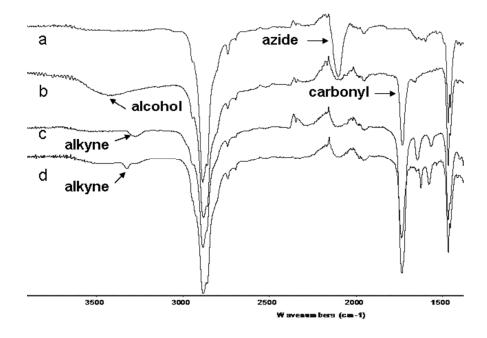
Photo-patternable 'Clickable' Hydrogels:

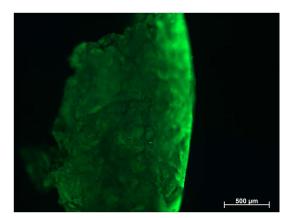
'Orthogonal' Control over Fabrication and

Functionalization

Sadik Kaga,^a Serap Yapar,^a Ece Manavoglu Gecici,^a and Rana Sanyal ^{a,b}*


^aBogazici University, Department of Chemistry, Bebek, 34342, Istanbul, Turkey.

^bBogazici University, Center for Life Sciences and Technologies, Istanbul, Turkey.


* Corresponding Author. E-mail: rana.sanyal@boun.edu.tr Tel: +90(212)3594793, Fax: +90(212)2872467.

INDEX

Figure Title	Page			
Figure S1. FTIR spectra of (a) PEG6K bisazide 5 (b) PEG-dendron copolymer 9 (c) Functionalized copolymer 16 (d) Functional 6KG3 _(1:1) hydrogel				
Figure S2. Representative fluorescence microscopy images of cross sectional profile of hydrogels after FITC-streptavidin functionalization.				
Figure S3. SEM images of patterned. hydrogel G36K _(1:1) by PDMS molding				
Figure S4. SEM images of patterned. hydrogel G36K _(1:1) by photopatterning				
Figure S5. ¹ H NMR spectrum of copolymer 10 (alkene: alkyne = 2:1)	5			
Figure S6. ¹ H NMR spectrum of copolymer 11 (alkene: alkyne = 1:1)				
Figure S7. ¹ H NMR spectrum of copolymer 12 (alkene: alkyne = 1:2)				
Figure S8. ¹ H NMR spectrum of copolymer 13 (alkene: alkyne = 1:1)				
Figure S9. ¹ H NMR spectrum of copolymer 14 (alkene: alkyne = 1:1)				
Figure S10. ¹ H NMR spectrum of copolymer 15 (alkene: alkyne = 2:1)	7			
Figure S11. ¹ H NMR spectrum of copolymer 16 (alkene: alkyne = 1:1)	8			
Figure S12. ¹ H NMR spectrum of copolymer 17 (alkene: alkyne = 1:2)	8			
Figure S13. ¹ H NMR spectrum of copolymer 18 (alkene: alkyne = 1:3)	9			
Figure S14 Evolution of moduli with gelation time	9			
Figure S15 Water uptake comparison of hydrogels synthesized with or without NVP	10			
Table S1 Calculation of Biotin-azide conjugation conversion	10			

Figure S1. FTIR spectra of (a) PEG6K bisazide **5** (b) PEG-dendron copolymer **9** (c) Functionalized copolymer **16** (d) Functional **6KG3**_(1:1) hydrogel

Figure S2. Representative fluorescence microscopy images of cross sectional profile of hydrogels after FITC-streptavidin functionalization.

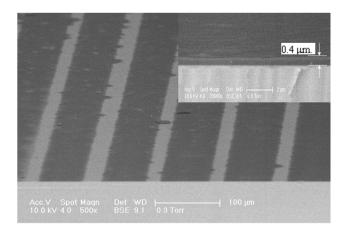
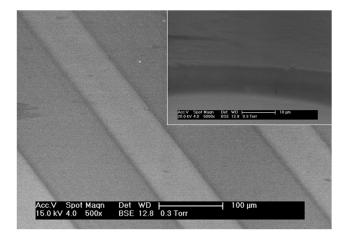
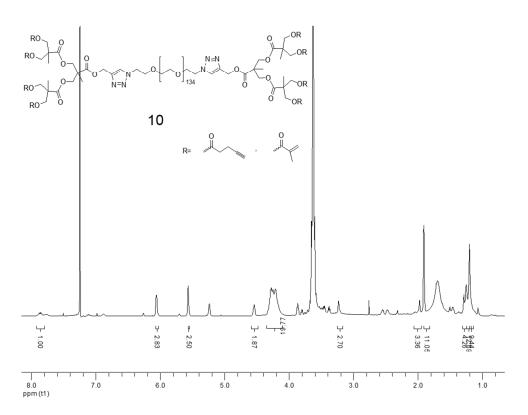
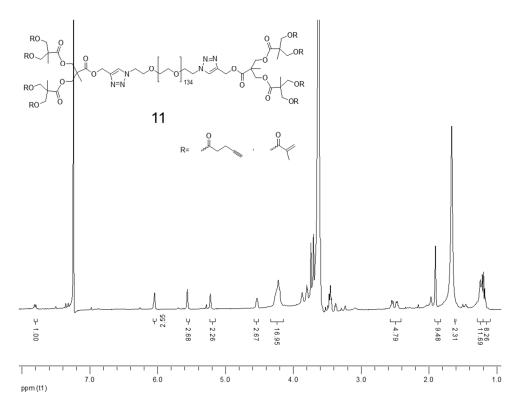
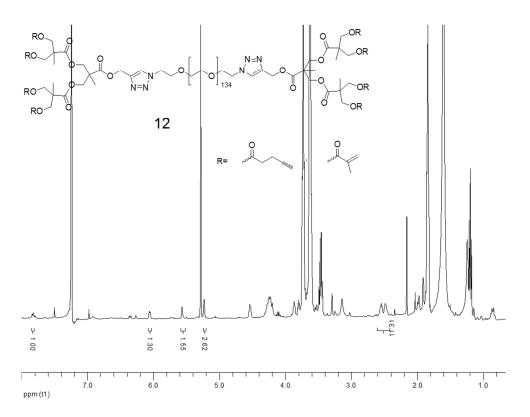
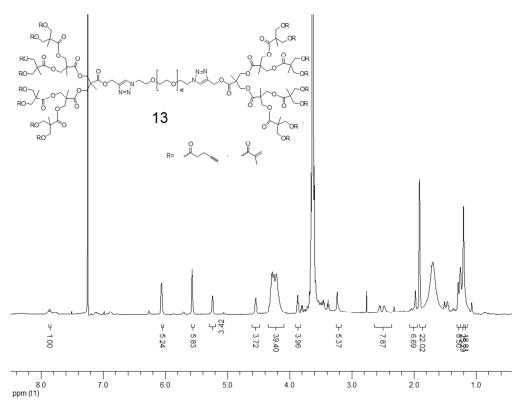
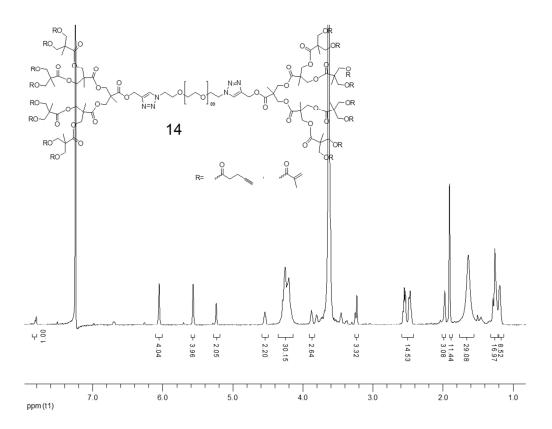


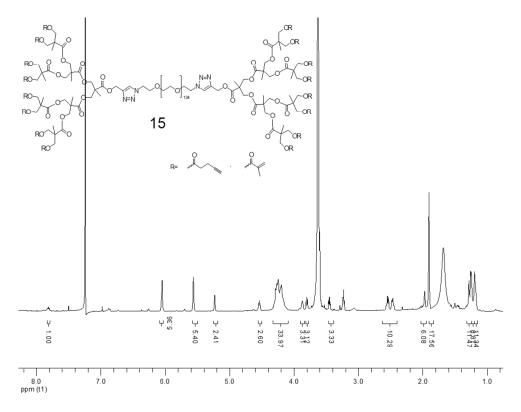
Figure S3. SEM images of patterned. hydrogel $G36K_{(1:1)}$ by PDMS molding

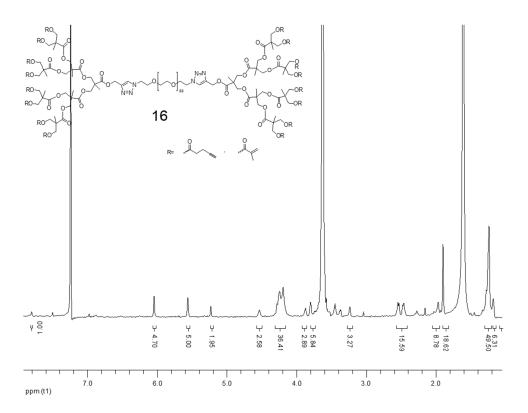




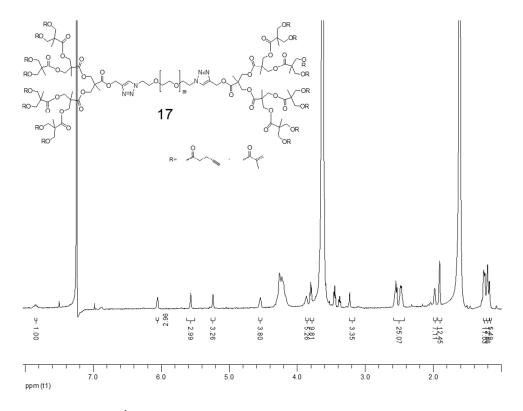

Figure S4. SEM images of patterned. hydrogel G36K $_{(1:1)}$ by photopatterning.

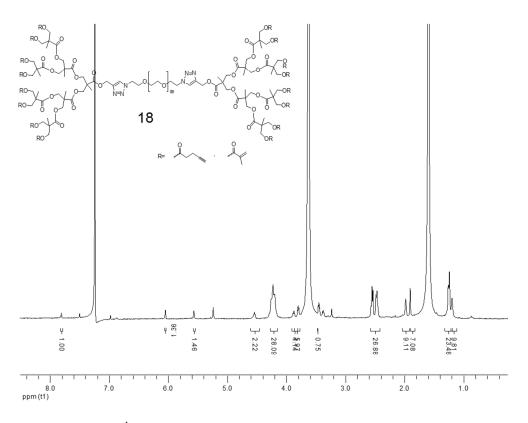

Figure S5. ¹H NMR spectrum of copolymer **10** (alkene: alkyne = 2:1)


Figure S6. ¹H NMR spectrum of copolymer **11** (alkene: alkyne = 1:1)


Figure S7. ¹H NMR spectrum of copolymer **12** (alkene: alkyne = 1:2)


Figure S8. ¹H NMR spectrum of copolymer **13** (alkene: alkyne = 1:1)


Figure S9. ¹H NMR spectrum of copolymer **14** (alkene: alkyne = 1:1)


Figure S10. ¹H NMR spectrum of copolymer **15** (alkene: alkyne = 2:1)

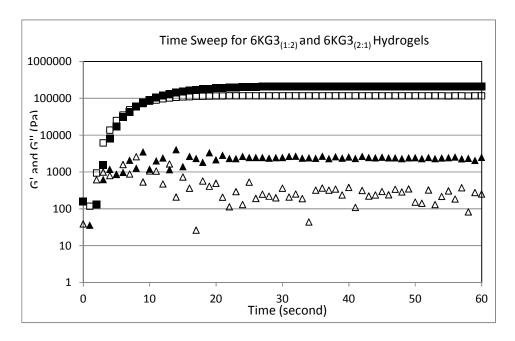

Figure S11. ¹H NMR spectrum of copolymer **16** (alkene: alkyne = 1:1)

Figure S12. ¹H NMR spectrum of copolymer **17** (alkene: alkyne = 1:2)

Figure S13. ¹H NMR spectrum of copolymer **18** (alkene: alkyne = 1:3)

Figure S14: Evolution of moduli with gelation time for 6KG3(1:2) and 6KG3(2:1) Hydrogels. \Box (G'), Δ (G") for $6KG3_{(1:2)}$; \blacksquare (G'), \blacktriangle (G") for $6KG3_{(2:1)}$ during gelation under UV light (4 watt).

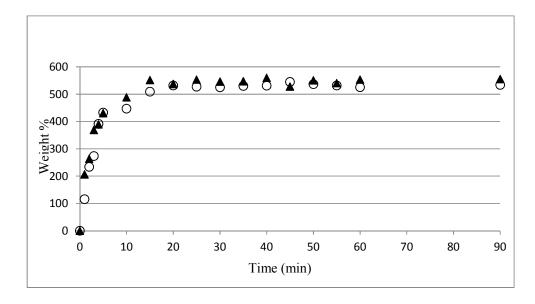


Figure S15. Water uptake comparison of hydrogels synthesized with or without NVP : (\blacktriangle) 6KG3_(1:3)with NVP, (\circ) 6KG3_(1:3) without NVP

Conversion of Biotin Azide Conjugation. N% ratios of all the hydrogel samples were measured by elemental analyzer before and after biotin azide conjugation. Obtained N% values of hydrogels before functionalization with biotin azide belongs to the triazole units between dendrons and PEG chain, and the N-atom of N-vinylpyrrolidone (NVP). The addition degrees of NVP to one dendron polymer dendron conjugate was found by comparing with theoretical N% values for each NVP addition. Obtained N% values of hydrogels after functionalization with biotin azide include also the newly formed triazole units and N-atoms of biotin. Biotin azide conversion values were found by comparison with theoretical N% values for each biotin azide conjugation to one dendron-polymer conjugate containing an NVP unit.

Table S1. Biotin-azide conversion and no. of N-atoms (from biotin-azide) after conjugation

	6KG3 _(2:1)	6KG3 _(1:1)	6KG3 _(1:2)	6KG3 _(1:3)
(N%) Before Biotin-N ₃ Conjugation ^a	2.7660	2.7378	2.8816	2.7325
(N%) After Biotin-N ₃ Conjugation ^a	4.9576	5.2948	5.9836	6.9956
No. of N atoms (from Biotin-N ₃)	20	23	30	42
Biotin-N ₃ Conjugation (%)	75.05	57.50	56.29	70.00

^a measured using CHNS elemental analyzer.