Supporting Information

Effect of Surface Properties on the Microstructure, Thermal, and Colloidal Stability of VB₂ Nanoparticles

Bürgehan Terlan¹, Aleksandr A. Levin², Felix Börrnert ^{3,4,5}, Frank Simon⁶, Martin Oschatz⁷, Marcus Schmidt², Raul Cardoso-Gil², Tommy Lorenz¹, Igor A. Baburin¹, Jan-Ole Joswig¹ and Alexander Eychmüller¹

¹ Physical Chemistry, TU Dresden, Bergstr. 66b, 01062 Dresden, Germany

² Max-Planck-Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, 01187 Dresden, Germany

³ IFW Dresden, PF 270116, 01171 Dresden, Germany

⁴ Speziallabor Triebenberg, TU Dresden, 01062 Dresden, Germany

⁵ Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom

⁶Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, D-01069, Dresden, Germany

⁷ Department of Inorganic Chemistry, TU Dresden, Bergstr. 66b, 01062 Dresden, Germany

E-mail: buergehan.terlan@chemie.tu-dresden.de

List of Contents

S1 Synthesis

S2 N2 adsorption-desorption isotherm of VB2 nanoparticles

S3 Williamson-Hall plots of VB2 nanocrystals with varying initial starting composition

S4 Results of Rietveld refined VB₂ nanocrystals

S5 TEM pictures of VB₂ nanoparticles with varying initial starting compositions

S6 XRD line profile analysis of as-synthsized VB₂ and those exposed to highly humid environment

S7 Structure of a single VB₂ nanoparticle as a cut-out of the bulk material for DFT calculations

S8 Atomic distances of the first coordination sphere of the VB_2 nanoparticle with and without H-saturated edges

S9 Additional References

S1 Synthesis: VB_2 nanocrystals were isolated from the eutectic mixture of anhydrous LiCl and NaCl when VCl_3 and $NaBH_4$ were used as starting materials. The possible formation process of VB_2 can be illustrated as follows:

 $VCl_3 + 2NaBH_4 \rightarrow VB_2 + 2NaCl + HCl + 7/2H_2$

Atomic electron populations based on electron density investigations revealed that B in borane anions is positively charged⁷³ whereas B in transition metal diborides is negatively charged.³⁸ On the other hand, V in VCl₃ has an oxidation number of +3 whereas V in VB₂ has an oxidation number of ~ +1. Accordingly, this reaction is a redox reaction where the vanadium atom is reduced by NaBH₄.

S2 N₂ adsorption-desorption isotherm of VB₂ nanoparticles (initial V / B = 1 : 8) measured at -196 °C (a) and the linear BET plot together with the regression coefficients of the linearly fitted data (b). *W* is the mass of N₂ adsorbed. The BET surface area is 111.1 m²/g.

S3 Williamson-Hall plots for VB₂ nanocrystals obtained at 900 °C with varying starting composition (V / B = 1 : 2-8) together with the regression coefficients of linearly fitted data. The form of the X-ray reflection profiles determined according to $FWHM/\beta$ values is pseudo-Voigt. The strain and crystallite size calculated from the slope and y-intersect of the respective relationship are also given ($K_{\text{strain}} = 4$).

S4 XRD powder patterns of Rietveld refined VB₂ nanocrystals with average crystallite sizes of D = 28.3(4.6) nm (a) D = 19.4(2.5) nm (b) and D = 9.9(1.4) nm (c) prepared with starting composition V / B = 1 : 2, 1 : 5 and 1 : 8, respectively. Black solid line: observed data, red dashed line: fitted curve, blue dotted line: difference between observed data and fitted curve. The vertical lines indicate the 2θ -angle positions of the Bragg reflections. The results of the Rietveld refinement are given in Table.

Rietveld refinement protocol

The Rietveld fitting of the XRD powder patterns of VB₂, is performed using the program TOPAS⁷⁴ applying the weighting scheme $w_i = 1/y_i$ where y_i is the recorded intensity at step *i*. The background is fitted by means of Chebyshev polynomial. In the VB₂ structure (space group *P6/mmm*) the V atom is placed at 1*a* Wyckoff position (relative coordinates *x*, *y*, *z* = 0, 0, 0) with site symmetry 6/mmm, whereas B atom is placed at 2*d* Wyckoff position (relative coordinates *x*, *y*, *z* = 1/3, 2/3, 1/2) with site symmetry $\overline{6m2}$. Number of formula units, Z is 1. For all refinements, the isotropic description of the atomic displacement was used for both atoms. The refinement of the occupancies of V atom positions did not indicate any deviation from the exact stoichiometry for all three samples. The estimated standard deviations (*e.s.d.s.*) of the refined structural parameters (*e.g.* unit cell parameters, B_{iso} , p_{occ} , *etc.*) which were underestimated in the Rietveld refinement due to serial correlations, were corrected by multiplication on Berrar's formalism by means of program *Riet_esd*⁷⁵. In the Table, the obtained values of the structure parameters (unit cell parameters *a* and *c* and unit cell volume V_{cell} , B_{iso} , p_{occ}), XRD pattern fitting quality characteristics (profile factor R_p , weighted profile factor R_{wp} , corrected to background weighted profile factor *cR*_{wp}), structure agreement Bragg factor R_B and Berrar's correcting coefficient $m_{e.s.d.}$ are presented.

S5 TEM micrographs of VB₂ nanoparticles with varying starting compositions (V / B = 1 : 2, 1 : 5 and 1 : 8). The nanoparticles are embedded in an amorphous matrix. Corresponding SAED pattern of VB₂ nanocrystals obtained with V / B = 1 : 8 is shown in the inset.

S6 XRD powder patterns of as-synthesized VB₂ nanocrystals (initial V / B = 1 : 8) and those exposed to highly humid environment (aged) for one week. The Williamson-Hall plots for VB₂ together with the regression coefficients of linearly fitted data are shown in the inset. The form of the X-ray reflection profiles determined according to $FWHM/\beta$ values is pseudo-Voigt. The crystallite size D and lattice strain *s* values calculated from *y*-intersect and the slope and of the respective relationship are also given ($K_{\text{strain}} = 4$). Please note that the crystallite size and lattice strain values do not indicate a significant difference between the as-synthesized and aged VB₂.

S7 Structural views of a VB₂ nanoparticle along *c*-axis (a-d) and *b*-axis (e-f) without (a, b, e, f) and with (c, d, g, h) hydrogen-saturated edges. Snapshots (a), (c), (e), and (g) show the initial structures used for the geometry optimization and the calculation of the energy as a function of contraction / elongation, snapshots (b), (d), (f), and (h) show the structures of the optimized particles. The vanadium, boron and hydrogen atoms are drawn as blue, purple and white spheres, respectively.

S8 Interatomic distances in the first coordination sphere in the VB_2 nanoparticle with and without H-
saturated edges. The values are averages over all distances of the respective type in one particle.
Variations with respect to the distance in the optimized VB_2 bulk structure are given in percent.

	Bulk	NP no saturation		NP H edge	
Ratio V : B	1:2	1:2.76		1:2.76	
V-V (ab)	2.954 Å	2.878 Å	-2.57%	2.900 Å	-1.84%
V-V (<i>c</i>)	2.921 Å	2.918 Å	-0.11%	2.872 Å	-1.69%
B-B (<i>ab</i>)	1.706 Å	1.790 Å	4.91%	1.753 Å	2.74%
В-В (<i>с</i>)	2.921 Å	2.679 Å	-8.29%	2.722 Å	-6.82%
V-B	2.246 Å	2.230 Å	-0.69%	2.213 Å	-1.45%

S9 Additional References

(73) Bader, R. F. W.; Legare, D. A. Properties of atoms in molecules: structures and reactivities of boranes and carboranes. *Can. J. Chem.* **1992**, *70*, 657-676.

(74) *DIFFRAC*^{plus} TOPAS, Version 4.2, Bruker AXS GmbH, Karlsruhe, 2009.

(75) Levin, A. A.; Filatov, S. K.; Paufler, P.; Bubnova, R. S.; Krzhizhanovskaya, M.; Meyer, D. C. Temperature-dependent evolution of $RbBSi_2O_6$ glass into crystalline Rb-boroleucite according to X-ray diffraction data. Z. Kristallogr. **2013**, 228, 259-270.