Supporting Information

Oxygen Reduction Mechanism of Monometallic Rhodium Hydride Complexes

Robert L. Halbach, ab Thomas S. Teets, and Daniel G. Nocera *a,b

^a Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139–4307. ^b Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138–2902. ^c Department of Chemistry, University of Houston, 112 Fleming Building Houston, Texas 77204-5003, United States

Email: dnocera@fas.harvard.edu

Index	Page	
Figures S1-S4. Electronic absorption spectra of 1a-d	S2	
Figures S5–S8. Overlaid electronic absorption spectra of 2a-d/3a-d	S4	
Figures S9-S12. Electronic absorption spectra of 4a-d		
Table S1. Rate constants for Eq. (6)	S8	

Figure S1. Electronic absorption spectrum of **1a** recorded at 293 K in THF.

Figure S2. Electronic absorption spectrum of **1b** recorded at 293 K in THF.

Figure S3. Electronic absorption spectrum of **1c** recorded at 293 K in THF.

Figure S4. Electronic absorption spectrum of **1d** recorded at 293 K in THF.

Figure S5. Overlaid electronic absorption spectra of **2a** (____) and **3a** (____) recorded at 293 K in THF.

Figure S6. Overlaid electronic absorption spectra of **2b** (——) and **3b** (——) recorded at 293 K in THF.

Figure S7. Overlaid electronic absorption spectra of 2c (\longrightarrow) and 3c (\longrightarrow) recorded at 293 K in THF.

Figure S8. Overlaid electronic absorption spectra of **2d** (——) and **3d** (——) recorded at 293 K in THF.

Figure S9. Electronic absorption spectrum of 4a recorded at 293 K in THF.

Figure S10. Electronic absorption spectrum of 4b recorded at 293 K in THF.

Figure S11. Electronic absorption spectrum of 4c recorded at 293 K in THF.

Figure S12. Electronic absorption spectrum of 4d recorded at 293 K in THF.

Table S1. Rate constants, as defined by Eq. (6), for the reaction of $\bf 2$ with HCl and O₂.

X	k ₁ /min ⁻¹ atm ⁻¹ M ^a	[HCl] ⁻¹ /M ⁻¹	k_1^{HCl}/min^{-1} atm $^{-1}$ a,b	k_1' /min ⁻¹ atm ^{-1 a}
F	0.0355 ± 0.0003	8.3	0.29±0.002	0.029
		11	0.39±0.003	
		17	0.60±0.005	
		33	1.17± 0.01	
Cl	0.035 ± 0.001	8.3	0.29±0.01	0.07
		11	0.39±0.01	
		17	0.60±0.02	
		33	1.16± 0.03	
Me	0.0194 ± 0.0009	8.3	0.16±0.01	0.11
		11	0.21±0.02	
		17	0.33±0.02	
		33	0.64± 0.03	
OMe	0.0160 ± 0.0004	8.3	0.13±0.003	0.03
		11	0.18±0.004	
		17	0.27±0.01	
		33	0.53± 0.01	