) ( ) ( )*δε ω δε ω δε ω′ ′′= − j  respectively: 

 
( ) ( ) ( )

( ) ( ) ( )
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0 0

∆ δ

∆ δ

ε ω ε ε ε ω ε ε φ ε ω
ε ω ε ε ω ε φ ε ω

= +′ ′ ′
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′= = ′′
m m

 [S.7]  

  

 

 

Figure S2. Left (black, thin lines): frequency dependence of the real (solid line) and 

imaginary (dashed line) components of the induced dipole coefficient of latex spheres 

(5% v/v) 100 nm in diameter in 0.5 mMKCl solutions, for the zeta potential 100 mV. 

Right (brown, thick lines): real (solid line) and imaginary (dashed line) components of 
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the specific dielectric increment calculated from the dipole coefficient for the same 

frequency interval. 

 

 Figure S2 illustrates the relationship between the dielectric and dipole 

coefficient frequency dispersions. The main finding is that the low frequency 

permittivity undergoes a significant relaxation in the few-kHz frequency range, also 

present in the induced dipole moment: this is the alpha-relaxation, with frequency αω , 

well described by Dukhin and Shilov
3,4

 At still higher frequencies, the Maxwell-Wagner 

or Maxwell-Wagner-O'Konski relaxation is observable (although not always: its 

amplitude is much lower than that of the concentration-polarization). The values of the 

corresponding relaxation frequencies read:
2,4
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  [S.8] 

where ( )/effD D D D D+ − + −= +  for a 1-1 electrolyte solution, pε  is the dielectric 

constant of the particle, and the particle conductivity  pK  is mainly associated to its EDL 

through the surface conductivity K σ . For a spherical particle
5
: 

 
2

p

K
K

a

σ

=  [S.9] 

These frequencies are determinant of the dielectric spectra. A physical feeling of the 

different polarization behaviors of the EDL in the various frequency ranges considered 

can be acquired by noting the limiting values of *

0C  for the frequencies mentioned. An 

approximate expression for the coefficient can be given as follows:  
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where iK  is the conductivity of the material. As can be seen, at high frequencies it is the 

permittivity mismatch that matters, and 0 C  tends to -1/2 if the permittivity of the 

medium is much greater than the particle: 

 ( )0

1
 

2 2

ε ε
ω

ε ε

−
→∞ = ≈ −

+
p m

p m

C  [S.11]  

Conversely, at low frequencies the polarization is controlled by the conductivity 

balance. If, as in our case, the particle is non-conductive, equation [S.10] can still be 

used, provided that, according to the model proposed by O'Konski (see Ref.
2,6

), the 

particle, even if insulating, is assigned an effective bulk conductivity because of the 

(excess) surface conductivity of its double layer. It has become traditional to use the 

dimensionless Dukhin number, Du, for specifying the role of that surface conductivity, 

σK , on the electrokinetics of the system
5
: 

 

0
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K
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 [S.12] 

 

2.4.Consequences. Electrophoresis in ac fields  

The role of EDL polarization on the electrophoretic mobility of a dispersed 

particle has been considered carefully since the pioneering works of Overbeek
5,7

: a very 
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simple model, actually valid for dc fields and thin EDL
4
, leads to the following 

relationship between the mobility eu  and the zeta potential ζ: 

 ( )0

2
 1

3

ε
ζ

µ
= −m

e
m

u C  [S.13]  

From equation [S.12] it follows that if the zeta potential is small (hence also K σ  and 

Du), the dipole coefficient takes the value -1/2. Equation [S.13] therefore leads to 

Helmholtz-Smoluchowski mobility formula  m
e

m

u
ε

ζ
µ

 
= 

 
. Conversely, for high zeta 

potential 0 1C → , which would mean a null value of mobility, precisely when the 

charge of the particle is high. This paradox is resolved by considering the role of EDL 

polarization on 0C , above discussed. In fact, as shown in Figure S2, the dipole 

coefficient does not reach the value of +1. This is because of the occurrence of EDL 

polarization (concentration polarization) reduces the strength of the induced dipole 

moment by producing diffusive fluxes of counterions compensating for the field-

induced accumulation. This is the reason why the mobility does not increase indefinitely 

with ζ, but it rather reaches a plateau, as shown in the now classical results of O'Brien 

and White.
8
 Although qualitatively, the approximate equation [S.13] can provide clues 

regarding the effect of the field frequency on the electrophoretic mobility when an 

alternating electric field is applied to the suspension, a subject which has been 

investigated extensively in latest years
9-14

. Figure S3 illustrates the expected behavior of 

the real and imaginary components of the (complex) frequency-dependent mobility 

(dynamic mobility), obtained based on the model described in Ref.
15
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Figure S3. Frequency dependence of the real (a) and imaginary (b) components of the 

dynamic mobility of latex spherical particles 100 nm in radius and diffeerent zeta 

potentials; ζ = 100 mV  is considered. The ionic strength is 0.5 mMKCl in all cases. The 

other lines correspond to the same parameter values, except for the one indicated by the 

label in each case. 

 

Note how the two relaxations associated to the dipole coefficient are observable 

in the mobility spectrum. The alpha relaxation produces an increase in the real part of 

the coefficient when the frequency raises above αω , and this manifests in a reduction of 

[ ]eRe u ; in addition the MWO relaxation brings about an increase in the mobility 

associated to the corresponding decline in the dipole coefficient. There is still a final 
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relaxation related to the time it takes to set up the movement of fluid and particle. Under 

the action of the electric field, the liquid in the area of the double layer is moved over 

the surface of the particle almost instantaneously. However, outside it, at a distance of 

the order of the radius of the particle, the fluid takes a time to reach its steady state 

hydrodynamic profile. This characteristic time is of the order of:
16

 

 
2ρ

τ
η

 
=  

 

m
h

m

a
O  [S.14] 

For the case of a = 100 nm particles suspended in aqueous solution ( )810h O sτ −= . The 

frequency associated with these processes is therefore about tens of MHz, and above 

this characteristic value the electrophoretic mobility decreases drastically because 

neither the particle nor the fluid can now follow the oscillations of the field (inertial 

relaxation).  

 

3. The case of spheroidal particles 

3.1. Electric permittivity of the suspensions 

In the case of oblate spheroidal particles, the first step is the modification of eq 

[S.1]. For a reference system like the one in Figure S4, we write: 

 * 2 *

0
( ) 4 ( ) , ,
i m i i
d ab C E iω πε ε ω= ≡ ⊥�  [S.15] 

corresponding to directions parallel and perpendicular, respectively, to the symmetry 

axis of the particle.  For an arbitrary orientation θ with respect to the field, one has: 

 ( )* 2 * *

0
ˆ ˆ4 cos cos

m
ab E C Cπ ε ε θ θ⊥ ⊥= +d e e

� �
 [S.16] 

where ( )ˆ ˆ, ⊥e e
�

 are unit vectors parallel and perpendicular to the symmetry axis.  
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Figure S4: Spheroid semiaxes and components of the dipole and the field. 

 

 Like in the case of spherical particles, knowledge of the two complex dipole 

coefficients * *,C C⊥�
 allows the prediction of both the dielectric spectrum and the 

dynamic mobility of the suspension. In particular, for the evaluation of either 

conductivity or permittivity all that is needed is the component of *
d parallel to the 

field: 

 ( )( )* 2 * * * 2

0
4 cos

E m
d ab E C C Cπ ε ε θ⊥ ⊥= + −

�
 [S.17] 

and its average for random orientation: 

 

* *

* 2

0

2
4

3
E m

C C
d ab Eπ ε ε ⊥ +

= �  [S.18] 

From this, we obtain the relative permittivity for each orientation: 
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and, for random orientation: 

 

* *

*
( ) 2 ( )

( )
3

ε ω ε ω
ε ω ⊥+

= �  [S.20] 

 

3.2. Electrophoretic mobility  

Considering the linearity of the electrophoresis problem, the (electrophoretic) 

velocity ve can be written in terms of mobilities corresponding to both orientations: 

 

ˆ ˆ ˆ ˆ( )

2

3

⊥

⊥

= ⋅ + − ⋅

+
=
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�

e e e

e e
e

u u

u u
u

v E e e E E e e

 [S.21] 

The important point here is to establish the relationship with the dipole coefficient. 

Hydrodynamic effects must also be taken into account, so that the Helmholtz-

Smoluchowski equation must be modified as follows:
17

 

 0
, 1, 2,

ε ε
ζ

η
= ⋅m

e i i iu f f  [S.22] 

where 1,if  takes into account the particle inertia and 2,if  measures the effect of EDL 

polarization. The former can be written, for whatever EDL processes, in terms of the 

drag coefficient ,H iD  and the added mass ,a iM 9,18
. Their expressions can be found in 

Ref.
18

. Concerning the second function, it was first evaluated by Loewenberg and 

O’Brien
9, 19, 20, 21

 for the case min 1κ >>l , with minl the minimum dimension of the 

spheroid (see Ref.
22, 23, 24

  for an alternative derivation): 

 *

2, (1 ) 3 (1 )= − − −i i i i if L L L C  [S.23] 
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Here Li are the depolarization factors of the oblate spheroid: 
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3.3. The induced dipole coefficient for a spheroidal particle 

Contrary to the case of spheres, the system of partial differential equations 

describing the electrokinetics of spheroids is not separable, so no analytical solution is 

available
25

. Some approximate models can be used though, as briefly mentioned below.  

In the approximation of thin double layers, Dukhin and Shilov
26, 27

 showed that the 

MWO relaxation could be described on the basis of the assumption of uniform field 

inside the spheroid and a combination of uniform and dipolar fields outside. A Debye-

like relaxation of the dipole coefficient is found, given by: 
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 [S.25] 

 These expressions are valid if an effective complex conductivity is assigned to the 

spheroid for each orientation: 

 *

, , 0p i p i pK K jωε ε= +  [S.26] 
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where the surface conductivity σK  is related to the effective conductivities 
,p iK  as 

follows: 
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 [S.27] 

 In the low-frequency (α-relaxation) regime, the analysis of the concentration 

polarization is solved by considering separately the parallel and perpendicular 

orientations, distinguishing two characteristic diffusion lengths. According to Grosse 

and Shilov
28

, the low-frequency dielectric increments read: 
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 [S.28] 

 The α-relaxation frequencies for the two orientations are given below. Contrary 

to the case of prolate spheroids, it is likely that the two characteristic frequencies are 

similar, and mainly controlled by the larger semiaxis: whatever the orientation, ions will 

not find a diffusion distance of the order to the smaller particle dimension: 
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 Once the experimental dielectric dispersion (DD) spectrum is found, the model 

can be used for estimating both the zeta potential and the large semiaxisb (radius of the 

equator of the oblate spheroid). Our experimental data of ( )ε ω′′D  are fitted to the 

logarithmic derivative of the empirical Cole-Cole function 

 ( )
( )1

0

1

*

max

( )

/i
α

ε
ε ω

ω ω
−

′∆
∆ =

+
 [S.30] 

and the values of the low frequency dielectric increment (0)ε ′∆  and of the frequency 

max
ω  (corresponding to the maximum in the ( )ε ω′′D spectrum) are extracted. In the case 

of the dielectric dispersion of suspensions of spheres, the relationship between max
ω  and 

the α-relaxation frequency αω  can be obtained by assuming that the actual relaxation is 

a Vogel-Pauly
29

 function, from which αω  can be directly obtained. It is found that max
ω  

is systematically lower than αω  by a factor around 0.4 depending on the value of 

(0)ε ′∆ . Because there is no theoretical treatment for spheroids, we may assume that the 

same relationship holds. Finally, Grosse et al.’s model
30

 is used for obtaining the 

surface conductivity and the particle diameter 2b, by assuming that the low-frequency 

dielectric increment can be associated to a random orientation of the particles, as in eq 

[S.20]: 

 
(0) 2 (0)

(0)
3

ε ε
ε ⊥′ ′∆ + ∆

′∆ = �
 [S.31] 
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and also that the experimental αω  is a similar average of ||

αω  and αω ⊥ .  
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Figure S5: Real (top) and imaginary (bottom) components of the dielectric increment 

of suspensions of oblate spheroids as a function of frequency, for different values of the 

axial ratio r = a/b. In all cases, b = 200 nm; ζ = 100 mV; volume fraction of solids ϕ = 

0.02; KCl 1 mM. 

  

 Figure S5 confirms the expected results concerning the location of the relaxation 

frequency. It shows that increasing the eccentricity of the particle (decreasing r) shifts 

the relaxation frequency towards slightly higher values (giving more chance to short 

diffusion lengths to show up), and produces larger dielectric increments at low 

frequencies. However, the fact that the relaxation extends over a frequency 
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decadecentered at 2-4×10
5
 Hz indicates that the small and large semiaxes contributions 

are not well separated in frequency.  

 

4. Correction of electrode polarization in DD measurements 

As mentioned in the manuscript, the logarithmic derivative method was used for 

minimizing the effect of electrode polarization. In this section we illustrate the method 

by applying it to some examples.  

 We reproduce in Figure S6 the raw data obtained at pH 4 and pH 5 with KCl 0.5 

and 1 mM. The electrode polarization manifests itself in the strong rise of the apparent 

logarithmic derivative at low frequency. Note that the electrode polarization has the 

same contribution at both pHs, as it is expected since they have the same ionic strength. 

In a log-log plot, this corresponds to a linear portion of the spectra that can be fitted and 

subtracted from the raw data as shown in Figure S7. In this figure we show how the DD 

data are treated to minimize the contribution of electrode polarization and finally get 

what can be considered the “true” relaxations. For this purpose we fit the low frequency 

part of the spectra, where only electrode polarization contributes, to a power law (lines 

in Figure S7), and then this curve is subtracted from the raw data. This example serves 

to illustrate the differences between pH 4 and 5, namely, the existence of a second 

relaxation phenomenon at low frequency which appears at pH 4, but is not observed at 

pH 5. 
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Figure S6. Raw data of the logarithmic derivative of the real component of the relative 

permittivity as a function of the frequency, for a suspension 2% volume fraction of 

gibbsite particles and the pH and ionic strength indicates. 
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Figure S7. Raw data of the logarithmic derivative of the real part of the dielectric 

permittivity (full symbols), electrode polarization fitting lines (dashed lines), and 

corrected DD data (open symbols) as a function of frequency. In all cases thevolume 

fraction of gibbsite particles is 2%. pH values as indicated and KCl 0.5 mM. 
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