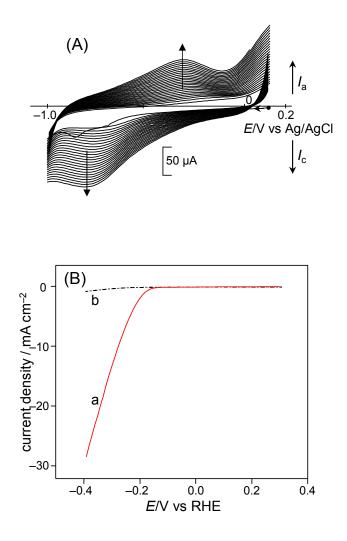
Supporting Information

Electrocatalytic Hydrogen Evolution from Molybdenum Sulfide– Polymer Composite Films on Carbon Electrodes


Youssef Lattach, Alain Deronzier, and Jean-Claude Moutet*

Université Joseph Fourier Grenoble1, Département de Chimie Moléculaire, UMR CNRS-5250, Institut de Chimie Moléculaire de Grenoble, FR CNRS-2607, BP 53, 38041, Grenoble Cedex 9, France

^{*}To whom correspondence should be addressed.

E-mail: Jean-Claude.Moutet@ujf-grenoble.fr (J.-C. Moutet);

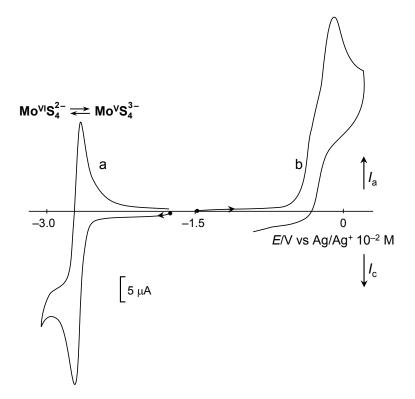
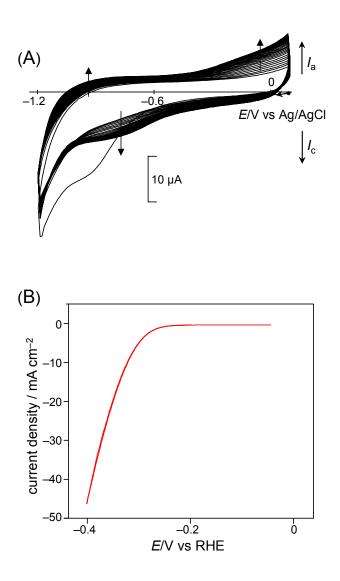

Deposition of a MoS_x film onto a naked carbon electrode and polarization curve for the resulting C|MoS_x film modified electrode in acidic aqueous electrolyte

Figure S1. (A) Deposition of a MoS_x film on a glassy carbon disc electrode (3 mm diameter) by repeated cyclic voltammetry scans (25 cycles) in a 10 mM aqueous solution of $(NH_4)_2MoS_4$ containing 0.1 M NaClO₄, pH 6.6; scan rate 50 mV s⁻¹.


(B) Curve a: polarization curve recorded with the C|MoS_x film modified electrode prepared in (A), in 0.5 M aqueous H₂SO₄ (pH 0.3); curve b: curve recorded at a naked carbon disc electrode; scan rate 20 mV s⁻¹.

Redox features for MoS₄²⁻ in acetonitrile electrolyte

Figure S2. CV curve obtained at a 3 mm diameter carbon disc electrode in CH₃CN containing 2.7 mM (Et₄N)₂MoS₄ and 0.1 M TBAP; scan rate 50 mV s⁻¹

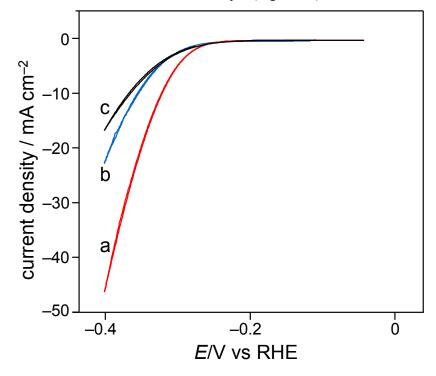
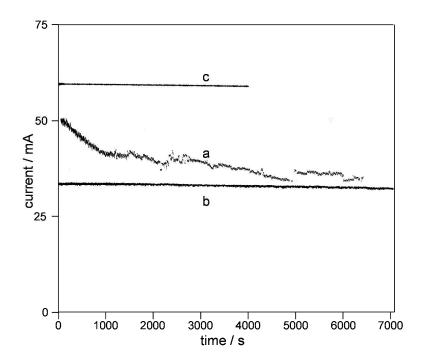

Electroreductive deposition of MoS_x into a poly1 film, following the incorporation MoS_42 - from an aqueous solution, and polarization curve recorded with the resulting C|poly1-MoS_x modified electrode in acidic aqueous electrolyte

Figure S3. (A) Electroreductive precipitation of MoS_x into a poly(pyrrole-alkylammmonium) film, by repeated cyclic voltammetry scans in a 0.1 M NaClO₄ aqueous solution (pH 6) at a C|poly1 modified electrode (3 mm diameter; $\Gamma_{N+} = 8 \times 10^{-8} \text{ mol cm}^{-2}$) previously soaked for 10 min in a 10 mM aqueous solution of (NH₄)₂MoS₄; scan rate 50 mV s⁻¹. (B) Polarization curve recorded in 0.5 M H₂SO₄ (pH 0.3) with the C|poly1-MoS_x modified electrode prepared in A; scan rate 20 mV s⁻¹.


Deposition of MoS_x into a poly1 film under various electrochemical conditions, and polarization curves recorded with the resulting C|poly1-MoS_x modified electrodes in acidic aqueous electrolyte

Carbon electrodes modified with poly1 films have been soaked for 10 min in an $(NH_4)_2MoS_4$ aqueous solution, then were treated under different electrochemical conditions, including potential cycling in the negative potential region, anodic electrolysis at 0.1 V, and cathodic electrolysis at -1.0 V. The catalytic activity towards proton reduction of the C|poly1-MoS_x modified electrodes synthesized by these different conditions was then evaluated from the polarization curves recorded in acidic electrolyte (Figure S4).

Figure S4. Polarization curves recorded in aqueous H_2SO_4 (pH 0.3) at C|poly1-MoS_x modified electrodes prepared under various conditions; scan rate 20 mV s⁻¹; the electrodes (3 mm diameter; $\Gamma_{N^+} = 8 \times 10^{-8}$ mol cm⁻²) were previously soaked for 10 min in a 10 mM aqueous solution of (NH₄)₂MoS₄, then transferred to aqueous 0.1 M NaClO₄ (pH 6) and treated under different electrochemical conditions; electrode (a): repeated scans (25 cycles; scan rate 20 mV s⁻¹) over the 0.1 V to -1.2 V potential range; electrode (b): reduction at constant applied potential (-1.0 V) for 10 min; electrode (c): oxidation at applied potential (0.1 V) for 7 min.

Current-time curves for HER at various poly1-MoS_x modified carbon foam electrodes

Figure S5. Current-time curves for protons reduction and HER at -0.3 V *vs.* RHE, using poly1-MoS_x modified carbon foam (0.8 cm³) electrodes modified with different poly1-MoS_x materials (see Table 2); in every case the charge passed was 250 C. Curve a (corresponding to Entry 2 in Table 2): C|poly1 electrode soaked in 2 mM (Et₄N)₂MoS₄ in CH₃CN, then repetitively cycled in 0.1 M NaClO₄, pH 6 (8 µmol of poly1 + 5.4 µmol of MoS_x). Curve b (corresponding to Entry 3 in Table 2): C|poly1 electrode soaked in 10 mM aqueous (NH₄)₂MoS₄, then repetitively cycled in 0.1 M NaClO₄, pH 6 (5.5 µmol of poly1 + 3.3 µmol of MoS_x). Curve c (corresponding to Entry 4 in Table 2): C|poly1-MoS_x electrode prepared in the same conditions as electrode for curve b (9.4 µmol of poly1 + 5.6 µmol of MoS_x).