Catalytic Alkene Carboaminations Enabled by Oxidative Proton-Coupled Electron Transfer

Gilbert J. Choi and Robert R. Knowles*
Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States

Correspondence to: rknowles@princeton.edu

Supporting Information

Table of Contents Page
General Information S2
Synthesis and Characterization of Substrates S3
Synthesis and Characterization of Products S9
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Products S19
Diastereomer Identification S44
Stern-Volmer Studies S46
CV Data S51
Photocatalyst Structures S54
Formal Bond Dissociation Free Energy Calculations S55
References S56

General Information

Commercial reagents were purified prior to use following the guidelines of Perrin and Armarego. ${ }^{1}$ All solvents were purified according to the method of Grubbs. ${ }^{2}$ Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator. Chromatographic purification of products was accomplished by flash chromatography on Silicycle F60 silica gel or Sorbent Technologies neutral alumina according to the method of Still. ${ }^{3}$ All reactions were carried out in well ventilated fume hoods. Thin-layer chromatography (TLC) was performed on Silicycle $250 \mu \mathrm{~m}$ silica gel plates or Sorbent Technologies $250 \mu \mathrm{~m}$ neutral alumina plates. Visualization of the developed chromatogram was performed by irradiation with UV light or treatment with a solution of potassium permanganate or ceric ammonium molybdate stain followed by heating. Yields refer to purified compounds unless otherwise noted.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker 500 (500 and 126 MHz) instrument, and are internally referenced to residual solvent signals, CDCl_{3} referenced at $\delta 7.26$ and 77.16 ppm. Data for ${ }^{1} \mathrm{H}$ NMR are reported as follows: chemical shift ($\delta \mathrm{ppm}$), integration, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet), coupling constant (Hz) and assignment. Data for ${ }^{13} \mathrm{C}$ NMR are reported in terms of chemical shift, multiplicity ($\mathrm{s}=$ singlet, d $=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet $)$, coupling constant (Hz) and no special nomenclature is used for equivalent carbons. IR spectra were recorded on a Perkin Elmer Paragon 1000 spectrometer and are reported in terms of frequency of absorption $\left(\mathrm{cm}^{-1}\right)$. Highresolution mass spectra were obtained at Princeton University mass spectrometry facilities using an Agilent 6210 TOF LC/MS. Gas chromatography-mass spectrometry (GC-MS) was performed on an Agilent 6890 GC-5975C MSD. Gas chromatography (GC) was performed on an Agilent Technologies 7890A GC system equipped with a split-mode capillary injection system and flame ionization detectors. Stern-Volmer experiments were conducted on an Agilent Technologies Cary Eclipse Fluorescence Spectrophotometer.

Synthesis and Characterization of Substrates

Phenyl Carbamate/Urea Synthesis General Procedure

A flame-dried round-bottomed flask was degassed, flushed with argon, and charged with phenyl isocyanate ($10 \mathrm{mmol}, 1$ equiv), $\mathrm{DCM}(20 \mathrm{~mL}), \mathrm{Et}_{3} \mathrm{~N}(4.18 \mathrm{~mL}, 30 \mathrm{mmol}, 1.1$ equiv) and alcohol/amine ($10 \mathrm{mmol}, 1$ equiv). The reaction mixture was stirred at room temperature until the alcohol/amine was fully consumed by TLC. The reaction mixture was then diluted with DCM (20 mL), washed with $1 \mathrm{M} \mathrm{HCl}(3 \times 20 \mathrm{~mL})$, water $(20 \mathrm{~mL})$, and brine $(20 \mathrm{~mL})$, and then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude product was purified by silica gel column chromatography (gradient 100% hexanes to 5% EtOAc/hexanes) to afford the desired product.

literature values. ${ }^{4}$

3-Methylbut-2-en-1-yl phenylcarbamate

Followed general phenyl carbamate synthesis procedure with commercially available 3-methyl-2-buten-1-ol to give 1.2 g (88% yield) of the title compound. Spectra are consistent with reported

2,3-Dimethylbut-2-en-1-yl phenylcarbamate

Followed general phenyl carbamate synthesis procedure with 2,3-dimethyl-2-buten-1-ol ${ }^{5}$ to give 920 mg (85% yield) of the title compound. IR (neat): 3317, 2993, 2917, 1700, 1599, 1531, 1500, 1442, 1312, 1214, 1049, 1025, 750, $691 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H})$, $4.70(\mathrm{~s}, 2 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 6 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.92$, 138.12, 132.43, 129.17, 123.43, 122.96, 118.64, 66.53, 21.08, 20.42, 16.93.; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2}\right)$ requires m / z 219.12593, found m / z 219.12591, difference 0.09 ppm .

3-Methylcyclohex-2-en-1-yl phenylcarbamate
Followed general phenyl carbamate synthesis procedure with commercially available 3-methyl-2-cyclohexen-1-ol to give 770 mg (83% yield) of the title compound. IR (neat): 3316, 2936, 1694, $1599,1532,1501,1442,1378,1312,1223,1165,1050,1027,931,751,692 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (501 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.56$ (s, 1H), $5.56(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.74(\mathrm{~m}$, $3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.71-1.61(\mathrm{~m}, 1 \mathrm{H})$.; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ.; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2}\right)$ requires m / z 231.12593, found m / z 231.12554, difference 1.7 ppm .

(2-Methylcyclopent-1-en-1-yl)methyl phenylcarbamate

Followed general phenyl carbamate synthesis procedure with (2-methylcyclopent-1-en-1-yl)methanol ${ }^{7,8}$ to give 640 mg (85% yield) of the title compound. IR (neat): $3318,3059,2938,2844,1703,1600$, 1537, 1501, 1444, 1313, 1220, 1083, 1047, 1027, 752, $692 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{t}, J=7.3 \mathrm{~Hz}$, 1H), 6.57 (s, 1H), 4.73 (s, 2H), $2.47-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.83(\mathrm{p}, J=7.6 \mathrm{~Hz}$, 2 H), 1.75 ($\mathrm{s}, 3 \mathrm{H}$).; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.82,139.27,138.08,129.84,129.18$, 123.46, 118.71, 61.83, 38.86, 34.69, 21.66, 14.13.; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2}\right)$ requires $m / z 231.12593$, found $m / z 231.12619$, difference 1.11 ppm .

2,5-dimethylhex-4-en-3-yl phenylcarbamate

Followed general phenyl carbamate synthesis procedure with 2,5-dimethylhex-4-en-3-ol ${ }^{9}$ to give 550 mg (79% yield) of the title compound. IR (neat): 3319, 2964, 2932, 2874, 1698, 1600, 1529, 1501, 1442, 1382, 1312, 1220, 1047, 1026, 967, 949, 858, 752, $691 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.99-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 5.20$ (dd, $J=9.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{dp}, J=9.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~h}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{dd}, J=$ $8.9,1.4 \mathrm{~Hz}, 6 \mathrm{H}), 0.86(\mathrm{dd}, J=20.0,6.8 \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.45$, 138.32, 138.07, 129.13, 123.26, 122.09, 118.63, 32.87, 26.09, 18.78, 18.50, 18.06.; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{2}\right)$ requires $m / z 247.15723$, found m / z 247.15752, difference 1.17 ppm .

1-Methyl-1-(3-methylbut-2-en-1-yl)-3-phenylurea

Followed general phenyl carbamate synthesis procedure with N -methyl-N-(3-methyl-2-buten-1-yl)amine ${ }^{10}$ to give 720 mg (86% yield) of the title compound. IR (neat): 3318, 3054, 2969, 2920, $1637,1594,1528,1498,1478,1439,1376,1305,1240,1192,1142$, 1025, 882, 750, $693 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), $7.30-7.25$ $(\mathrm{m}, 3 \mathrm{H}), 7.01(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $2.99(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 5 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.72,139.42,136.35$, $128.95,122.84,120.39,119.68,46.96,34.68,25.93,17.99$. ; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}\right)$ requires $m / z 218.14191$, found $m / z 218.14226$, difference 1.57 ppm .

2,2-Dimethyl-4,4a,8,8a-tetrahydropyrano[3,2-d][1,3]dioxin-8ylphenylcarbamate

Followed general phenyl carbamate synthesis procedure with commercially available 4,6-O-isopropylidene-D-glucal to give 1.2 g (72% yield) of the title compound. IR (neat): 3325, 2994, 2894, 1729, 1640, 1601, 1537, 1501, 1444, 1378, 1313,1269, 1217, 1168, 1111, $1091,1052,1015,869,753,692 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.30(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{dd}, J=6.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.04(\mathrm{~m}, 1 \mathrm{H}), 4.04-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.92-$ $3.81(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.99,145.37,137.82$, 129.17, 123.63, 118.70, 101.39, 100.06, 70.42, 69.91, 61.67, 29.06, 19.10.; HRMS (ESI) exact
mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{5}\right)$ requires m / z 305.12632, found m / z 305.12692, difference 1.96 ppm .

(E)-2-Methylpent-3-en-2-yl phenylcarbamate

A flame dried round-bottomed flask was charged with $\mathrm{NaH}(575 \mathrm{mg}$, 24.0 mmol) and degassed and backfilled with argon. THF (30 mL) was added followed by (E)-2-methylpent-3-en-2-ol ${ }^{6}$ ($1.44 \mathrm{~g}, 14.4$ $\mathrm{mmol})$. The reaction mixture was stirred at room temperature for 30 minutes. Phenyl isocyanate $(1.57 \mathrm{~mL}, 14.4 \mathrm{mmol})$ was then added and the reaction was stirred at room temperature for 1 hour or until complete consumption of the alcohol was seen by TLC. The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times. The combined organic layers were washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to yield the crude product, which was then purified by silica gel column chromatography to give the 1.6 g (52% yield) of the pure product. IR (neat): $3327,2977,2936,1701,1599,1528,1500,1440,1380,1365,1313,1223$, 1193, 1127, 1082, 1046, 1027, 996, 966, 898, 832, 750, $692 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 5.84(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{dq}, J=14.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.53,138.40,135.55,129.13,124.45,123.16,118.60,81.02,27.26$, 17.99.; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2}\right)$ requires m / z 219.12593, found $m / z 219.12571$, difference 1 ppm .

S-(3-Methylbut-2-en-1-yl)phenylcarbamothioate

A flame dried round-bottomed flask was charged with dry, oil-free KH ($672 \mathrm{mg}, 16.75 \mathrm{mmol}$) inside a glove box. THF (20 mL) was added and the suspension was cooled to $0^{\circ} \mathrm{C}$. 2-methyl-3-buten-2-ol $(1.75 \mathrm{~mL}, 16.75 \mathrm{mmol})$ was added and the reaction mixture was allowed to warm to room temperature and stirred for 30 minutes. Phenyl isothiocyanate ($2 \mathrm{~mL}, 16.75 \mathrm{mmol}$) was then added and the reaction was stirred for 6 hours or until complete consumption of alcohol was seen by TLC. The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times. The combined organic layers were then washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to yield the crude product, which was then purified by recrystallization from petroleum ether and ethyl acetate to give 1.2 g (44% yield) of the title compound. IR (neat): 3291, 3059, 2970, 2921, 1656, 1599, 1529, 1498, 1439, 1376, 1308, 1237, 1148, 1106, 1078, $1027,879,841,808,750,691 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31$ $(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 5.30(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}$), $1.72(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 6 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.84,136.88,129.37$, 129.26, 125.43, 124.54, 119.28, 28.60, 25.84, 17.99.; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NOS}\right)$ requires $m / z 221.08743$, found $m / z 221.08725$, difference 0.86 ppm .

Aryl Carbamate Synthesis General Procedure

A flame dried round-bottomed flask was degassed, flushed with argon, and charged with triphosgene ($1.49 \mathrm{~g}, 5.0 \mathrm{mmol}$) in THF $(10 \mathrm{~mL})$. Then, a solution of substituted aniline (5.0 mmol) dissolved in THF (40 mL) was slowly dripped into the triphosgene solution. $\mathrm{NEt}_{3}(1.5$
$\mathrm{mL}, 10.5 \mathrm{mmol}$) was then added slowly to the reaction mixture after the aniline was added. The reaction mixture was stirred at room temperature for 2 hours. The reaction mixture was then concentrated and the flask containing the resulting residue was degassed and acetonitrile (80 mL), $\mathrm{NEt}_{3}(1.5 \mathrm{~mL}, 10.5 \mathrm{mmol})$, and 3-methyl-2-buten-1-ol were added ($0.61 \mathrm{~mL}, 6.0 \mathrm{mmol}$). The reaction mixture was then stirred at $70{ }^{\circ} \mathrm{C}$ for 8 hours. The reaction mixture was concentrated and the crude residue was purified by alumina column chromatography (gradient 100% hexanes to $20 \% \mathrm{EtOAc} /$ hexanes) to yield the pure aryl carbamate product.

3-Methylbut-2-en-1-yl pyridin-3-ylcarbamate
Followed general aryl carbamate synthesis procedure from commercially available 3 -aminopyridine to give 880 mg (62% yield) of the title compound. IR (neat): 3238, 3184, 2975, 2913, 1728, $1610,1550,1484,1424,1379,1331,1303,1225,1126,1062,1028$, $978,859,801,766,705 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.39(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=4.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 5.30(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.66(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 6 \mathrm{H}) . ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.81,144.48$, $140.29,139.92,135.18,125.85,123.84,118.50,62.50,25.94,18.21$.; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$ requires m / z 206.10553, found m / z 206.10576, difference 1.1 ppm .

3-Methylbut-2-en-1-yl (3-bromophenyl)carbamate

Followed general aryl carbamate synthesis procedure from commercially available 3-bromoaniline to give 720 mg (74% yield) of the title compound. IR (neat): 3312, 2973, 2934, 1700, $1589,1526,1479,1421,1380,1304,1274,1214,1167,1094,1072,1054,994,871,771,679$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.12$ $(\mathrm{m}, 2 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 5.39(\mathrm{tdq}, J=7.2,2.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.77(\mathrm{dd}, J=$ $15.9,1.3 \mathrm{~Hz}, 6 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.41,139.91,139.42,130.42,126.44$, $122.88,121.57,118.56,117.13,62.39,25.95,18.21$.; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{BrNO}_{2}\right)$ requires $m / z 283.02079$, found $m / z 283.02126$, difference 1.67 ppm .

3-Methylbut-2-en-1-yl (4-cyanophenyl)carbamate

Followed general aryl carbamate synthesis procedure from commercially available 4 -aminobenzonitrile to give 820 mg (79% yield) of the title compound. IR (neat): 3322, 3104, 2978, 2936, 2225, 1731, 1708, 1608, 1591, 1524, 1412, 1316, 1215, 1177, 1053, 975, 835, $767 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62-7.45(\mathrm{~m}, 4 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H})$, $5.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.76(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.07,142.30,140.29,133.47,119.09,118.32,118.23,106.23,62.69,25.95$, 18.21.; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$ requires m / z 230.10553, found $m / z 230.10572$ difference 0.85 ppm .

Aryl Amide Synthesis General Procedure

A flame dried round-bottomed flask was degassed, flushed with argon, and charged with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide, EDC ($2.5 \mathrm{~g}, 13 \mathrm{mmol}$) and DMAP ($1.7 \mathrm{~g}, 14 \mathrm{mmol}$)
in DCM (25 mL). Then, 5 -methylhex-4-enoic acid ($1.3 \mathrm{~g}, 10 \mathrm{mmol}$) was added followed by the substituted aniline (12 mmol). The reaction mixture was stirred until TLC showed complete consumption of the carboxylic acid. The reaction mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$ and washed with 1 M HCl solution (30 mL). The aqueous layer was then extracted twice with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$. The combined organic layers were then dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to yield the crude amide, which was then purified by silica gel column chromatography (gradient $10 \% \mathrm{EtOAc} /$ hexanes to $40 \% \mathrm{EtOAc} /$ hexanes) in order to afford the pure amide.

5-Methyl-N-phenylhex-4-enamide

Followed aryl amide synthesis general procedure from commercially available aniline to give 1.7 g (84% yield) of the title compound. Spectra are consistent with reported literature values. ${ }^{11}$

literature values. ${ }^{12}$
\mathbf{N}-(4-methoxyphenyl)-5-methylhex-4-enamide
Followed aryl amide synthesis general procedure from commercially available p-anisidine to give 1.8 g (77% yield) of the title compound. Spectra are consistent with reported

5-Methyl-N-(o-tolyl)hex-4-enamide

Followed aryl amide synthesis general procedure from commercially available o-toluidine to give $1.4 \mathrm{~g}(64 \%$ yield $)$ of the title compound. IR (neat): 3266, 2971, 2924, 2858, 1644, 1587, 1530, 1456, 1366, $1366,1352,1305,1288,1263,1202,1143,864,842,756,734 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~m}, 4 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~d}, J=29.7 \mathrm{~Hz}, 6 \mathrm{H})$.; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.13,135.90,134.09,130.56,126.92,125.18,123.21,122.75$, $37.84,25.93,24.45,18.01,17.88$.; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}\right)$ requires $m / z 217.14666$, found $m / z 217.14687$, difference 0.96 ppm .

N-(Benzo[d]thiazol-6-yl)-5-methylhex-4-enamide

Followed aryl amide synthesis general procedure from commercially available 6-aminobenzothiazole to give $0.6 \mathrm{~g}(69 \%$ yield) of the title compound. IR (neat): 3289, 2919, 2348, 1663, 1605, 1576, 1531, 1475, 1447, 1399, 1246, 1195, $833 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl ${ }_{3}$) $\delta 8.90(\mathrm{~s}, 1 \mathrm{H}), 8.57(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.32$ $-7.27(\mathrm{~m}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 2.43(\mathrm{~m}, 4 \mathrm{H}), 1.67(\mathrm{~d}, J=33.4 \mathrm{~Hz}, 6 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.53,153.47,149.89,135.93,134.93,134.07,123.58,122.54,118.97,112.59,37.84$, 25.89, 24.29, 17.92.; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OS}\right)$ requires m / z 260.09833 , found $m / z 260.09875$, difference 1.61 ppm .

5-Methyl- N -(4-(trifluoromethoxy)phenyl)hex-4-enamide

Followed aryl amide synthesis general procedure from commercially available 4-(trifluoromethoxy)aniline to give 0.72 g (76% yield) of the title compound. IR (neat): 3300, 2966, $2918,1665,1612,1543,1507,1408,1260,1247,1219,1200,1162,1107,1015,907,837,731$
$\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, 2H), $5.22-5.10(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.68(\mathrm{~d}, J=33.9 \mathrm{~Hz}, 6 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.30,145.27,136.75,134.14,122.53,121.88,121.62,120.98,37.75,25.88$, 24.23, 17.92.; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NO}_{2}\right)$ requires m / z 287.11331, found $m / z 287.11315$, difference 0.59 ppm .

N-(4-Fluorophenyl)-5-methylhex-4-enamide

Followed aryl amide synthesis general procedure from commercially available 4-fluoroaniline to give 0.63 g (75% yield) of the title compound. IR (neat): 3279, 2966, 2921, 1649, 1611, $1528,1508,1447,1406,1349,1307,1291,1214,1154,1095,1012,973,829,785,711 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45$ (dd, $J=8.8,4.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.32(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $5.16(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{p}, J=6.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.68(\mathrm{~d}, J=33.9 \mathrm{~Hz}, 6 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.16,160.35,158.42,134.09,134.07,133.99,122.63,121.71,121.67,115.81$, 115.63, 37.69, 25.89, 24.29, 17.92.; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}$ $\left(\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{FNO}\right)$ requires $m / z 221.12159$, found $m / z 221.12160$, difference 0.05 ppm .

Phenyl Amide Synthesis General Procedure

Three flame-dried round-bottomed flasks were degassed, flushed with argon, and charged with $\mathrm{Et}_{2} \mathrm{O}(16 \mathrm{~mL})$. Ester ($5.26 \mathrm{mmol}, 1$ equiv) was added to one flask. Aniline ($10.51 \mathrm{mmol}, 2$ equiv) was added to a separated flask. Methylmagnesium bromide (3.0 M in $\mathrm{Et}_{2} \mathrm{O}, 10.5 \mathrm{mmol}, 2$ equiv) was added to the third flask. The aniline solution was added slowly to the methylmagnesium bromide solution. Once the reaction subsided, the ester solution was added to the reaction flask. The reaction was let stir at room temperature for 2 hours. The reaction was quenched with 1 M HCl and diluted with EtOAc . The aqueous layer was extracted three times with ethyl acetate. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude product was purified by recrystallization from $50 \% \mathrm{EtOAc} / \mathrm{Hexanes}$ to give the phenyl amide product.

2,2-Dimethyl-N-phenylpent-4-enamide

Followed phenyl amide synthesis general procedure from commercially available methyl 3,3-dimethyl-4-pentenoate to give 2.2 g (87% yield) of the title compound. Spectra are consistent with reported literature values. ${ }^{11}$

N-Phenylpent-4-enamide

Followed phenyl amide synthesis general procedure from commercially available methyl 4-pentenoate to give 2.8 g (94% yield) of the title compound. Spectra are consistent with reported literature values. ${ }^{13}$

Synthesis and Characterization of Products

General Procedure for Photocatalytic Amidoalkylation via PCET

A screw cap test tube was charged with starting material ($0.5 \mathrm{mmol}, 1$ equiv), $\left[\operatorname{Ir}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2}(\mathrm{bpy})\right]\left(\mathrm{PF}_{6}\right)^{14}(0.015 \mathrm{mmol}, 3 \mathrm{~mol} \%)$, tetrabutylammonium dibutyl phosphate ($0.125 \mathrm{mmol}, 25 \mathrm{~mol} \%$), the acceptor ($1.5 \mathrm{mmol}, 3$ equiv) and flushed with argon. 1.25 mL degassed anhydrous DCM was added, the reaction was irradiated with blue LEDs, and let stir at room temperature. Upon complete consumption of the starting material, the reaction was concentrated then purified by alumina column chromatography (gradient 100% hexanes to 50% $\mathrm{EtOAc} /$ hexanes) to obtain the named product.

Methyl 4-methyl-4-(5-oxo-1-phenylpyrrolidin-2-yl)pentanoate (2)
Followed general procedure with 5-methyl-N-phenylhex-4-enamide $(102 \mathrm{mg}, 0.5 \mathrm{mmol})$ and methyl acrylate for 20 hours and purified using alumina column chromatography (gradient 100% hexanes to 50% EtOAc/hexanes) to give 137 mg (95% yield) of the title compound. IR (neat): 2956, 1733, 1691, 1596, 1497, 1391, 1291, 1263, 1219, 1169, 761, $696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, 4.15 (dd, $J=9.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.62 (s, 3H), 2.64 (dt, $J=17.4,9.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.48 (ddd, $J=17.4$, $10.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{dq}, J=13.4,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.08$ (ddt, $J=13.1,9.8$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.60-1.47(\mathrm{~m}, 2 \mathrm{H}), 0.76(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $175.47,174.14,140.12,129.10,126.44,125.71,68.07,51.82,39.22,33.52,31.53,31.46,28.96$, 24.53, 23.41, 20.77.; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{3}\right)$ requires m / z 289.16779, found 289.16748, difference 1.1 ppm .

Methyl 4-methyl-4-(2-oxo-3-phenyloxazolidin-4-yl)pentanoate (3)
Followed general procedure with 3-methylbut-2-en-1-yl phenylcarbamate ($103 \mathrm{mg}, 0.5 \mathrm{mmol}$) and methyl acrylate for 21 hours and purified using alumina column chromatography (gradient 100\% hexanes to $33 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to give $127 \mathrm{mg}(87 \%$ yield) of the title compound. IR (neat): $2959,1735,1597,1500,1405,1291,1272,1203,1170,1124,1058,764$, $696,675 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 1 \mathrm{H}), 4.45(\mathrm{t}, J$ $=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{dd}, J=9.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=8.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 2.24-$ $2.17(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.48(\mathrm{~m}, 2 \mathrm{H}), 0.80(\mathrm{~d}, J=19.7 \mathrm{~Hz}, 6 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $173.82,157.04,138.85,129.34,126.47,124.68,64.36,64.21,51.91,38.27,32.63,28.77,23.30$,
22.31.; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{4}\right)$ requires m / z 291.14706, found 291.14719 , difference 0.44 ppm .

Methyl 4-methyl-4-(1-methyl-2-oxo-3-phenylimidazolidin-4yl)pentanoate (4)

Followed general procedure with 1-methyl-1-(3-methylbut-2-en-1-yl)-3-phenylurea ($109 \mathrm{mg}, 0.5 \mathrm{mmol}$) and methyl acrylate for 45 hours and purified using alumina column chromatography (gradient 100% hexanes to $50 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to give 96 mg (63% yield) of the title compound. IR (neat): 2943, 1735, 1701, 1597, 1499, 1434, 1404, 1369, 1261, 761, $695 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.36-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=9.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H})$, 3.52 (t, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.32 (dd, $J=9.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.85 (s, 3 H), 2.21 (dd, $J=9.0,7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 1.55(\mathrm{q}, J=8.4,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.76(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 6 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $174.25,159.64,141.24,128.95,125.24,124.96,61.46,51.85,47.13,38.48,32.66,31.05,28.98$, 23.85, 22.73.; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}\right)$ requires m / z 304.17869 , found 304.17843 , difference 0.85 ppm .

4-(2-Methyl-5-oxohexan-2-yl)-3-phenylthiazolidin-2-one (5)
Followed general procedure with S-(3-Methylbut-2-en-1yl)phenylcarbamothioate ($111 \mathrm{mg}, 0.5 \mathrm{mmol}$) and methyl vinyl ketone for 72 hours and purified using alumina column chromatography (gradient 100% hexanes to $33 \% \mathrm{EtOAc} /$ hexanes) to give 105 mg (72% yield) of the title compound. IR (neat): $2963,1711,1662,1593,1492,1470,1455,1375,1264,1183,1091$, 1042, 1000, 848, 755, 736, 695, $660 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.32(\mathrm{~m}, 4 \mathrm{H})$, $7.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{dd}, J=9.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=11.7,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.28$ (dd, $J=11.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{dd}, J=9.9,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.57-1.50(\mathrm{~m}, 2 \mathrm{H}), 0.86$ (d, J $=14.2 \mathrm{~Hz}, 6 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.17,172.31,140.59,129.26,126.93,126.32$, 68.36, 39.94, 38.23, 32.46, 29.96, 27.31, 24.71, 23.79.; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}\right)$ requires m / z 291.12930, found 291.12952, difference 0.74 ppm .

Methyl 4-methyl-4-(4-methyl-2-oxo-3-phenyloxazolidin-4yl)pentanoate (6)

Followed general procedure with 2,3-dimethylbut-2-en-1-yl phenylcarbamate ($103 \mathrm{mg}, 0.5 \mathrm{mmol}$) and methyl acrylate for 45 hours and purified using alumina column chromatography (gradient 100\% hexanes to $33 \% \mathrm{EtOAc} /$ hexanes) to give 122 mg (80% yield) of the title compound. IR (neat): 2968, 1736, 1492, 1404, 1390, 1345, 1204, 1163, 1132, 1119, 1071, 765, $701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 3 \mathrm{H}), 4.53(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}$, $J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H}), 0.78(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.05,157.92,137.92,129.36,128.10,71.77,69.09,51.87$, 40.58, 31.09, 29.25, 22.82, 21.29, 20.99.; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}$ $\left(\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{4}\right)$ requires $m / z 305.16271$, found 305.16315 , difference 1.44 ppm .

Trans-6-methyl-6-(3-oxobuty)-1-phenyl-3-oxa-1-azaspiro[4.4]nonan-2-one (7)
Followed general procedure with (2-methylcyclopent-1-en-1-yl)methyl phenylcarbamate ($103 \mathrm{mg}, 0.5 \mathrm{mmol}$) and methyl vinyl ketone for 48 hours and purified using alumina column chromatography (gradient 100% hexanes to $33 \% \mathrm{EtOAc} /$ hexanes) to give 124 mg (82% yield) of the title compound as a 6:1 mixture of diastereomers. Major diastereomer: IR (neat): 2955, 1745, 1713, 1596, 1492, 1453, 1391, 1353, 1311, 1215, 1169, 1140, 1058, 766, $702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.44-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.55(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.56-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{dt}, J=16.7,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.72-$ $1.64(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{p}, J=7.7,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{dt}, J=13.3,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.26-1.15(\mathrm{~m}, 1 \mathrm{H})$, $0.80(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.27,157.95,137.51,129.63,129.27,128.22$, $74.99,71.43,47.18,39.26,34.69,34.12,30.22,29.04,20.20,17.57$.; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{3}\right)$ requires $m / z 301.16779$, found $\mathrm{m} / \mathrm{z} 301.16831$, difference 1.7 ppm.

Cis-6-methyl-6-(3-oxobutyl)-1-phenyl-3-oxa-1-azaspiro[4.4]nonan-2one (7)

Minor diastereomer: IR (neat): 2964, 1746, 1713, 1595, 1494, 1397, $1379,1352,1219,1155,1138,1078,1004,961,766,702,670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.44-7.27(\mathrm{~m}, 1 \mathrm{H})$, $4.49(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{ddd}, J=16.5,10.7$, $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.20-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{ddd}, J=15.6,10.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.76$ (ddd, $J=14.0,10.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{~m}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{dtdd}, J=13.6,10.1,6.4,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.38-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{ddd}, J=13.1,10.5,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 208.27,157.87,137.81,129.53,129.38,128.28,76.18,69.87,47.88,39.38,35.81$, $35.54,30.06,28.47,21.84,18.69$.; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{3}\right)$ requires $m / z 301.16779$, found $m / z 301.1673$, difference 1.64 ppm .

Trans-4-methyl-4-(3-oxobutyl)-3-phenylhexahydrobenzo[d]oxazol-2(3H)-one (8)

Followed general procedure with 3-methylcyclohex-2-en-1-yl phenylcarbamate ($116 \mathrm{mg}, 0.5 \mathrm{mmol}$) and methyl vinyl ketone for 48 hours and purified using alumina column chromatography (gradient 100% hexanes to $33 \% \mathrm{EtOAc} /$ hexanes) to give 130 mg (86% yield) of the title compound as a 8:1 mixture of diastereomers. Major diastereomer: IR (neat): 2935, 1740, 1710, 1597, 1497, $1456,1392,1356,1293,1206,1187,1148,1120,1062,1003,980,911,822,762,696,678 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51(\mathrm{dd}, J=7.4,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{ddd}, J=6.2,3.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.23(\mathrm{~m}, 1 \mathrm{H})$, $2.23-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{dt}, J=11.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.45$ (ddt, $J=13.4,4.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.35-1.23(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{td}, J=12.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.17,156.49,138.60,129.26,125.64,123.20,75.04,63.39,38.33$, 37.64, 36.60, 33.71, 29.82, 26.66, 20.22, 15.73.; HRMS (ESI) exact mass calculated for [M+H] ${ }^{+}$ $\left(\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{3}\right)$ requires $m / z 301.16779$, found $m / z 301.16748$, difference 1.05 ppm .

Cis-4-methyl-4-(3-oxobutyl)-3-phenylhexahydrobenzo[d]oxazol-2(3H)-one (8)
Minor diastereomer: IR (neat): 2940, 1746, 1713, 1595, 1494, 1457, 1397, 1352, 1311, 1260, 1189, 1155, 1138, 1078, 1004, 961, 766, 702, $670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37$ (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.17 (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{ddd}, J=6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.32-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.09(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.91$ (ddd, $J=13.9,11.1,5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.81-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.11-$ $1.02(\mathrm{~m}, 1 \mathrm{H}), 0.70(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 208.16,156.40,138.64,129.20$, 125.52, 123.33, 74.77, 66.00, 38.05, 37.75, 32.95, 29.78, 27.93, 26.63, 26.39, 15.75.; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{3}\right)$ requires $\mathrm{m} / \mathrm{z} 301.16779$, found m / z 301.16837, difference 1.91 ppm .

Trans-2,2-dimethyl-6-(3-oxobutyl)-7-phenylhexahydro-[1,3]dioxino[4',5':5,6]pyrano[3,4-d] oxazol-8(6H)-one (9)
Followed general procedure with 2,2-dimethyl-4,4a,8,8atetrahydropyrano $[3,2-d][1,3]$ dioxin- 8 -ylphenylcarbamate $(153 \mathrm{mg}$, $0.5 \mathrm{mmol})$ and 1.1 equivalents of methyl vinyl ketone for 48 hours and purified using alumina column chromatography (gradient 100\% hexanes to $50 \% \mathrm{EtOAc} /$ hexanes) to give 232 mg (63% yield) of the title compound as a $>20: 1$ mixture of diastereomers. Major diastereomer: IR (neat): 2994, 2943, $1760,1712,1598,1501,1456,1384,1302,1264,1200,1169,1107,1090,1022,953,917,854$, $765,733,697,671 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.21(\mathrm{~m}$, $3 \mathrm{H}), 4.67(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-3.95(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{dd}, J=10.8$, $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{td}, J=10.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.11$ $(\mathrm{s}, 3 \mathrm{H}), 2.18-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{dtd}, J=14.7,7.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.14,156.23,136.10,129.61,127.06,124.42,100.39,73.41$, $72.22,70.93,62.49,62.43,60.31,38.89,30.26,29.14,24.79,19.25$.; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{6}\right)$ requires $\mathrm{m} / \mathrm{z} 375.16819$, found $\mathrm{m} / \mathrm{z} 375.16865$, difference 1.23 ppm .

Trans-methyl 4-(5-isopropyl-2-oxo-3-phenyloxazolidin-4-yl)-4methylpentanoate (10)

Followed general procedure with 2,5-dimethylhex-4-en-3-yl phenylcarbamate ($124 \mathrm{mg}, 0.5 \mathrm{mmol}$) and methyl acrylate for 21 hours and purified using alumina column chromatography (gradient 100\% hexanes to 33% EtOAc/hexanes) to give 123 mg (77% yield) of the title compound as a $>20: 1$ mixture of diastereomers. Major diastereomer: IR (neat): 2966, 2878, 1741, 1711, 1598, 1501, $1468,1402,1368,1216,1128,1012,766,734,695,677 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.44-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.19(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=5.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.33-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{dq}, J=13.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.50-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.12$ $-1.01(\mathrm{~m}, 6 \mathrm{H}), 0.79(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 208.04,156.48,139.06$, $129.25,126.08,123.91,79.53,67.05,38.44,38.12,33.38,31.35,29.93,23.27,22.58,18.23$, 16.38.; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{4}\right)$ requires m / z 317.19909, found $m / z 317.19931$, difference 0.69 ppm .

Methyl 4-methyl-4-(5-oxo-1-phenylpyrrolidin-2-yl)-2phenylpentanoate - $\mathbf{1}^{\text {st }}$ diastereomer (11)
Followed general procedure with N -phenylpent-4-enamide ($88 \mathrm{mg}, 0.5$ mmol) and 1.1 equivalents of methyl 2-phenylacrylate ${ }^{15}$ for 48 hours and purified using alumina column chromatography (gradient 100\% hexanes to $33 \% \mathrm{EtOAc} /$ hexanes $)$ to give $152 \mathrm{mg}(90 \%$ yield) of the title compound as a $1: 1$ mixture of inseparable diastereomers. First diastereomer: IR (neat): 2951, 1732, 1694, 1597, 1497, 1455, 1393, 1294, 1220, 1165, 760, $696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.33$ $-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.14(\mathrm{~m}, 4 \mathrm{H}), 4.15(\mathrm{tdd}, J=8.2,5.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{dd}, J$ $=8.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{ddd}, J=16.6,9.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{ddd}, J=17.1,9.8,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.36-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.10$ (dddd, $J=13.2,11.2,8.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.83$ (m, 1H), $1.73-$ $1.64(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{ddt}, J=13.8,8.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.40$ (dddd, $J=13.6,11.4,8.9$, $4.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.35,174.00,138.76,137.56,129.16,128.91$, $127.80,127.64,125.98,124.09,59.49,52.23,51.41,31.50,31.38,28.80,23.85 . ;$ HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{3}\right)$ requires m / z 365.19909, found m / z 337.16837, difference 1.72 ppm .

$\begin{aligned} & \text { Methyl } \\ & \text { phenylpentanoate }-2^{\text {nd }}\end{aligned}$ 4-methyl-4-(5-oxo-1-phenylpyrrolidin-2-yl)-2-
diastereomer (11)
Second diastereomer: IR (neat): 3030, 2950, 1731, 1692, 1597, 1497, 1454, 1434, 1391, 1294, 1220, 1165, 1118, 1070, 1030, 903, 760, 734, $696,672 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.26-7.13$ (m, 4H), $4.23(\mathrm{td}, J=11.6,10.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.45-3.37(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.59(\mathrm{~m}, 1 \mathrm{H})$, $2.59-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.60$ $(\mathrm{m}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.34-1.24(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 174.34, 174.31, $174.16,173.99,138.75,138.34,137.56,137.48,129.15,129.14,128.90,127.86,127.79,127.63$, 127.61, 125.97, 125.91, 124.08, 123.98, 77.41, 77.16, 76.91, 59.49, 59.19, 52.24, 52.23, 51.40, $51.23,31.50,31.40,31.38,30.98,28.79,28.14,23.84,23.75$. ; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{3}\right)$ requires $m / z 365.19909$, found $m / z 337.16830$, difference 1.51 ppm .

4,4-Dimethyl-5-(4-oxopentyl)-1-phenylpyrrolidin-2-one (12)

Followed general procedure with 2,2-dimethyl-N-phenylpent-4enamide ($102 \mathrm{mg}, 0.5 \mathrm{mmol}$) and methyl vinyl ketone for 18 hours and purified using alumina column chromatography (gradient 100\% hexanes to $33 \% \mathrm{EtOAc} /$ hexanes) to give 103 mg (76% yield) of the title compound. IR (neat): 2959, 1694, 1597, 1499, 1456, 1397, 1383, 1370, 1311, 1266, 1217, 1178, $1129,760,694 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.21(\mathrm{tt}, J=5.9,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.74(\mathrm{dd}, J=6.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~d}, J$ $=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.60-1.37(\mathrm{~m}, 4 \mathrm{H}), 1.23(\mathrm{~d}, J=43.9 \mathrm{~Hz}, 6 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 208.19,173.39,138.52,129.22,126.05,124.30,69.68,46.74,43.61,36.39$, 30.01, 29.93, 29.43, 22.93, 20.69.; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{2}\right)$ requires $m / z 273.17288$, found 273.17319 , difference 1.15 ppm .

Trans-5,5-dimethyl-4-(5-oxohexan-2-yl)-3-phenyloxazolidin-2-one (13)

Followed general procedure with (E)-2-Methylpent-3-en-2-yl phenylcarbamate ($110 \mathrm{mg}, 0.5 \mathrm{mmol}$) and methyl vinyl ketone for 48 hours and purified using alumina column chromatography (gradient 100% hexanes to $33 \% \mathrm{EtOAc} /$ hexanes) to give 110 mg (76% yield) of the title compound as a 5:1 mixture of diastereomers. Major diastereomer: IR (neat): 2973, 1739, 1713, 1598, 1502, 1457, 1400, 1373, 1294, 1277, 1223, 1170, 1118, 1003, 983, 958, 797, 761, 697, $683 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 1 \mathrm{H})$, $4.04(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{dqdt}, J=8.4,6.6,4.6,2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.52(\mathrm{~d}, J=32.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.44(\mathrm{ddd}, J=15.0,7.2,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.09-1.01(\mathrm{~m}, 1 \mathrm{H}), 0.99$ (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.12,155.43,138.55,129.25,125.88$, $123.67,80.70,69.37,41.52,35.10,30.00,29.74,29.68,21.73,14.00$.; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{3}\right)$ requires $m / z 289.16779$, found $m / z 298.16763$, difference 0.58 ppm .

Cis-5,5-dimethyl-4-(5-oxohexan-2-yl)-3-phenyloxazolidin-2-one (13)

Minor diastereomer: IR (neat): 2971, 1740, 1714, 1598, 1502, 1457, 1401, 1279, 1222, 1172, 1118, 1004, 984, 797, 761, $696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52$ - $7.43(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.19$ $(\mathrm{q}, J=6.7,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-4.00(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{dt}, J=17.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.34(\mathrm{~m}, 1 \mathrm{H})$, $2.11(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{~s}, 1 \mathrm{H}), 1.56(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.45(\mathrm{q}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.09-1.00(\mathrm{~m}, 1 \mathrm{H})$, $0.81(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 208.14,155.27,138.13,129.27$, 125.57, 123.19, 80.85, 77.41, 77.16, 76.91, 70.06, 41.45, 34.29, 30.16, 30.14, 25.32, 22.19, 16.63.; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{3}\right)$ requires m / z 289.16779, found $\mathrm{m} / \mathrm{z} 289.16784$, difference 0.16 ppm .

Methyl
4-(1-(4-methoxyphenyl)-5-oxopyrrolidin-2-yl)-4methylpentanoate (14)
Followed general procedure with N -(4-methoxyphenyl)-5-methylhex-4enamide ($117 \mathrm{mg}, 0.5 \mathrm{mmol}$) and methyl acrylate for 12 hours and purified using alumina column chromatography (gradient 100% hexanes to $50 \% \mathrm{EtOAc} /$ hexanes) to give 127 mg (78% yield) of the title compound. IR (neat): 2956, 1734, 1689, 1510, 1472, 1439, 1392, 1288, 1246, 1172, 1116, 1032, $833 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.20(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 6.89 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{dt}, J=18.6,9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.51-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.21$ (dddd, $J=25.0,21.3,14.6,8.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.09-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.53$ $(\mathrm{tt}, J=10.7,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.75(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.74$, 174.19, 157.91, 132.93, 127.01, 114.38, 68.33, 55.55, 51.81, 38.93, 33.47, 31.25, 28.96, 24.59, 23.47, 20.76.; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{4}\right)$ requires m / z 319.17836, found 319.17817, difference 0.6 ppm .

Methyl
4-(3-(4-cyanophenyl)-2-oxooxazolidin-4-yl)-4methylpentanoate (15)
Followed general procedure with 3-methylbut-2-en-1-yl (4cyanophenyl)carbamate ($115 \mathrm{mg}, 0.5 \mathrm{mmol}$) and methyl acrylate for 45 hours and purified using alumina column chromatography (gradient 100% hexanes to $50 \% \mathrm{EtOAc} /$ hexanes $)$ to give 149 mg (94% yield) of the title compound. IR (neat): 2961, 2226, 1739, 1603, 1510, 1400, 1359, 1293, 1276, 1198, 1128, 1110, 1059, 841, $756,732 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.69 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.50-4.40(\mathrm{~m}, 2 \mathrm{H}), 4.35(\mathrm{dd}, J=8.5,2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.57$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 0.82(\mathrm{~d}, J=30.9 \mathrm{~Hz}, 6 \mathrm{H})$.; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.62$, 155.97, 143.05, 133.27, 123.68, 118.47, 109.10, 64.35, $63.63,52.03,38.94,32.59,28.70,23.51,22.23$.; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}$ $\left(\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}\right)$ requires $m / z 316.14231$, found 316.14281 , difference 1.59 ppm .

Methyl methylpentanoate (16)

Followed general procedure with N-(4-Fluorophenyl)-5-methylhex-4enamide ($111 \mathrm{mg}, 0.5 \mathrm{mmol}$) and methyl acrylate for 45 hours and purified using alumina column chromatography (gradient 100% hexanes to $50 \% \mathrm{EtOAc} /$ hexanes) to give 133 mg (86% yield) of the title compound. IR (neat): 2959, 1734, 1692, 1602, 1509, 1474, 1436, 1421, 1391, 1293, 1265, 1224, 1171, 1112, 1014, 838, $814,658 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.33-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{dt}, J=$ 18.7, $9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{dt}, J=13.4,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~h}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $2.08(\mathrm{dd}, J=13.1,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.75(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 6 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.61,174.06,161.75,159.79,136.10,136.08,127.42,127.39,116.08$, $115.90,68.32,51.84,39.16,33.49,31.25,28.92,24.53,23.44,20.75$.; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{FNO}_{3}\right)$ requires $\mathrm{m} / \mathrm{z} 307.15837$, found 307.15855, difference 0.57 ppm.

Methyl 4-methyl-4-(5-oxo-1-(4-(trifluoromethoxy)phenyl)pyrrolidin-2-yl)pentanoate (17)
Followed general procedure with 5-Methyl- N -(4-(trifluoromethoxy)phenyl)hex-4-enamide ($144 \mathrm{mg}, 0.5 \mathrm{mmol}$) and methyl acrylate for 45 hours and purified using alumina column chromatography (gradient 100% hexanes to $50 \% \mathrm{EtOAc} /$ hexanes) to give 131 mg (70% yield) of the title compound. IR (neat): 2962, 1735, 1694, 1508, 1474, 1437, 1390, 1251, 1219, 1201, 1160, 1116, 1017, 921, 850, 809, $660 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta . ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.49,174.00,146.96,138.66$, 126.87, 121.66, 68.11, 51.85, 39.37, 33.56, 31.34, 28.95, 24.53, 23.45, 20.74.; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}_{4}\right)$ requires m / z 373.15009, found 373.14939, difference 1.89 ppm .

Methyl
4-(3-(3-bromophenyl)-2-oxooxaazolidin-4-yl)-4methylpentanoate (18)
Followed general procedure with 3-methylbut-2-en-1-yl (3bromophenyl)carbamate ($142 \mathrm{mg}, 0.5 \mathrm{mmol}$) and methyl acrylate for 45 hours and purified using alumina column chromatography (gradient 100% hexanes to $50 \% \mathrm{EtOAc} /$ hexanes) to give 154 mg (82% yield) of the title compound. IR (neat): 2960, 1740, 1590, 1479, 1434, 1402, 1266, 1202, 1171, 1126, $1060,996,781,710 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{ddd}, J=$ $12.1,8.1,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 1 \mathrm{H}), 4.44(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=9.3,3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.26(\mathrm{dd}, J=8.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.26-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.46(\mathrm{~m}, 2 \mathrm{H}), 0.81$ $(\mathrm{d}, J=20.7 \mathrm{~Hz}, 6 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.71,156.56,140.22,130.55,129.38$, 127.29, 123.04, 122.72, 64.25, 64.17, 51.96, 38.46, 32.58, 28.73, 23.42, 22.27.; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}\right)$ requires m / z 316.14231, found 369.05704, difference 1.44 ppm .

5-(2-Methyl-5-oxohexan-2-yl)-1-(o-tolyl)pyrrolidin-2-one (19)
Followed general procedure with 5-Methyl-N-(o-tolyl)hex-4-enamide ($109 \mathrm{mg}, 0.5 \mathrm{mmol}$) and methyl vinyl ketone for 45 hours and purified using alumina column chromatography (gradient 100% hexanes to 50% EtOAc/hexanes) to give 86 mg (60% yield) of the title compound as a mixture of rotamers ($\sim 2: 1$). IR (neat): 2958, 1691, 1603, 1581, 1494, $1461,1390,1367,1295,1278,1259,1218,1162,1137,1047,885,843,804,783,762,728,663$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major rotamer) $\delta 7.28-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 1 \mathrm{H})$, $7.17-7.12(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=9.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.43(\mathrm{~m}, 1 \mathrm{H})$, $2.36(\mathrm{~s}, 3 \mathrm{H}), 2.35-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.48-$ $1.40(\mathrm{~m}, 2 \mathrm{H}), 0.81(\mathrm{~d}, J=22.7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major rotamer) $\delta 208.50$, $175.33,139.55,136.22,131.78,127.23,126.40,124.66,69.40,38.21,38.11,32.46,31.34,29.90$, 23.93, 23.33, 21.67, 19.29.; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{2}\right)$ requires $m / z 287.18853$, found 287.18834 , difference 0.64 ppm .

Methyl 4-methyl-4-(2-oxo-3-(pyridin-3-yl)oxazolidin-4-yl)pentanoate (20)

Followed general procedure with 3-methylbut-2-en-1-yl (3bromophenyl)carbamate ($102 \mathrm{mg}, 0.5 \mathrm{mmol}$) and methyl acrylate for 24 hours and purified using alumina column chromatography (gradient 100% hexanes to $50 \% \mathrm{EtOAc} /$ hexanes) to give 116 mg (70% yield) of the title compound. IR (neat): 2961, 1737, 1582, 1482, 1434, 1404, 1372, 1288, 1206, 1128, $1057,1025,990,958,808,762,711,697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(501 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.68(\mathrm{~d}, J=2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{dt}, J=8.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=8.2,4.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.50 (t, $J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{dd}, J=9.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{dd}, J=8.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.64$ (s, 3H), $2.27-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.49(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{~d}, J=26.1 \mathrm{~Hz}, 6 \mathrm{H})$. . ${ }^{13} \mathrm{C}$ NMR (126 MHz , CDCl_{3}) $\delta 173.66,156.73,147.08,145.23,135.83,123.92,64.51,64.01,52.00,38.47,32.58$, 28.69, 23.56, 22.36.; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}\right)$ requires m / z 292.14231, found $m / z 292.14276$, difference 1.53 ppm .

Methyl 4-(1-(benzo[d]thiazol-6-yl)-5-oxopyrrolidin-2-yl)-4methylpentanoate (21)
Followed general procedure with N-(Benzo[d]thiazol-6-yl)-5-methylhex-4-enamide ($130 \mathrm{mg}, 0.5 \mathrm{mmol}$) and methyl acrylate (5 equiv.) in 1.25 mL DCM (0.4 M) for 36 hours and purified using alumina column chromatography (gradient 100% hexanes to $50 \% \mathrm{EtOAc} /$ hexanes) to give 110 mg (63% yield) of the title compound. IR (neat): 2958, 1732, 1690, 1599, 1556, 1472, 1446, 1389, 1292, 1221, 1171, 1117, 841, 807, $731 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.98(\mathrm{~s}$, $1 \mathrm{H}), 8.12(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=8.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J$ $=9.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{dt}, J=17.5,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{ddd}, J=17.5,10.6,3.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.32(\mathrm{dq}, J=13.6,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.09(\mathrm{~m}, 3 \mathrm{H}), 1.62-1.50(\mathrm{~m}, 2 \mathrm{H}), 0.77(\mathrm{~d}, J=18.8$ $\mathrm{Hz}, 6 \mathrm{H}$).; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.68,174.01,154.55,151.52,137.81,134.44$, 123.92, 123.86, 119.42, 68.54, 51.82, 39.40, 33.47, 31.43, 28.95, 24.72, 23.47, 20.80.; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\right)$ requires $\mathrm{m} / \mathrm{z} 346.13511$, found 346.13504, difference 0.2 ppm .

5-(2-methyl-5-oxohexan-2-yl)-1-phenylpyrrolidin-2-one (22)

Followed general procedure with 5-Methyl-N-phenylhex-4-enamide (102 $\mathrm{mg}, 0.5 \mathrm{mmol}$) and methyl vinyl ketone for 15 hours and purified using alumina column chromatography (gradient 100% hexanes to 50% EtOAc/hexanes) to give 131 mg (94% yield) of the title compound. IR (neat): $2963,1690,1596,1497,1474,1394,1368,1291,1264,1221,1163,1111,881,843,799$, $762,723,696,659 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=9.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dt}, J=17.4,9.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.47 (ddd, $J=17.4,10.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.20(\mathrm{~m}, 3 \mathrm{H}), 2.08$ (ddt, $J=13.1,9.9,2.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.02(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{dp}, J=13.4,6.9,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.76(\mathrm{~d}, J=20.8 \mathrm{~Hz}, 6 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 208.51,175.51,140.19,129.10,126.51,125.79,68.02,39.12,38.31,32.50$, 31.47, 29.95, 24.52, 23.49, 20.86.; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{2}\right)$ requires $m / z 273.17288$, found 273.17259 , difference 1.06 ppm .

4-Methyl-4-(5-oxo-1-phenylpyrrolidin-2-yl)pentanal (23)
Followed general procedure with 5-methyl-N-phenylhex-4-enamide (102 $\mathrm{mg}, 0.5 \mathrm{mmol}$) and acrolein for 6 hours and purified using silica column chromatography (gradient 100% hexanes to $50 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to give 65 mg (50% yield) of the title compound. IR (neat): 2957, 2835, 1720, $1689,1596,1498,1474,1399,1292,1263,1224,1112,843,763,697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.57(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, 4.17 (dd, $J=9.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.65$ (dt, $J=17.4,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.49$ (ddd, $J=17.4,10.6,3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.36-2.22(\mathrm{~m}, 3 \mathrm{H}), 2.08$ (ddt, $J=13.1,9.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.48$ (dddd, $J=23.4,14.1,9.5$, $6.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.78(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.94,175.46,140.11$, $129.16,126.61,125.78,67.82,39.14,38.78,31.44,30.63,24.39,23.66,20.84 . ;$ HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{2}\right)$ requires m / z 259.15723, found m / z 259.15745, difference 0.85 ppm .

4-Methyl-4-(5-oxo-1-phenylpyrrolidine-2-yl)pentanenitrile (24)
Followed general procedure with 5-methyl-N-phenylhex-4-enamide (102 $\mathrm{mg}, 0.5 \mathrm{mmol}$) and acrylonitrile for 45 hours and purified using alumina column chromatography (gradient 100% hexanes to $50 \% \mathrm{EtOAc} /$ hexanes) to give 100 mg (78% yield) of the title compound. IR (neat): 2954, 2244, $1688,1596,1497,1474,1392,1292,1222,1112,762,697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.40(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=9.1,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.64(\mathrm{dt}, J=17.4,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{ddd}, J=17.5,10.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{dq}, J=13.6,9.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.24-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{ddt}, J=13.2,9.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.64-1.49(\mathrm{~m}, 3 \mathrm{H}), 0.83(\mathrm{~d}, J=$ 6.2 Hz, 6H).; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.29,139.84,129.33,126.85,125.64,119.91$, 67.50, 39.44, 34.50, 31.26, 23.69, 23.36, 20.76, 12.23.; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}\right)$ requires $m / z 256.15756$, found 256.15711 , difference 1.78 ppm .

4-Methyl-4-(5-oxo-1-phenylpyrrolidin-2-yl)pentanal (25)
Followed general procedure with 5-methyl-N-phenylhex-4-enamide ($102 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 2-vinylpyridine for 72 hours and purified using alumina column chromatography (gradient 100\% hexanes to 75% EtOAc/hexanes) to give 117 mg (76% yield) of the title compound. IR (neat): $3458,3063,2962,1588,1591,1568,1497,1473,1433,1392,1291,1263,1220,1111$, $1051,993,758,695,659 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.47(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.19(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{dd}, J=7.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{tdd}, J=19.4,13.6,9.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.46$ (ddd, J $=17.4,10.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.53(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{~d}$, $J=25.8 \mathrm{~Hz}, 6 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 175.54,162.15,149.30,140.29,136.45$, 129.03, 126.31, 125.79, 122.51, 121.14, 68.10, 39.71, 39.27, 32.85, 31.55, 25.00, 23.84, 20.81.; HRMS (ESI) exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}\right)$ requires $\mathrm{m} / \mathrm{z} 308.18886$, found m / z 308.18842, difference 1.43 ppm .

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of products

$\underset{\sim}{\sim}$	$\begin{gathered} \bar{N} \\ \stackrel{N}{\mathrm{I}} \end{gathered}$	$\stackrel{8}{8}$			 〈りくり

Diastereomer Identification

6-Methyl-6-(3-oxobutyl)-1-phenyl-3-oxa-1-azaspiro[4.4]nonan-2-one (7):

	NOE?	NOE?
$\mathrm{H}_{\mathrm{A}}-\mathrm{Me}$	weak	strong
$\mathrm{Me}-\mathrm{Ph}$	strong	none
$\mathrm{H}_{\mathrm{B}}-(\mathrm{CO}) \mathrm{Me}$	none	strong

4-Methyl-4-(3-oxobutyl)-3-phenylhexahydrobenzo[d]oxazol-2(3H)-one (8):

NOE?
$\mathrm{H}_{\mathrm{A}}-\mathrm{Me}$
$\mathrm{H}_{\mathrm{A}}-\mathrm{H}_{\mathrm{B}}$

NOE?
strong
weak

2,2-dimethyl-6-(3-oxobutyl)-7-phenylhexahydro-[1,3]dioxino[4',5':5,6]pyrano[3,4-d]oxazol-8(6H)-one (9):

Methyl 4-(5-isopropyl-2-oxo-3-phenyloxazolidin-4-yl)-4-methylpentanoate (10):

5,5-dimethyl-4-(5-oxohexan-2-yl)-3-phenyloxazolidin-2-one (13):

	${ }^{*} \mathrm{Me}_{\mathrm{A}}$ and H_{C} protons are not equivalent but exact assignment is not necessary for analysis	
	NOE?	NOE?
$\mathrm{H}_{\mathrm{A}}-\mathrm{H}_{B}$	Medium	Strong
$\mathrm{H}_{\mathrm{A}}-\mathrm{H}_{C}$	None	Weak
$\mathrm{H}_{\mathrm{A}}-\mathrm{Me}_{\mathrm{A}}$	Strong	Strong
$\mathrm{H}_{\mathrm{A}}-\mathrm{Me}_{\mathrm{B}}$	Weak	Medium
$\mathrm{H}_{\mathrm{A}}-\mathrm{Ph}$	Strong	Medium
$\mathrm{H}_{\mathrm{B}}-\mathrm{Me}_{\mathrm{A}}$	Strong	Strong
H_{B}-Ph	Weak	Weak
$\mathrm{H}_{\mathrm{C}}-\mathrm{Me}_{\mathrm{A}}$	Weak	None
$\mathrm{H}_{\mathrm{C}}-\mathrm{Ph}$	Weak	Weak
$\mathrm{Me}_{\text {A }}-\mathrm{Me}_{\mathrm{B}}$	Weak	Medium
$\mathrm{Me}_{\mathrm{B}}-\mathrm{Ph}$	Medium	Weak

Stern-Volmer Experiments

Stern-Volmer experiments were conducted on an Agilent Technologies Cary Eclipse Fluorescence Spectrophotometer using the Cary Eclipse Scan Application. Stern-Volmer luminescence quenching experiments were run with freshly prepared solutions of $1.0 \times 10^{-5} \mathrm{M}$ $\left[\operatorname{Ir}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2}(\mathrm{bpy})\right]\left(\mathrm{PF}_{6}\right)$ in acetonitrile at room temperature under an inert atmosphere. The solutions were irradiated at 412 nm and luminescence was measured at 490 nm . The data summarized in the table is the fluorescence intensity measured three times for each sample. The data shown in the graph is the average of three experiments.

						Amide Experiment	Vial
Run 1		0	948.55	955.18	951.11	951.61	1.00
		1	964.00	976.41	976.85	972.42	0.98
		2	970.89	973.17	972.77	972.28	0.98
	3	952.86	949.03	949.68	950.52	1.00	0.004
		4	983.11	984.50	986.35	984.66	0.97
			0.006				

Table S1. Fluorescence quenching data with $\left[\operatorname{Ir}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2}(\mathrm{bpy})\right] \mathrm{PF}_{6}$ and acetanilide. See Fig. S1.

Experiment	Vial	1	2	3	Avg	10/1	Amide [M]
Run 1	0	968.93	970.43	966.30	968.56	1.00	0
	1	433.85	434.92	432.25	433.68	2.23	0.002
	2	320.05	319.79	319.08	319.64	3.03	0.004
	3	251.32	251.06	251.22	251.20	3.86	0.006
	4	214.25	214.48	213.54	214.09	4.52	0.008
Run 2	0	973.73	972.50	970.07	972.10	1.00	0
	1	467.45	475.84	469.79	471.03	2.06	0.002
	2	334.40	328.81	331.81	331.67	2.93	0.004
	3	261.63	263.35	259.72	261.57	3.72	0.006
	4	213.41	213.68	213.34	213.48	4.55	0.008
Run 3	0	980.19	979.15	979.47	979.60	1.00	0
	1	498.47	498.02	498.79	498.43	1.97	0.002
	2	326.04	326.98	327.32	326.78	3.00	0.004
	3	254.18	256.11	255.53	255.27	3.84	0.006
	4	215.61	215.47	216.88	215.99	4.54	0.008

Table S2. Fluorescence quenching data with $\left.\quad\left[\operatorname{Ir}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right)\right)_{p p y}\right)_{2}(\mathrm{bpy})\right] \mathrm{PF}_{6}, \quad 0.015 \mathrm{M}$ $\mathrm{NBu}_{4}(\mathrm{BuO})_{2} \mathrm{PO}_{2}$ and variable protiated acetanilide. See Fig. S1.

Experiment	Vial		1				Amide [M]
Run 1	0	792.82	798.77	791.37	794.32	1.00	0
		1	430.83	427.71	423.42	427.32	1.86
	2	302.16	299.67	299.27	300.37	2.64	0.002
	3	236.63	235.84	234.03	235.50	3.37	0.006
	4	192.80	193.19	192.42	192.80	4.12	0.008
Run 2	0	820.78	814.01	812.65	815.81	1.00	0
	1	422.84	421.73	417.90	420.82	1.94	0.002
	2	300.03	299.51	301.03	300.19	2.72	0.004
	3	235.66	236.12	237.11	236.30	3.45	0.006
	4	200.57	200.64	200.85	200.69	4.07	0.008
Run 3	0	827.21	832.90	824.32	828.14	1.00	0
	1	411.16	409.38	410.25	410.26	2.02	0.002
	2	311.95	312.82	313.98	312.91	2.65	0.004
	3	236.99	236.79	235.97	236.58	3.50	0.006
	4	202.45	202.26	202.00	202.24	4.09	0.008

Table S3. Fluorescence quenching data with $\left[\operatorname{Ir}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}_{2}\right)_{2}(\mathrm{bpy})\right] \mathrm{PF}_{6}, \quad 0.015 \mathrm{M}$ $\mathrm{NBu}_{4}(\mathrm{BuO})_{2} \mathrm{PO}_{2}$ and variable deuterated acetanilide. See Fig. S1.

Experiment	Vial		1	2	3	Avg	IO/I
Base [M]							
Run 1	0	894.53	899.16	903.85	899.18	1.00	0
		1	886.50	878.07	887.58	884.05	1.02
	2	846.15	847.24	868.79	854.06	1.05	0.0003
	3	799.01	794.81	793.25	795.69	1.13	0.003
		4	752.89	747.38	758.05	752.77	1.19
Run 2	0	905.18	905.33	912.70	907.74	1.00	0
	1	899.79	894.43	890.41	894.88	1.01	0.0003
	2	871.79	870.39	870.09	870.76	1.04	0.0012
	3	805.35	803.14	801.79	803.42	1.13	0.003
	4	757.85	761.14	765.42	761.47	1.19	0.0048
Run 3	0	893.05	889.57	886.27	889.63	1.00	0
	1	878.07	871.02	885.77	878.28	1.01	0.0003
	2	852.32	857.24	848.70	852.75	1.04	0.0012
	3	777.22	789.35	783.47	783.35	1.14	0.003
	4	752.58	744.81	742.95	746.78	1.19	0.0048

Table S4. Fluorescence quenching data with $\left[\operatorname{Ir}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2}(\mathrm{bpy})\right] \mathrm{PF}_{6}$ and $\mathrm{NBu}_{4}(\mathrm{BuO})_{2} \mathrm{PO}_{2}$. See Fig. S2.

Experiment	Vial	1	2	3	Avg	10/1	Base [M]
Run 1	0	961.91	969.62	968.77	966.76	1.00	0
	1	710.80	709.34	711.09	710.41	1.36	0.0003
	2	440.09	441.88	439.54	440.50	2.19	0.0012
	3	278.55	278.84	278.54	278.64	3.47	0.003
	4	225.95	225.94	225.05	225.65	4.28	0.0048
Run 2	0	880.30	879.25	880.14	879.90	1.00	0
	1	646.47	646.79	649.00	647.42	1.36	0.0003
	2	400.99	401.96	399.57	400.84	2.20	0.0012
	3	260.56	259.07	260.03	259.89	3.39	0.003
	4	206.86	206.50	205.81	206.39	4.26	0.0048
Run 3	0	900.77	902.08	899.23	900.69	1.00	0
	1	660.78	660.33	661.04	660.72	1.36	0.0003
	2	409.57	409.07	409.33	409.32	2.20	0.0012
	3	264.93	263.84	266.51	265.09	3.40	0.003
	4	207.37	212.95	209.35	209.89	4.29	0.0048

Table S5. Fluorescence quenching data with $\left[\operatorname{Ir}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2}(\mathrm{bpy})\right] \mathrm{PF}_{6}$ and 1. See Fig. S2.

Fig. S1. Stern-Volmer plot of $\left[\operatorname{Ir}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \text { ppy }\right)_{2}(\mathrm{bpy})\right] \mathrm{PF}_{6}, \quad \mathrm{NBu}_{4}(\mathrm{BuO})_{2} \mathrm{PO}_{2}$, and variable acetanilide. The error in the slope was calculated (from LINEST analysis) to be 460.3 ± 12.2 for protiated acetanilide and 399.6 ± 8.8 for deuterated acetanilide.
$\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{D}}=460.3 \pm 12.2 / 399.6 \pm 8.8=1.15 \pm 0.04$

Note: The error in the H/D isotope effect measurement was determined through propagation of error in the slopes of the Stern-Volmer plots for quenching runs carried out in the presence of either protiated or deuterated acetanilide.

Fig. S2. Stern-Volmer plot of $\left[\operatorname{Ir}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}_{2}\right)_{2}(\mathrm{bpy})\right] \mathrm{PF}_{6}, 0.01 \mathrm{M}$ acetanilide, and variable $\mathrm{NBu}_{4}(\mathrm{BuO})_{2} \mathrm{PO}_{2}$.

CV Data

Cyclic voltammograms were taken on a CH Instruments 600E potentiostat using a glassy carbon working electrode, $\mathrm{a} \mathrm{Ag} / \mathrm{Ag}^{+}$or saturated calomel (SCE) reference electrode, and a Pt mesh counter electrode. The pH was not adjusted and voltammograms were taken at $23^{\circ} \mathrm{C}$ in a 0.1 M MeCN or DCM solution of tetrabutylammonium hexafluorophosphate containing 1 mM solution of substrate and 1 mM of ferrocene as an internal standard (for voltammograms with the $\mathrm{Ag} / \mathrm{Ag}^{+}$ reference electrode). The scan rate was $0.1 \mathrm{~V} / \mathrm{s}$. The $\mathrm{Fc} / \mathrm{Fc}^{+}$couple is 380 mV less positive than SCE.

Fig. S3. Cyclic voltammogram of $\left[\operatorname{Ir}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2}(\mathrm{bpy})\right] \mathrm{PF}_{6}$ in MeCN . $E\left(\mathrm{~L} / \mathrm{L}^{-}\right)=-1.65 \mathrm{~V}$ vs. $\mathrm{Fc} / \mathrm{Fc}^{+}$

Fig. S4. Cyclic voltammogram of $\left[\operatorname{Ir}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2}(\mathrm{bpy})\right] \mathrm{PF}_{6}$ in DCM . $E\left(\mathrm{~L} / \mathrm{L}^{-}\right)=-1.58 \mathrm{~V}$ vs. $\mathrm{Fc} / \mathrm{Fc}^{+}$

Fig. S5. Cyclic voltammogram of $\mathbf{1}$ in MeCN .
$E_{\mathrm{p}}=1.23 \mathrm{~V}$ vs. $\mathrm{Fc} / \mathrm{Fc}^{+}$

Fig. S6. Cyclic voltammogram of $\mathbf{1}$ in DCM.
$E_{\mathrm{p}}=1.19 \mathrm{~V}$ vs. $\mathrm{Fc} / \mathrm{Fc}^{+}$

Fig. S7. Cyclic voltammogram of \mathbf{A} in MeCN .
$E_{\mathrm{p}}=1.64 \mathrm{~V}$ vs. $\mathrm{Fc} / \mathrm{Fc}^{+}$

$\begin{array}{ll}\text { July } 7 & 2015 \\ \text { 16:48-32 }\end{array}$
Tech: CV
File: pcndcmsce
Init $E(V)=0$
High $E(V)=2.35$
Low $E(V)=-0.5$
Init $\mathrm{P} / \mathrm{N}=\mathrm{P}$
Scan Rate (V/s) $=0.1$
Segment $=4$
Smpl Interval $(V)=0.001$
Quiet Time (s) $=2$
Sensitivity $(A / V)=1 e-4$
Segment 1:
$\mathrm{Ep}=2.106 \mathrm{~V}$
$E h=1.999 \mathrm{~V}$
ip $=7.438 \mathrm{e}-5 \mathrm{~A}$
$\mathrm{Ah}=8.095 \mathrm{e}-5 \mathrm{C}$
Segment 2:
Segment 3:
Segment 4:

Fig. S8. Cyclic voltammogram of \mathbf{A} in DCM.
$E_{\mathrm{p}}=1.65 \mathrm{~V}$ vs. $\mathrm{Fc} / \mathrm{Fc}^{+}$

Photocatalyst Structures

$\operatorname{Ir}(\text { ppy })_{2}(\text { phen })^{+}$

$\operatorname{Ir}(\text { Fmppy })_{2}$ (dtbbpy $^{+}$

$\operatorname{Ir}(\text { Fmppy })_{2}(\text { phen })^{+}$

$\operatorname{lr}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)(\mathrm{dtbbpy})^{+}$

$\operatorname{lr}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{PPy}\right)_{2}(\mathrm{bpy})^{+}$

Figure S9. Structures of photocatalysts utilized in Table 1.

Formal BDFE $(\mathbf{k c a l} / \mathrm{mol})=2.3 R T p K_{\mathrm{a}}+23.06 E+54.9(\mathrm{MeCN})$

entry	oxidant	base	pKa (MeCN)	E° (vs FC)	$\begin{gathered} \mathrm{BDFE} \\ (\mathrm{MeCN}) \end{gathered}$
1	*[Ir(ppy)2(phen)]+	NBu4OP(O)(OBu)2	13	0.32	80
2	*[Ir(ppy)2(phen)]+	lutidine	14.1	0.32	82
3	*[Ir(Fmppy)2(dtbbpy)]+	NBu4OP(O)(OBu)2	13	0.39	82
4	*[Ir(Fmppy)2(dtbbpy)]+	lutidine	14.1	0.39	83
5	*[II(Fmppy)2(phen)]+	NBu4OP(O)(OBu)2	13	0.45	83
6	*[II(Fmppy)2(phen)]+	lutidine	14.1	0.45	85
7	*[Ir(ppy)2(phen)]+	DMAP	18	0.32	87
8	*[Ir(Fmppy)2(dtbbpy)]+	DMAP	18	0.39	89
9	*[II(Fmppy)2(phen)]+	DMAP	18	0.45	90
10	*[Ir(ppy)2(phen)]+	NBu4OBz	21.5	0.32	92
11	*[Ir(dF(CF3)ppy)2(dtbbpy)]+	NBu4OP(O)(OBu)2	13	0.83	92
12	*[Ir(dF(CF3)ppy)2(dtbbpy)]+	lutidine	14.1	0.83	93
13	*[Ir(Fmppy)2(dtbbpy)]+	NBu4OBz	21.5	0.39	93
14	*[II(Fmppy)2(phen)]+	NBu4OBz	21.5	0.45	95
15	*[Ir(dF(CF3)ppy)2(bpy)]+	NBu4OP(O)(OBu)2	13	1.04	97
16	*[Ir(dF(CF3)ppy)2(bpy)]+	lutidine	14.1	1.04	98
17	*[Ir(dF(CF3)ppy)2(dtbbpy)]+	DMAP	18	0.83	99
18	*[Ir(dF(CF3)ppy)2(bpy)]+	DMAP	18	1.04	103
19	*[Ir(dF(CF3)ppy)2(dtbbpy)]+	NBu4OBz	21.5	0.83	104
20	*[Ir(dF(CF3)ppy)2(bpy)]+	NBu4OBz	21.5	1.04	108

Table S6. BDFE calculations from $\mathrm{p} K_{\mathrm{a}}$ and E^{0} values in MeCN .

References

(1) Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals; 4th ed.; Butterworth-Heinemann: Oxford, 1997.
(2) Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518.
(3) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.
(4) Hatano, M.; Kamiya, S.; Moriyama, K.; Ishihara, K.; Org. Lett. 2011, 13, 430.
(5) Okada, K.; Kiyooka, F.; Nakanishi, E.; Hirano, M.; Ohno, I.; Matsuo, N.; Matsu, M.; Agric. Biol. Chem. 1980, 44, 2595.
(6) Takahashi, M.; McLaughlin, M.; Micalizio, G. C.; Angew. Chem. Int. Ed. 2009, 48, 3648.
(7) Menashe, N.; Shvo, Y.; J. Org. Chem. 1993, 58, 7434.
(8) Jung, J-C.; Jung, Y-J.; Park, O-S.; Z. Naturforsch. 2008, 63b, 293.
(9) Candito, D. A.; Dobrovolsky, D.; Lautens, M.; J. Am. Chem. Soc. 2012, 134, 15572.
(10) Doyle, M. P.; Kalinin, A. V.; J. Org. Chem. 1996, 61, 2179.
(11) Li, Z.; Song, L.; Li C.; J. Am. Chem. Soc. 2013, 135, 4640.
(12) Tellitu, I.; Urrejola, A.; Serna, S.; Moreno, I.; Herrero, M. T.; Dominguez, E.; SanMartin, R.; Correa, A.; Eur. J. Org. Chem. 2007, 437.
(13) Musacchio, A. J.; Nguyen, L. Q.; Beard, G. H.; Knowles, R. R.; J. Am. Chem. Soc. 2014, 136, 12217.
(14) Hanss, D.; Freys, J. C.; Bernardinelli, G.; Wenger, O. S.; Eur. J. Inorg. Chem. 2009, 4850.
(15) Felpin, F.-X.; Miqueu, K.; Sotiropoulos, J.-M.; Fouquet, E.; Ibarguren, O.; Laudien, J.; Chem. Eur. J. 2010, 16, 5191.

