Supporting Information

Oxygen Reduction Mechanism of Monometallic Rhodium Hydride Complexes

Robert L. Halbach, ${ }^{a, b}$ Thomas S. Teets, ${ }^{a}$ and Daniel G. Nocera ${ }^{*}{ }^{a, b}$
${ }^{a}$ Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307. ${ }^{\text {b }}$ Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138-2902. c Department of Chemistry, University of Houston, 112
Fleming Building Houston, Texas 77204-5003, United States

Email: dnocera@fas.harvard.edu
Index Page
Figures S1-S4. Electronic absorption spectra of 1a-d S2
Figures S5-S8. Overlaid electronic absorption spectra of 2a-d/3a-d S4
Figures S9-S12. Electronic absorption spectra of 4a-d S6
Table S1. Rate constants for Eq. (6) S8

Figure S1. Electronic absorption spectrum of 1a recorded at 293 K in THF.

Figure S2. Electronic absorption spectrum of $\mathbf{1 b}$ recorded at 293 K in THF.

Figure S3. Electronic absorption spectrum of $\mathbf{1 c}$ recorded at 293 K in THF.

Figure S4. Electronic absorption spectrum of 1d recorded at 293 K in THF.

Figure S5. Overlaid electronic absorption spectra of 2a (—) and 3a (■ $\mathbf{(\square)}$ recorded at 293 K in THF.

Figure S6. Overlaid electronic absorption spectra of $\mathbf{2 b}(\boxed{\text { (}}$) and $\mathbf{3 b}$ (■) recorded at 293 K in THF.

Figure S7. Overlaid electronic absorption spectra of 2c (ـ) and 3c (■) recorded at 293 K in THF.

Figure S8. Overlaid electronic absorption spectra of 2d (—) and 3d (■ \quad) recorded at 293 K in THF.

Figure S9. Electronic absorption spectrum of 4a recorded at 293 K in THF.

Figure S10. Electronic absorption spectrum of $\mathbf{4 b}$ recorded at 293 K in THF.

Figure S11. Electronic absorption spectrum of $\mathbf{4 c}$ recorded at 293 K in THF.

Figure S12. Electronic absorption spectrum of $\mathbf{4 d}$ recorded at 293 K in THF.

Table S1. Rate constants, as defined by Eq. (6), for the reaction of $\mathbf{2}$ with HCl and O_{2}.

X	$\mathrm{k}_{1} / \mathrm{min}^{-1} \mathrm{~atm}^{-1} \mathrm{M}^{\text {a }}$	$[\mathrm{HCl}]^{-1} / \mathrm{M}^{-1}$	$\mathrm{k}_{1}^{\mathrm{HCl}} / \mathrm{min}^{-1} \mathrm{~atm}^{-1 \mathrm{a}, \mathrm{b}}$	$\mathrm{k}_{1}{ }^{\prime} / \mathrm{min}^{-1} \mathrm{~atm}^{-1 \mathrm{a}}$
F	0.0355 ± 0.0003	8.3	0.29 ± 0.002	0.029
		11	0.39 ± 0.003	
		17	0.60 ± 0.005	
		33	1.17 ± 0.01	
Cl	0.035 ± 0.001	8.3	0.29 ± 0.01	0.07
		11	0.39 ± 0.01	
		17	0.60 ± 0.02	
		33	1.16 ± 0.03	
Me	0.0194 ± 0.0009	8.3	0.16 ± 0.01	0.11
		11	0.21 ± 0.02	
		17	0.33 ± 0.02	
		33	0.64 ± 0.03	
OMe	0.0160 ± 0.0004	8.3	0.13 ± 0.003	0.03
		11	0.18 ± 0.004	
		17	0.27 ± 0.01	
		33	0.53 ± 0.01	

