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This supplemental material presents complementary atomic force microscopy (AFM) and scan-
ning tunneling microscopy (STM) images of di�erent coal-derived asphaltene (CA) and petroleum
asphaltene (PA) molecules. It is also discussed how representative the measured molecules are for
the complete sample. For two CAs, molecular orbitals are calculated based on the structure pro-
posals from AFM. In addition, AFM and STM measurements of a control compounds is used to
support the assignment of common side-groups observed for CAs and PAs.
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I. REPRESENTATIVENESS OF MEASURED
MOLECULES

To draw conclusions about the entire mixture from
individual specimens, one has to discuss their repres-
entativeness. Like counting organisms in ecology, it is
not feasible with our technique to count all molecules
in the mixture. Instead, one is forced to investigate a
small representative part of the `population'. Similar to
ecology, we use a sampling square, a quadrat, de�ned by
our overview scan area at random positions (macroscopic
placement of the sensor tip). Within this area, we look
at each molecule (see Figure S1). To give the reader the
best possible impression, we include a comprehensive
set of AFM and STM images of asphaltene molecules
measured in such quadrats below (in addition to the
measurements already shown in the main text). In

∗ bsc@zurich.ibm.com
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contrast to other techniques that examined asphaltenes,
we can prove the existence of certain molecule structures
and their properties within the mixture, but cannot
directly determine the average characteristics of the
mixture.

Despite the possible selectivity during the measure-
ment procedure itself, the sample preparation might af-
fect the representativeness of the sample. This potential
issue has been described in the main text at the end of
the Results and Discussion section.

II. COAL-DERIVED ASPHALTENES (CAs)

A. Additional AFM and STM measurements

In this section, we present the AFM raw data of
Figure 3 and complementary STM orbital images of
some CA molecules of the same �gure. In addition,
AFM and STM measurements of other CA molecules are
provided to evidence the immense structural diversity
observed. In Figure S2, AFM raw data of Figure 3
is provided. In the main text, the Laplace-�ltered
version has been chosen for better accessibility for
non-specialists and printer-friendliness. A collection of
di�erent CA molecules and their corresponding orbitals
are shown in Figure S3 and Figure S4. AFM images of
the CA molecules displayed in Figure S3a-e are already
presented in Figure S2. For many specimen, the lowest
unoccupied (LUMO) and highest occupied molecular
orbital (HOMO) were accessible and could be stably
imaged.

Note that because of the CO functionalization, the tip
comprises s− and p−wave contributions. However, for
the tip and voltages used here, the s−wave character of
the tip predominates [1, 2].
Interestingly, also radicals were observed, which

feature a half-�lled (singly occupied) HOMO, a so-called
SOMO (e.g. Figure S3c). Organic free radicals are
known to be present in asphaltenes, but at small
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Figure S1. STM overview image. a STM overview image (I = 2pA, V = 0.2V) of the CA sample on Cu(111). b
Laplace-�ltered image in a. The individual molecules are labeled by their given identi�er. The overview de�nes our sampling
square.

molecular fractions [3]. It is not clear whether possible
free radicals detected here occur naturally (for example
as heterodimers [4] that might be cleaved during the
sublimation process) or whether they form during
post-treatment after extraction or sublimation from the
wafer. In particular, the molecule shown in Figure S3c
is assigned to the structure CA12 (see Figure 4), a
phenalenyl radical derivative, which can be considered
as an open-shell graphene fragment with interest in the
�eld of organic spintronics [4]. In other images, one
can also observe that �exible parts of the molecules
or parts that are oriented upright can disturb the
imaging process. For example, in the bottom right
part of Figure S3g, the disc-like contrast presumably
stems from a molecule moiety pointing upright and
therefore tilting the CO molecule at the tip away
from it. Often, parts of the molecular structure can
be obscured by the non-planar adsorption geometry.
This is a consequence of the high sensitivity of ∆f

to changes in the tip�sample distance in the regime
where short-ranged forces dominate (which holds in our
case) [5, 6]. The contrast on the two hexagonal rings in
the bottom part of Figure S4b, for example, diminishes
towards the left side because of their downwards bending.

These di�culties certainly constitute a challenge for
molecular structure identi�cation by atomic-resolution
AFM imaging. However, an experienced experimenter
can gain intuition for certain recurring patterns. The
development of a comprehensive database of high-
resolution AFM images of synthetic model compounds
using well-de�ned tips might enable the development of
a systematic interpretation scheme.

In Figure S5, additional AFM measurements of CA
molecules on Cu(111) are presented. As already stated in
the main paper, the CA molecules are usually composed
of a single polycyclic aromatic hydrocarbon (PAH) core
to which one or several small side-groups are attached.
Partially, PAH islands (sometimes made up of just a
single ring) are connected by a single bond.

The characterization of the mean structural paramet-
ers of asphaltene molecules and nanocolloidal particles
has been very useful, for example, in development of bulk
and surface asphaltene thermodynamics. Moreover, the
distribution breadth of asphaltene structures is known to
be substantial. For example, molecular weight determin-
ations of asphaltenes �nd broad distributions with high
mass tails. However, there exists almost no structural
information in these distributions. With the images ac-
quired herein, it is now possible to characterize structural
parameters in these distributions. A key conclusion is
that the predominant molecular motif of a single PAH
per molecule evidently extends into the high mass tail.
The existence of corresponding large PAHs will likely �g-
ure prominently in particular asphaltene properties.

B. Molecular orbital calculations for CA2, CA3
and CA12

In this section, we present molecular orbital (MO)
calculations for CA2, CA3 and CA12. The proposed
structures are based on the measured AFM images of
the respective molecule. The MOs are calculated using
density functional theory (DFT) implemented by the
highly optimized plane-wave code CPMD [7]. We used the
Perdew�Burke�Ernzerhof (PBE) exchange-correlation
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Figure S2. Coal-derived asphaltenes CA5-CA27. a-w AFM images of di�erent CAs on Cu(111) or NaCl(2ML)/Cu(111).
For some molecules, orbital images are available in Figure S3.

functional [8], ab initio norm-conserving pseudopoten-
tials and added semiempirical van der Waals (vdW)
corrections.

For CA2, the molecular structure of the entire
molecule could be readily identi�ed from the AFM
measurement (cf. Figure S6a and Figure S6d). The
calculated HOMO (Figure S6e) and LUMO (Figure S6f)
are in good agreement with the measured orbitals
(Figure S6b,c). The deviations in the LUMO can be
explained by the small energy di�erence between LUMO
and LUMO+1 (∆E = 0.25 eV). As the MOs are signi�c-
antly vibronically broadened on the NaCl �lm [9], both
levels contribute to the measured STM orbital image [10].

The situation is less clear for CA3. Here, the
molecular structure could only be partially resolved by
AFM owing to the reduced contrast in certain parts of
the molecule. Consequently, various structure proposals
are legitimate. Some structure guesses are shown in
Figure S7a. The unknowns here are the moieties at

the �ve-membered rings. Possible are CH, CH2 or CO
moieties or ring substitutions by N, NH or S. However,
the heteroatom content in CA is relatively low, which
renders the heteroatom substitution of the pentagonal
rings less likely. In Figure S7d-o MO calculations are
shown for the di�erent structure hypotheses sketched in
Figure S7a. Apparently, many orbitals share common
motifs. However, only for a small number of structures
are both the HOMO and the LUMO in reasonable agree-
ment with the measured orbitals shown in Figure S7b,c.
The best match is achieved for the structures shown in
Figure S7f and Figure S7n. Note that both structures
have a singly occupied HOMO in the neutral state.
However, we observe a distinctively di�erent positive
(PIR) and negative ion resonance (NIR) for CA3,
which excludes the possibility of a radical. Possibly,
the molecule could be charged by one electron[11] (see
Figure 4), which would �ll up the semi-occupied HOMO.
In addition, we performed further MO calculations using
other molecule hypothesis (especially di�erent PAH
ring geometries) that showed less agreement with the
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Figure S3. CAs on NaCl(2ML)/Cu(111). a-i Each row shows AFM and STM measurements of one CA molecule. The
�rst column corresponds to AFM images. In the second column, STM images at lower voltages (in-gap) are shown. The third
and forth column display STM images recorded at the negative (NIR) and positive ion resonance (PIR), corresponding to the
LUMO and HOMO orbital, respectively, if the molecule is not charged and has an even number of electrons. The PIR and NIR
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measured orbitals.

As argued in section IIA, molecule CA12 is a radical,
as NIR and PIR have the same spatial appearance (see
Figure S3c). Absence of interface state scattering indic-
ates a neutral molecule [9]. From the AFM image we
could directly propose the molecular structure as depic-
ted in Figure S8a. The calculated SOMO of the molecule
is shown in Figure S8b. The symmetry and the weight
of the di�erent orbital lobes are in good agreement with
the measured orbitals Figure S8c,d. Certain deviations in
the measurements (such as apparent nodal planes on the
lobe maximum) can be ascribed to the p-wave character
of the CO tip [1].

III. PETROLEUM ASPHALTENES (PAs)

A. Additional AFM and STM measurements

In Figure S9, AFM and STM data of two additional
PA molecules are shown. By comparing Figure S9a and
Figure S9e, one can get an idea about the size span,
ranging from a few rings (�ve in Figure S9e) up to about
23 rings in Figure S9a. Also for PAs we occasionally
observed some radicals. In this case, the LUMO and the
HOMO resonance look identical (as seen in Figure S9g,h).

In Figure S10, AFM measurements of some other
PA molecules are shown. As PAs generally have more
side-groups than CAs, the constant-height measurement
of PAs is more challenging. During the scan at close
distance, rearrangements of the molecule can occur,
as seen in Figure S10e. Partially, this problem can be
accounted for by a three-dimensional force mapping
technique to adapt the scan height to the molecule
geometry [12].

IV. PROPOSED CHEMICAL STRUCTURES
FOR SOME CAs AND PAs MOLECULES

In the following, we propose chemical structures for
certain CA and PA molecules measured that we could
assign with high �delity by means of the measured AFM
and STM orbital images. In Figure S11 molecule models
for some CA molecules presented in Figure S4 and
Figure S5 are shown. In general, the aromatic core of
asphaltenes can be well resolved by high-resolution AFM
with CO terminated tips. The non-planar side-groups
are usually di�cult to assign.

V. CONTROL COMPOUND

We also analyzed, a synthetic control molecule to as-
sign its side-groups to the observed AFM contrast. This
assignment of the side-groups is then compared with the
AFM contrast observed at side-groups of the asphaltenes.
Because of the in�uence of the micro- and macroscopic
shape of the tip, the comparison between the control mo-
lecules and asphaltenes remains, however, qualitative.

A. 1-Methylpyrene (MP)

In Figure S12a, a model of 1-Methylpyrene (MP) is de-
picted. MP features four fused benzene rings, to which
a CH3 substituent is attached. In AFM images [13]
(Figure S12b,c) this CH3 substituent appears as a single
bright spot that turns out to be slightly elongated per-
pendicularly to its bonding direction at close distance. A
very similar behaviour is also observed for the molecules
CA1-4, CA7, CA9, CA12, CA14, CA19, CA23,
CA24, CA26, PA1, PA3 and others. Therefore, we
assign the most frequently observed side-group present
in the above-mentioned molecules to CH3.
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the PIR (b) and the NIR (c). d Structural model of CA2. e,f HOMO (e) and LUMO (f) orbital of the structure in d.
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Figure S9. Petroleum asphaltenes PA4 and PA5 on NaCl(2ML)/Cu(111). a-d AFM and STM images of P4. e-h
AFM and STM images of P5. As in Figure S3c, NIR and PIR are essentially identical. Again, this is due to the molecule
being a radical or singly charged.
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NaCl(2ML)/Cu(111) at di�erent set-points z from (I = 1.4 pA, V = 0.2V).
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