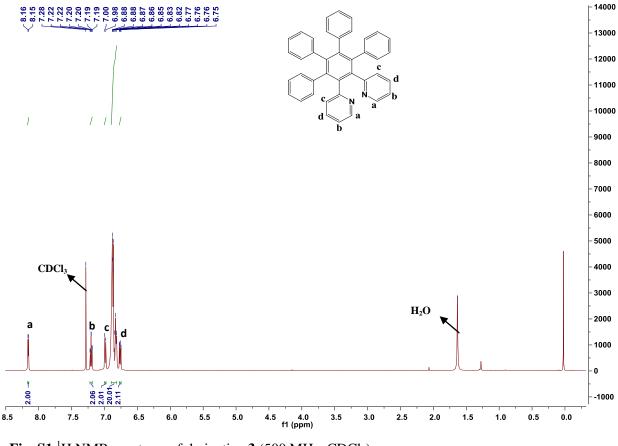
Supporting Information

Facile Decoration of Multiwalled Carbon Nanotubes with Heterooligophenylene Stabilized-Gold Nanoparticles: Visible Light Photocatalytic Degradation of Rhodamine B Dye


Sharanjeet Kaur, Vandana Bhalla,* and Manoj Kumar*

Department of chemistry, UGC Center for Advanced StudiesGuru Nanak Dev University, Amritsar, INDIA-143005 *E-mail: vanmana@yahoo.co.in, mksharmaa@yahoo.co.in

Page No. Contents

- S-2 to S-4 ¹H, ¹³C NMR and Mass spectra of derivative 3.
- S-5 Fluorescence spectra of derivative 3 in different H₂O/TEG mixture and scanning electronic microscopy image of derivative 3 in H₂O:CH₃CN mixture.
- **S-6** Dynamic light scattering studies of derivative **3** in H_2O/CH_3CN (6/4) mixture and ratiometric combinational curve I_{485}/I_{355} as a function of $[Au^{3+}]$ increased.
- S-7 Overlay ¹H NMR spectrum of derivative 3 in presence of 10 eq. of Au^{3+} ions in $CDCl_3/CD_3OD/D_2O$ (1:6:3).
- **S-8** Calibiration curve for $Au^{3+}(\mu M)$ over the range of $0 75 \mu M$ of Au^{3+} and detection limit plot of derivative **3** for Au^{3+} ions.
- **S-9** Fluorescence emission spectra of derivative **3** in presence of various metal chloride/perchlorate in H_2O/CH_3CN (6/4) mixture and overlay ¹H NMR spectrum of derivative **3** in presence of 10 eq. of Au³⁺ ions in CDCl₃/CD₃OD/D₂O (1:6:3).
- S-10 Fluorescence life time decay profile of derivative 3 in CH_3CN and H_2O/CH_3CN (5/5) mixture.
- **S-11** Overlay ¹H NMR spectra of derivative **3** in CDCl₃ and organic part obtained after washing in-situ generated gold nanoparticles.
- S-12 UV-vis spectra of derivative 3 in presence of Au^{3+} ions in CH₃CN and fluorescence emission spectra of derivative 3 in presence of tery-butyl hydroperoxide in H₂O:CH₃CN (6:4) mixture.
- S-13 Dynamic light scattering analysis of gold nanoparticles and absorption spectra of the supernatants obtained from three subsequent washing steps in the preparation of AuNPs@MWCNTs nanohybrid materials.
- **S-14** UV–vis spectra of gold nanoparticles before and after they are adsorbed onto the surface of multi walled carbon nanotubes and fluoresence emission spectra of AuNPs@MWCNTs nanohybrid materials.
- S-15 TEM images of AuNPs@MWCNTs nanohybrid and FT-IR spectra of derivative 3, derivative 3 stablized AuNPs and AuNPs@MWCNTs hybrid.

- **S-16** Pseudo-first-order kinetic for the photodegradation of RhB over AuNPs@MWCNTs and dye adsorption efficiency and photocatalytic efficiency of the recycled AuNPs@MWCNTs nanocatalyst to RhB.
- **S-17** TEM images of the AuNPs@MWCNTs nanohybrid catalyst after three runs of photocatalytic degradation of RhB and table showing fluorescence lifetime of derivative **3** in absence and presence of Au^{3+} ions (15 equiv) in H₂O/CH₃CN (6:4, v/v).
- S-18 Comparison of present method over other reported procedure in literature for the preparation of AuNPs@MWCNTs nanohybrid materials.
- **S-19** Comparison of catalytic efficiency of AuNPs@MWCNTs nanohybrid materials for photocatalytic degradation of RhB reported in present manuscript with other catalytic systems in the literature.

Fig. S1 ¹H NMR spectrum of derivative **3** (500 MHz, CDCl₃)

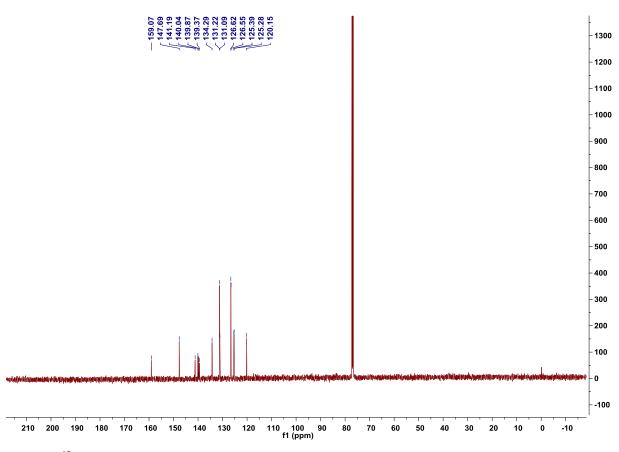


Fig. S2 ¹³C NMR spectrum of derivative 3 (75 MHz, CDCl₃)

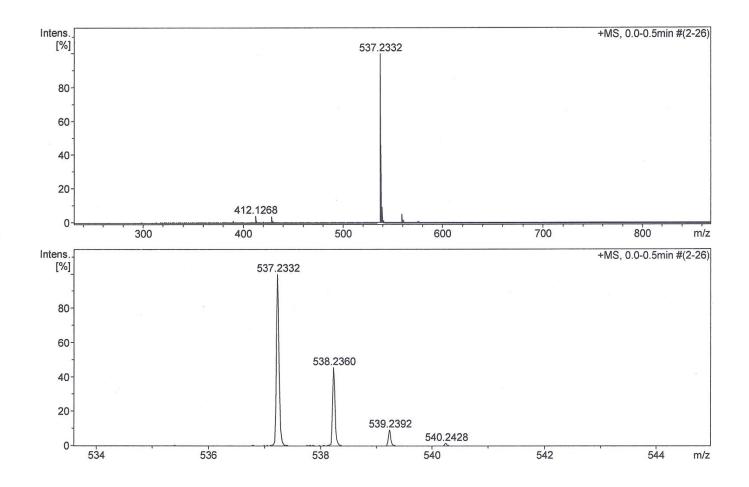
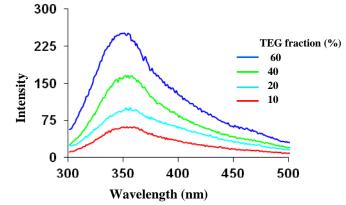



Figure S3 Mass spectrum of derivative 3.

Fig. 4 Fluorescence spectra of compound **3** (5 μ M) showing the variation of fluorescence intensity in TEG/CH₃CN mixture (0 to 60% volume fraction of TEG in acetonitrile); λ_{ex} = 290 nm.

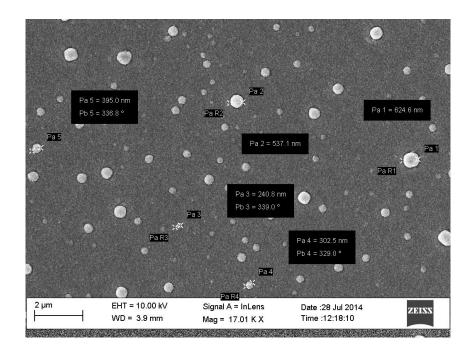


Fig. S5 SEM image of aggregates of compound 3 in H₂O/CH₃CN (6:4) mixture.

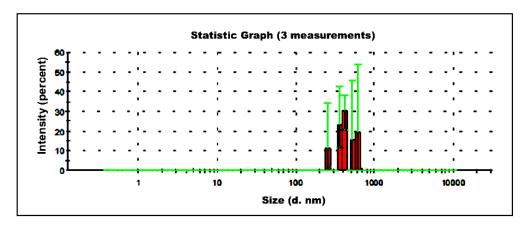
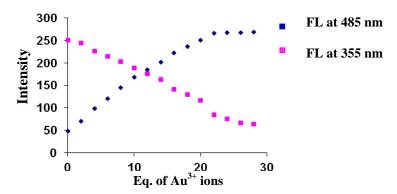
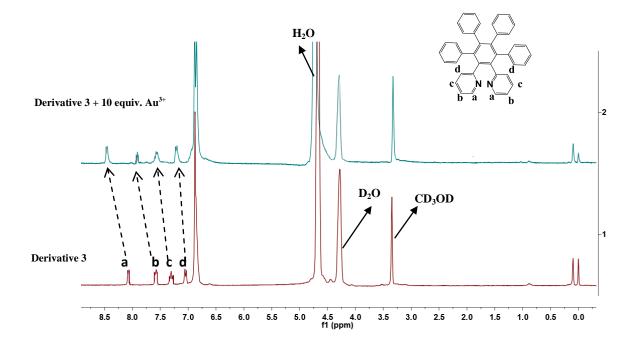


Fig. S6 The dynamic light scattering (DLS) studies derivative 3 showing the average diameter of aggregates is in the range of 500 nm in H_2O/CH_3CN (6/4).

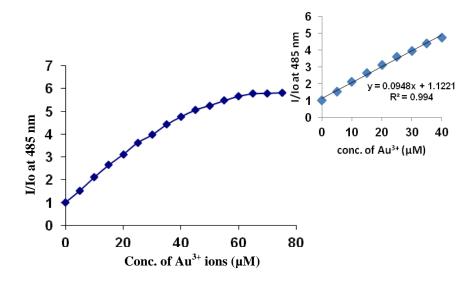

Fig. S7 Ratiometric combinational curve I_{485} (blue) and I_{355} (pink) as a function of $[Au^{3+}]$ increased.

Fig. S8a ¹H NMR titration of compound **3** with Au³⁺ ions in CDCl₃/CD₃OD/D₂O (1:6:3).

Derivative 3 (δ_1 ppm)	$\begin{array}{c} 3+10 \text{ equiv. Au}^{3+} \\ (\delta_2 \text{ ppm}) \end{array}$	$\Delta \delta = \delta 1 - \delta 2$
8,1 (d, 2H, ArH) (a)	8.5 (d)	0.4
7.52-7.6 (m, 2H, ArH) (b)	7.7-7.78 (m)	0.18
7.3-7.39 (m, 2H, ArH) (c)	7.49-755 (m)	0.19
7.12 (d, 2H, ArH) (d)	7.23 (d)	0.11

Fig. S8b Change in chemical shift (δ) value of compound **3** before and after addition of Au³⁺ ions in CDCl₃/CD₃OD/D₂O (1:6:3).

Fig. S9 Calibiration curve for Au^{3+} (μM) over the range of 0 – 75 μM of Au^{3+} . Inset the fluorescence intensity of derivative **3** at 485 nm showed a linear response to Au^{3+} in the concentration range of 0 to 40 μM .

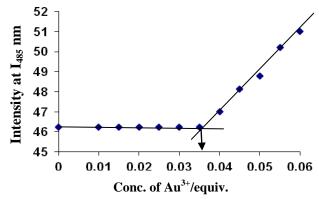
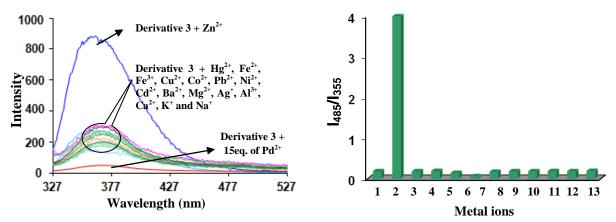
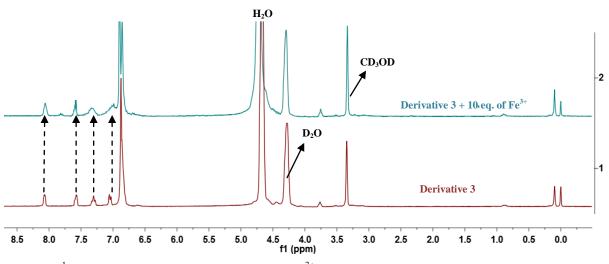


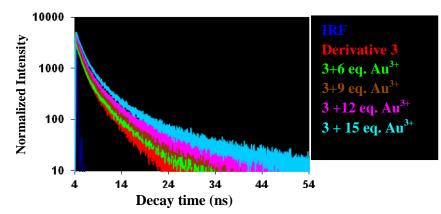
Fig. S10 Showing the fluorescence intensity of derivative 3 at 485 nm as a function of Au^{3+} ions concentration (equiv.) in H₂O/CH₃CN (6:4, v/v), λ_{ex} = 300 nm.


To determine the detection limit, fluorescence titration of compound **3** with Au^{3+} ions was carried out by adding aliquots of gold solution (in equiv.) and the fluorescence intensity as a function of Au^{3+} ions added was then plotted. From this graph the concentration at which there was a sharp change in the fluorescence intensity multiplied with the concentration of receptor **3** gave the detection limit.

Equation used for calculating detection limit (DL):


$$DL = CL \times CT$$

CL = Conc. of Ligand; CT = Conc. of Titrant at which change observed.


Detection limit (DL) of Au³⁺ ions with 3: Thus; $DL = 0.036 \times 10^{-6} = 36 \times 10^{-9} = 36$ nM.

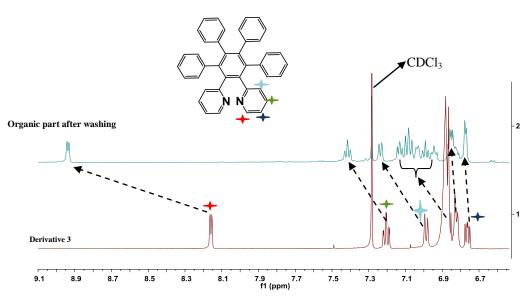

Fig. S11 Fluorescence emission spectra of derivative **3** (5 μ M) with the addition of different metal ions (25 equiv.) in H₂O/CH₃CN (6:4), buffered with HEPES pH = 7.2 (B) Fluorescence selectivity (I₄₉₀/I₃₆₃) of **3** (5 μ M) in the presence of various metal ions (25 equiv each);,1 = Hg²⁺, 2 = Co²⁺, 3 = Pb²⁺, 4 = Ni²⁺, 5 = Cd²⁺, 6 = Pd²⁺, 7 = Zn²⁺, 8 = Cu²⁺, 9 = Ba²⁺, 10 = Mg²⁺, 11 = K⁺, 12 = Na⁺, and 13 = Li⁺

Fig. S12 ¹H NMR titration of compound **3** with Fe^{3+} ions in CDCl₃/CD₃OD/D₂O (1:6:3).

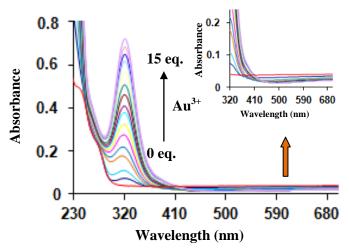

Fig. S13 Exponential fluorescence decays of **3** on addition of different amount of Au^{3+} ions measured at 485 nm. Spectra were acquired in H₂O/CH₃CN (6:4,v/v) mixture, λ_{ex} = 375 nm.

Fig. S14a Overlay ¹H NMR spectra of derivative **3** in $CDCl_3$ and organic part obtained after washing in-situ generated gold nanoparticles.

Derivative 3 (δ_1 ppm)	Organic part after treatment with gold (δ_2 ppm)	$\Delta\delta = \delta1 - \delta2$	
8.16 (d, 2H, ArH) 🔶	8.95 (d)	0.79	
7.20-7.28 (m, 2H, ArH) 🕇	7.39-7.42 (m)	0.14	
6.99 (d, 2H, ArH) 🔸	7.21 (d)	0.22	
6.88-6.82 (m, 20H, ArH)	Downfield spliting		
6.75-6.77 (m, 2H, ArH) 🔸	6.77-6.79	0.02	

Fig. S14b Change in chemical shift (δ) value of compound 3 before and after formation of gold nanoparticles in CDCl₃.

Fig. S15 UV-vis spectra of compound **3** (5 μ M) upon additions of 15 eq. of Au³⁺ ions in CH₃CN. Inset showing no Surface Plasmon Resonance band was appeared around 550 nm.

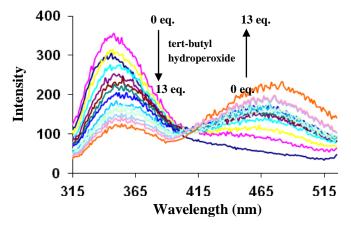
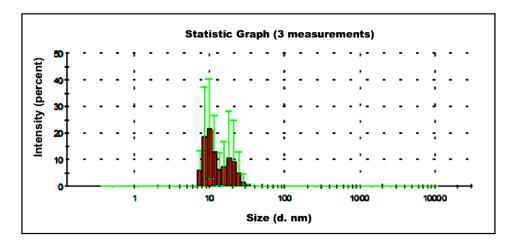
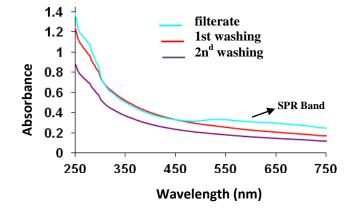
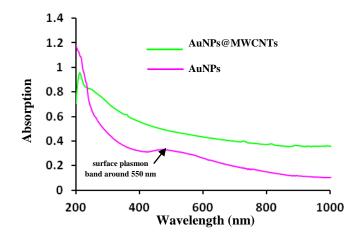


Fig S16 Fluorescence emission spectra of derivative 3 (5 μ M) upon additions of 13 equiv. of 70 wt% tert-butyl hydroperoxide solution in H₂O:CH₃CN (6/4) mixture.

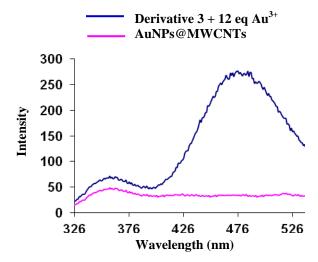

Fig. S17 The dynamic light scattering (DLS) studies of *in-situ* generated gold nanoparticles.

Fig. S18 Absorption spectra of the supernatants obtained subsequent washing steps in the preparation of AuNPs@MWCNTs nanohybrids.

Fig. S19 UV–vis spectra of gold nanoparticles before and after they are adsorbed onto the surface of multi walled carbon nanotubes.

Fig S20 Fluorescence emission spectra of derivative **3** in presence of Au^{3+} and so prepared AuNPs@MWCNTs nanohybrid.

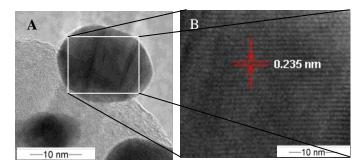
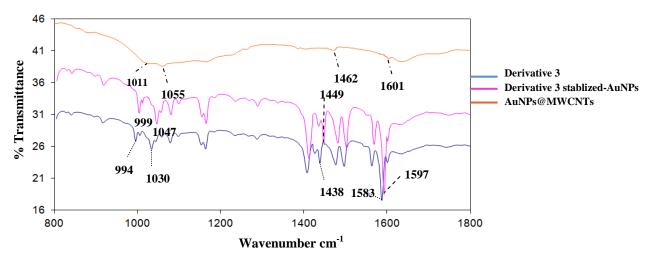
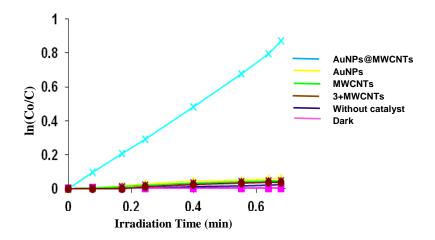
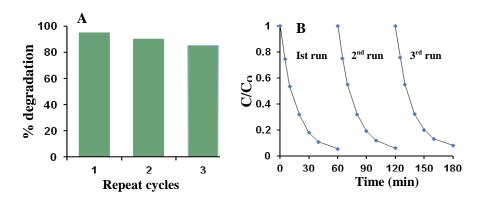


Fig. S21 (A) Magnified TEM images of AuNP@MWCNTs composites aligned Au NPs on the MWCNTs; (B) HRTEM of AuNPs decorated on MWCNTs.

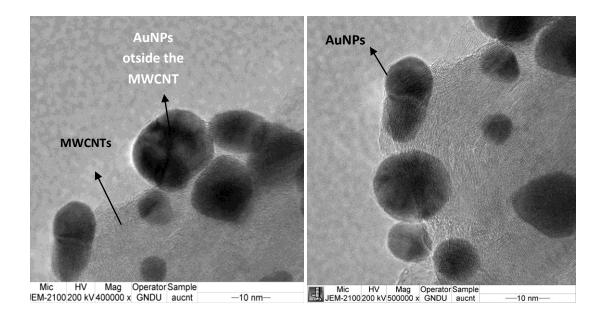

Fig. S22 The overlay FT-IR spectrum of derivative 3, derivative 3 stabilized-AuNPs and AuNPs@MWCNTs hybrid material.

Fig. S23 The pseudo-first-order kinetic for the photodegradation of RhD B over AuNPs@MWCNTs, AuNPS, without catalyst and in dark.

Fig. S24 (A) Dye adsorption efficiency and photocatalytic efficiency of the recycled AuNPs@MWCNTs nanocatalyst to RhB of separate 3 cycles of the continuous dark-adsorption and photocatalytic processes. (B) Repeated photocatalytic degradation of RhB on AuNPs@MWCNTs nanocatalyst under Visible light illumination.

Fig. S25 TEM images of the AuNPs@MWCNTs nanohybrid catalyst after three runs of photocatalytic degradation of RhB.

Table S1: Fluorescence lifetime of derivative **3** in absence and presence of Au³⁺ions (15 equiv) in H₂O/CH₃CN (6:4, v/v) mixture at 485 nm. A₁, A₂, A₃: fractional amount of molecules in each environment. τ_1 , τ_2 and τ_3 : biexponential life time of aggregates in 60 vol% of water in CH₃CN; k_f: radiative rate constant (k_f= Φ/τ_{avg}); k_{nr}: nonradiative rate constant (k_{nr} = (1- Φ)/ τ_{avg}); λ_{ex} = 375 nm

Sample	Quantum Yield	A ₁ /A ₂ /A ₃	τ_1 (ns)	$ au_2$ (ns)	$ au_3$ (ns)	$ au_{avg}$ (Average lifetime, ns)	$k_{f}(10^{9}S^{-1})$	$k_{nr}(10^9 S^{-1})$
Derivative 3	0.21	49.85/50.15	0.272	2.568		1.42	0.126	0.55
3+15 eq. Au ³⁺	0.32	51.16/26.74/22.10	3.531	0.919	17.470	5.91	0.05	0.116

Table S2: Comparison of present method for the preparation of AuNPs@CNTs nanohybrid materials over other reported procedure in literature.

S.No	Publication	Method of formation of AuNPs@CNTs nanohybrid	Reagent used	Reducing agent	Temp.	Total Time taken to prepare AuNPs@CNT s nanohybrid	Reusability
1.	Present Manuscript	Wet-chemical method	Derivative 3 in H ₂ 0/CH ₃ CN, H ₂ SO _{4,} MWCNT and gold chloride	No	RT	Overnight	Yes
2.	Analyst,2015,1 40,134–139	Frens' method	ammonium hydroxide, H ₂ SO ₄ ,HNO ₃ ,tetraethoxys ilane), 3-aminopropyl- trimethoxysilane, 4-nitro thiophenol, Hydrogen tetrachloroaurate and MWCNT	trisodium citrate dihydrate	Room temp.	23 hrs	No
3.	Beilstein J. Nanotechnol. 2014, 5,910– 918	plasma enhanced chemical vapour deposition (PECVD	VA-CNT, Ag paste, Pt resistor and Au wires		170 °C	30 min	No
4.	ACS Sustainable Chem. Eng.2013, 1, 746–752	layer-by-layer (LBL) assembly method	Polyethyleneimine, HAuCl ₄ , trisodium citrate and vertically aligned CNTs	trisodium citrate	100°C	24 hr	No
5.	Nanoscale Research Letters 2014,9:207	chemical vapor deposition	O ₂ /Ar atmosphere, HAuCl ₄ /2-propanol and CNT-AAO composite		450°C	26 hr	No
6.	J. Phys. Chem. C 2014, 118, 27028– 27038		Dioctylamine, tetraoctylammonium chloride, NABH4, pyr-SH derivative, HAuCl4 and SWCNTs	NABH ₄	RT	overnight	No

Table S3: Comparison of catalytic activity of AuNPs@MWCNTs nanohybrid generated by utilizing derivative **3** for photocatalytic dye degradation of Rhodamine B under visible light source over other nanohybrid materials reported in literature.

S.No	Publication	Catalyst used	Time taken for dye degradation	Source of light used	Rate constant	reusability
1	Present manuscript	AuNP@MWCNTs	45 min	300 W tungsten lamp	0.066 min ⁻¹	Yes
2	J. Am. Chem. Soc. 2015, 137, 2975 -2983	Ti-Defected TiO ₂ material	3 hr	300 W Xenon lamp		
2	ACS Appl. Mater. Interfaces 2015, 7, 4368 –4380	TiO ₂ materials	60 min	1000W Xe arc lamp	0.0183 x 10 ⁻³ min ⁻¹	No
3	ACS Appl. Mater. Interfaces 2015, 7, 1616 –1623	Au decorated ZnSe · 0.5N ₂ H ₄ Hybrid	240 min	500W Xe arc lamp	0.007 min ⁻¹	No
4	DOI: 10.1021/jp5108679 J. Phys. Chem. C, 2015	BiF ₃ -Bi ₂ NbO ₅ F	90 min	300 W Xenon lamp	0.023 min ⁻¹	Yes
5	J. Phys. Chem. C 2014, 118, 21447–21456	CdS nano structures	75 min	850 W xenon lamp	0.012 min ⁻¹	No
6	ACS Appl. Mater. Interfaces2014, 6, 613–621	graphene–SnO ₂ aerosol nanocomposites	40 min	$\begin{array}{c} 300 \text{ W} \\ \text{xenon lamp} \\ (\lambda > 420 \\ \text{nm}) \end{array}$	0.091 min ⁻¹	No
7	DOI: 10.1021/am507085u ACS Appl. Mater. Interfaces	Au-Decorated ZnSe·0.5N ₂ H ₄ Nanowires	90 min	xenon lamp (500 W)	$0.013 { m min}^{-1}$	No
8	DOI: 10.1021/sc5006473 ACS Sustainable Chem. Eng	A BiOBr/reduced graphene oxide (RGO) composite	5 hr	A 300 W Xe lamp		Yes
9	Ind. Eng. Chem. Res. 2015, 54, 153–16	Graphene/MIL-53(Fe) composites	60 min	500W Xe arc lamp	0.07 min ⁻¹	Yes
10	ACS Appl. Mater. Interfaces2012, 4, 3084–3090	Graphene Oxide/ZnO nano Composite	60 min	sunlight		Yes
11.	DOI: 10.1021/acsami.5b00980ACS Appl. Mater. Interfaces	ZnO:I/TiO ₂ NRs	6 hr	500 W Xe lamp		Yes