Supporting Information

Pyrene-Based Porous Organic Polymers as Efficient Catalytic Support for the Synthesis of Biodiesels at Room Temperature

Sudipta K. Kundu and Asim Bhaumik*

Figure S1. Wide angle powder XRD pattern of pyrene based organic polymers and corresponding sulfonated polymers.

Figure S2. N_2 adsorption-desorption isotherms (A) and pore size distributions (B) of PPOP-2 and SPPOP-2, respectively.

Figure S3. N_2 adsorption-desorption isotherms (A) and pore size distributions (B) of PPOP-3 and SPPOP-3, respectively.

Polymer	Pore diameter (nm)	BET surface area (m ² g ⁻¹)	Total pore volume (ccg ⁻¹)
PPOP-2	1.54	570	0.3595
PPOP-3	1.52	508	0.3186
SPPOP-2	1.47	244	0.1751
SPPOP-3	1.48	205	0.1539

 Table 1S.Physical properties of PPOP-2,3 and corresponding sulfonated polymers

Figure S4. TEM images of SPPOP-3 polymer

Figure S5. FE SEM images of PPOP-2 (A), SPPOP-2 (B), PPOP-3 (C) and SPPOP-3 (D).

Figure S6. UV-visible absorption and photoluminescence spectra of PPOP-1.

UV-Vis absorption and photoluminescence spectra of PPOP-1 polymer are shown in FigureS2. UV-Vis absorption spectra showed broad band at 360 nm due to $\pi \rightarrow \pi^*$ transition of the π conjugated pyrene rings. PPOP-1 exhibits strong photoluminescence properties and showed
emission with wavelength maxima at *ca*. 453 nm.

Figure S7. TG-DTA profiles of SPPOP-2 (A) and SPPOP-3 (B).

Figure S8 NH₃-TPD profile for SPPOP-2

Figure S9 NH₃-TPD profile for SPPOP-3

Figure S10. FT IR spectra of PPOP-2,3 and SPPOP-2,3

S13

¹³C NMR of Methyl myristate

¹H NMR of Methyl palmitate

¹³C NMR of Methyl palmitate

¹H NMR of Methyl stearate

¹³C NMR of Methyl stearate

¹H NMR of Dimethyl sebacate

¹³C NMR of Dimethyl sebacate

¹H NMR of Dimethyl glutarate

¹³C NMR of Dimethyl glutarate

¹H NMR of Dimethyl adipate

¹³C NMR of Dimethyl adipate

¹H NMR spectrum of transesterification of soybean oil at 60°C over SPPOP-1

 ^{13}C NMR spectrum of transesterification of soybean oil at 60°C over SPPOP-1

 ^1H NMR spectrum of transesterification of soybean oil at 25 $^{\rm o}\text{C}$ over SPPOP-2

¹H NMR spectrum of transesterification of soybean oil at 60°C over SPPOP-2

¹H NMR spectrum of transesterification of soybean oil at 25°C over SPPOP-3

¹H NMR spectrum of transesterification of soybean oil at 60°C over SPPOP-3

¹³C NMR spectrum of transesterification of soybean oil at 60°C over SPPOP-3

¹H NMR spectrum of transesterification of olive oil at 25°C over SPPOP-1

¹H NMR spectrum of transesterification of olive oil at 60°C over SPPOP-1

¹³C NMR spectrum of transesterification of olive oil at 60°C over SPPOP-1

^1H NMR spectrum of transesterification of olive oil at 25°C over SPPOP-2

^1H NMR spectrum of transesterification of olive oil at 60°C over SPPOP-2

¹³C NMR spectrum of transesterification of olive oil at 60°C over SPPOP-2

¹H NMR spectrum of transesterification of olive oil at 25°C over SPPOP-3

¹³C NMR spectrum of transesterification of olive oil at 25°C over SPPOP-3

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

¹H NMR spectrum of transesterification of olive oil at 60°C over SPPOP-3

¹H NMR spectrum of esterification of lauric acid at 25°C over amberlite IR-120(H) resin

¹H NMR spectrum of transesterification of soybean oil at 25°C over amberlite IR-120(H) resin

¹H NMR spectrum of transesterification of soybean oil at 60°C over amberlite IR-120(H) resin