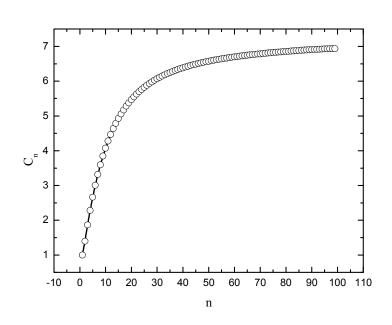
Supporting information for article:

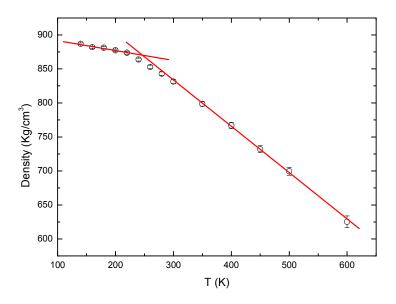
Atomistic Molecular Insight into the Time Dependence of Polymer Glass Transition

Rongliang Wu^{*a}, Xinlong Qiu^a, Tianyi Zhang^b, Kangyu, Fu^a, Xiaozhen Yang^c

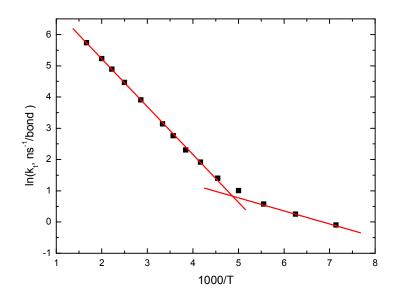
a: College of Material Science and Engineering, State Key Laboratory for


Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China,

b: Department of Applied Mathematics, School of Mathematical Science, Fudan University, Shanghai 200433, China


c: Beijing National Laboratory for Molecular Sciences, State Key Laboratory of

Polymer Science and Engineering, Joint Laboratory of Polymer Science and Materials, Beijing 100190, China


> * To whom correspondences should be addressed: Rongliang Wu: wurl@dhu.edu.cn; +8621 6779 2914;

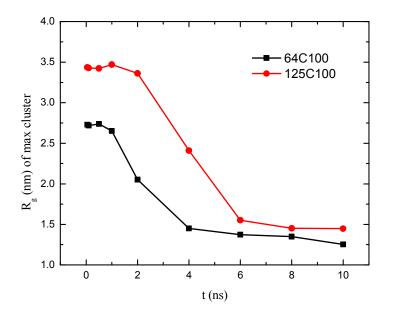

Figure 1s. Polymer characteristic ratios averaged over all chain segments along the backbone of the linear polymer chains.

Figure 2s. Average densities of the systems during the production runs and the error bars show the standard deviations; the solid lines are linear fits, whose intersection around 250 K gives the volumetric glass transition.

Figure 3s. The logarithmic overall conformational transition rates plotted with inverse temperature; the solid lines are linear fits, whose intersection around 206 K gives the microscopic glass transition, which was also discussed in our previous paper (J. Phys. Chem. B 2009, 113, 9077-9083).

Figure 4s. Variation of the max cluster size at the same temperature of 200 K for $125C_{100}H_{202}$ and $64C_{100}H_{202}$, whose system sizes are around 7.0 nm and 5.5 nm respectively. The frozen torsions obtained within smaller observation times in both systems formed volume spanning frozen clusters.