Supporting Information for Adsorption and Reaction of C₂H₄ and O₂ on Nano-sized Gold Cluster: A Computational Study

Chen-Chi Lee and Hsin-Tsung Chen*

Department of Chemistry, Chung Yuan Christian University, Chungli District, Taoyuan City 32023, Taiwan

Table S1. Calculated Adsorption Energies (in eV), Geometrical Parameters (Å) of Weakly Adsorbed C_2H_4 on Au_{38} Nanocluster.

Table S2. Calculated Adsorption Energies (in eV), Geometrical Parameters (Å) of Weakly Adsorbed O_2 on Au_{38} Nanocluster.

Figure S1. The calculated weakly bound intermediates of C_2H_4 adsorbed on Au_{38} nanocluster.

Figure S2. The calculated weakly bound intermediates of O_2 adsorbed on Au_{38} nanocluster.

Figure S3. The calculated electronic local density of states (LDOS) of the system projected on the orbitals for the adsorbed constructs of O_2 (left panel) and C_2H_4 (right panel) species, as well as the *d*-projected of the Au atoms on the hexagonal fcc(111)-like face. O_a and O_g represent the remaining oxygen atom adsorbed on the nanocluster and the oxygen atom of epoxide or acetaldehyde.

Figure S4. The electronic local density of states (LDOS) of the system projected on the *d*-states of the Au38 nanoparticle and Au (111) surface.

species	E _{ads} (eV)	d _{Au1-C1} (Å)	$d_{C1-C2}(\text{\AA})$	$d_{C2-Au2}(\text{\AA})$		
C_2H_4 - T_3 - η^1	0.05	3.053	1.332			
C_2H_4 - B_3 - μ^1	0.05	3.279	1.338	3.243		
C_2H_4 -H- μ^4	0.02	3.811, 3.728,	1.332			
		3.652, 3.777				
C_2H_4 - B_4 - μ^2	-0.04	3.243	1.345	3.030		
C_2H_4 - T_1 - η^1	-0.15	3.443	1.332			
C_2H_4 - T_2 - η^1	-0.12	3.374	1.331			
C_2H_4 - B_1 - μ^1	0.01	3.390, 3.468	1.332			
C_2H_4 - B_2 - μ^1	-0.11	3.639, 3.445	1.327			
C_2H_4 -h- μ^3	-0.04	3.441, 3.700,	1.332			
		3.671				

Table S1. Calculated Adsorption Energies (in eV), Geometrical Parameters (Å) of Weakly Adsorbed C_2H_4 on Au_{38} Nanocluster.

Table S2. Calculated Adsorption Energies (in eV), Geometrical Parameters (Å) ofWeakly Adsorbed O_2 on Au_{38} Nanocluster.

O ₂ species	E _{ads} (eV)	d _{Au1-O1} (Å)	d ₀₁₋₀₂ (Å)	d _{O2-Au2} (Å)
$O_2 - T_1 - \eta^1 - 2$	-0.09	2.154	1.294	
O_2 - T_2 - η^1	0.24	2.258	1.287	
O_2 - T_1 - η^2	0.16	2.315	1.359	2.270
O_2 - T_2 - η^2	0.06	2.491	1.309	2.404
O_2 -h- μ^3	-0.09	2.385, 2.378, 2.484	1.311	

Figure S1. The calculated weakly bound intermediates of C_2H_4 adsorbed on Au_{38} nanocluster.

Figure S2. The calculated weakly bound intermediates of O_2 adsorbed on Au_{38} nanocluster.

Figure S3. The calculated electronic local density of states (LDOS) of the system projected on the orbitals for the adsorbed constructs of O_2 (left panel) and C_2H_4 (right panel) species, as well as the *d*-projected of the Au atoms on the hexagonal fcc(111)-like face. O_a and O_g represent the remaining oxygen atom adsorbed on the nanocluster and the oxygen atom of epoxide or acetaldehyde.

Figure S4. The electronic local density of states (LDOS) of the system projected on the *d*-states of the Au_{38} nanoparticle and Au (111) surface.